
Matter Specification

Version 1.3

Document: 23-27349-005_Matter-1.3-Core-Specification.pdf

April 17, 2024

Sponsored by: Connectivity Standards Alliance

Accepted by: This document has been accepted for release by the Connectivity
Standards Alliance Board of Directors on April 17, 2024

Abstract: The Matter specification defines fundamental requirements to
enable an interoperable application layer solution for smart home
devices over the Internet Protocol.

Keywords: Referenced in Chapter 1.

Copyright © 2022-2024 Connectivity Standards Alliance, Inc.
508 Second Street, Suite 109B Davis, CA 95616 - USA
www.csa-iot.org
All rights reserved.

Permission is granted to members of the Connectivity Standards Alliance to reproduce this
document for their own use or the use of other Connectivity Standards Alliance members only,
provided this notice is included. All other rights reserved. Duplication for sale, or for commercial or
for-profit use is strictly prohibited without the prior written consent of the Connectivity Standards
Alliance.

Matter Specification
Version 1.3, 2024-04-11 22:47:08 -0700: Approved

Copyright Notice, License and Disclaimer
Copyright © Connectivity Standards Alliance (2021-2023). All rights reserved. The information
within this document is the property of the Connectivity Standards Alliance and its use and disclo
sure are restricted, except as expressly set forth herein.

Connectivity Standards Alliance hereby grants you a fully-paid, non-exclusive, nontransferable,
worldwide, limited and revocable license (without the right to sublicense), under Connectivity Stan
dards Alliance’s applicable copyright rights, to view, download, save, reproduce and use the docu
ment solely for your own internal purposes and in accordance with the terms of the license set
forth herein. This license does not authorize you to, and you expressly warrant that you shall not:
(a) permit others (outside your organization) to use this document; (b) post or publish this docu
ment; (c) modify, adapt, translate, or otherwise change this document in any manner or create any
derivative work based on this document; (d) remove or modify any notice or label on this docu
ment, including this Copyright Notice, License and Disclaimer. The Connectivity Standards Alliance
does not grant you any license hereunder other than as expressly stated herein.

Elements of this document may be subject to third party intellectual property rights, including
without limitation, patent, copyright or trademark rights, and any such third party may or may not
be a member of the Connectivity Standards Alliance. Connectivity Standards Alliance members
grant other Connectivity Standards Alliance members certain intellectual property rights as set
forth in the Connectivity Standards Alliance IPR Policy. Connectivity Standards Alliance members
do not grant you any rights under this license. The Connectivity Standards Alliance is not responsi
ble for, and shall not be held responsible in any manner for, identifying or failing to identify any or
all such third party intellectual property rights. Please visit www.csa-iot.org for more information
on how to become a member of the Connectivity Standards Alliance.

This document and the information contained herein are provided on an “AS IS” basis and the Con
nectivity Standards Alliance DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLEC
TUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS); OR (B) ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
NONINFRINGEMENT. IN NO EVENT WILL THE CONNECTIVITY STANDARDS ALLIANCE BE LIABLE
FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSI
NESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR
CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS
DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH LOSS OR DAMAGE.

All company, brand and product names in this document may be trademarks that are the sole prop
erty of their respective owners.

This notice and disclaimer must be included on all copies of this document.

Connectivity Standards Alliance
508 Second Street, Suite 206
Davis, CA 95616, USA

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 2 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Participants
Agrawal, Amit Alexander, Rob Ananthakrishnan,

Krithika
Axelsson, Ulf

Azria, Shana Bak, Naama Balducci, Alex Bao, Yongming

Bartolome, Diego Bauer-Schwan, Stefan Beach, Chris Beck, Austin

Becker, Markus Beliveau, Louis-Philip Ben, Thomas Bhetanabottla, Sriram

Binjola, Sharad Boehl, Florian Bonnell, Corey Bultman, Rob

C, Rajashree Carlin, Broderick Carmel-Veilleux, Ten
nessee

Casallas, Ricardo

Cave, Tony Chalmers, Andrew Chan, Osborn Chandarana, Janak

Cheshire, Stuart Chudinov, Adrian Chung, Cliff Chupp, Anton

Coppock, Kevin Cowan, Michael Cragie, Robert Crettenand, Alexander

Cullen, Sam Cuyckens, Thomas Damle, Makarand Darling, Don

De, Pradip Decenzo, Chris Delplancke, Julien Dhayagude, Hrishikesh

Ding, Li-An Dok, Hrishikesh Dolan, David Dong, Kangping

Drake, Jeff Duda, Łukasz Dyck, Nathan Erickson, Grant

Feraru, Eugen Fominaya, Antonio Freeman, Cecille Fu, Kenneth

Fuentes, Pedro Fyall, Ian Garbus, Mathias Kiel
gast

Garg, Pankaj

Graf, Tobias Granbery, Hasty Gucea, Doru Guiheneuf, Robin-
Charles

Guo, Jiacheng Guo, Song Haefner, Kyle Hamilton, Ryan

Hampson, Terence Hanna, John Hanna, Steve Haque, Asad

Harris, Will Harrow, James Hartwig, Thomas Hazley, Matt

Heide, Janus Hernandez-Palomares,
Martin

Hicklin, William Hilal, Rawad

Ho, Nguyen Hoang, Minhhoa Holbrook, Trevor Hollebeek, Tim

Houtepen, Rob Huang, Xiaolong Hui, Jonathan Hui, Li

Hui, Yang Jain, Amit Jain, Ankur Jandhyala, Chaitanya

Jayakumar, Liju Johns, Jerry Josefsen, René KVS, Mohan

KY, Suma Kardous, Mathieu Kasperczyk, Kamil Kassel, Gabe

Katira, Utsav Khatri, Shivam Knörzer, Clemens Kohr, John

Kommareddi, Naveen Kontra, Andrew Kovacic, Lazar Krawetz, Bryan

Królik, Damian Kumar, Sandeep Kumar, Saurabh Lauric, Petru

Lazar, Alin Le Tutour, Jean Lee, Byungjoo Lepage, Marc

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 3

Letnick, Chris Levkov, Stoycho Liang, Deng Lindeman, Ryan

Litvin, Andrei Lyu, Rashid Ma, Longfei Maes, Timothy

Makdissi, Shadi Mamo, Fesseha Manley, Tom Mann, Bryan

Mansour, Peter Margolis, Evgeni Martinez, Junior Matignon, Florent

Matosian, Dan Meissner, Bryan Melo, Sara Menzopol, Andrei

Mikolits, Marc Moneta, Daniel Montenegro, Gabriel Morales, Victor

Morozov, Evgeniy Morris, Simon Mégevand, Jonathan Nadathur, Anush

Nagappan, Ramesh Nicolas, Vivien Nuyts, Wim Olson, Rodney

P, Aswathy Pan, Liam Pan, Shaofeng Pansy, Jürgen

Page, Jason Parausanu, Dragos Patil, Shubham Penven, Jean-Francois

Perumal, Saravana Po, Kevin Powell, Ken Pyasi, Madhur

Rahman, Mo Rempel, David Rhees, Jon Rosenberg, Aron

Rozendaal, Leo Rupp, Michael Ryan, Kyle S, Sowmya

Sallas, Sal Sambles, Philip Sandstedt, Michael Sarkar, Nivi

Sarma, Bhaskar Scherbakov, Alex Schiller, Bill Schoinas, Yannis

Schultze, Juliane Seenivasan, Suraj Segal, Oren Sena, Joe

She, Chengqiang Shreve, Erik Siu, Irene Smirl, Jon

Smith, Bill Smith, David Smith, Matt Soloway, Alan

Son, Jae Spade, Lorey Sperling, Karsten Struchtrup, Sebastian
Schulze

Szablowski, Michał Szatmary-Ban, Zoltan Szczodrak, Marcin Szewczyk, Robert

Tabassum, Nadira Taleb, Ali Trayer, Mark Truskovsky, Alexander

Tung, Berkat Turon, Martin Umesh, Deepakumar Vauclair, Marc

Verma, Lochan Wais, Jackie Wang Qixiang Wang, David

Wang, Yufeng Wang, Yunhan Wei, Qingyun Weil, Jason

Weinshel, Ben Weir, Tristan Williams, Cam Wood, Justin

Wyseur, Brecht Xu, Yakun Yang, Carol Zang, Mingjie

Zbarsky, Boris Zgrablic, Leonard Zhang, Xili Zhao, Betty

Zhao, Ru Zhodzishsky, Victor Zijian, Wang

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 4 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Document Control
The Matter specification is made of individual chapters such as this one. See Chapter 1 for the list of
all chapters. References between chapters are made using a X.Y notation where X is the chapter and
Y is the sub-section within that chapter. References to external documents are contained in Chapter
1 and are made using [Rn] notation. An update to any of these chapters will be reflected in an
update to the source document list below.

Chapter 01 — Introduction Document # [./Ch01_Introduction.adoc]

Chapter 02 — Architecture Document # [./Ch02_Architecture.adoc]

Chapter 03 — Cryptographic Primitives Document # [./Ch03_Cryptography.adoc]

Chapter 04 — Secure Channel Document # [./Ch04_Secure_Channel.adoc]

Chapter 05 — Commissioning Document # [./Ch05_Commissioning.adoc]

Chapter 06 — Device Attestation Document # [./Ch06_Attestation.adoc]

Chapter 07 — Data Model Document # [./Ch07_Data_Model.adoc]

Chapter 08 — Interaction Model Document # [./Ch08_Interaction_Model.adoc]

Chapter 09 — System Model Document # [./Ch09_System_Model.adoc]

Chapter 10 — Interaction Encoding Document # [./Ch10_Interaction_Encoding.adoc]

Chapter 11 — Device Management Document # [./Ch07_Management.adoc]

Chapter 12 — Multiple Fabrics Document # [./Ch09_MultipleAdmins.adoc]

Chapter 13 — Security Requirements Document # [./Ch10_Security_Requirements.adoc]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 5

./Ch01_Introduction.adoc
./Ch02_Architecture.adoc
./Ch03_Cryptography.adoc
./Ch04_Secure_Channel.adoc
./Ch05_Commissioning.adoc
./Ch06_Attestation.adoc
./Ch07_Data_Model.adoc
./Ch08_Interaction_Model.adoc
./Ch09_System_Model.adoc
./Ch10_Interaction_Encoding.adoc
./Ch07_Management.adoc
./Ch09_MultipleAdmins.adoc
./Ch10_Security_Requirements.adoc

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 6 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Revision History
Revision Date Details Editor

01 May 11, 2020 Initial draft Robert Szewczyk

02 September 23, 2022 Version 1.0 Robert Szewczyk

03 May 17, 2023 Version 1.1 Robert Szewczyk

04 October 18, 2023 Version 1.2 Robert Szewczyk

05 April 17, 2024 Version 1.3 Robert Szewczyk

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 7

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 8 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Table of Contents
Copyright Notice, License and Disclaimer . 1

Participants . 3

Document Control . 5

Revision History . 7

1. Introduction. 31

1.1. Scope and Purpose . 31

1.2. Acronyms and Abbreviations . 31

1.3. Definitions . 33

1.4. Standards Terminology Mapping . 36

1.5. Conformance Levels . 37

1.6. References . 38

1.6.1. CSA Reference Documents . 38

1.6.2. External Reference Documents . 38

1.7. Informative References. 44

1.7.1. CSA Reference Documents . 44

1.8. Conventions . 44

1.8.1. Enumerations and Reserved Values. 44

1.8.2. Reserved Bit Fields . 45

1.8.3. Number Format. 45

1.8.4. Provisional . 46

2. Architecture. 47

2.1. Overview . 47

2.2. Layered Architecture. 47

2.3. Network Topology . 49

2.3.1. Single network. 49

2.3.2. Star network topology . 50

2.4. Scoped names . 51

2.5. Identifiers . 52

2.5.1. Fabric References and Fabric Identifier . 52

2.5.2. Vendor Identifier (Vendor ID, VID) . 52

2.5.3. Product Identifier (Product ID, PID) . 53

2.5.4. Group Identifier (GID) . 53

2.5.5. Node Identifier . 54

2.5.6. IPv6 Addressing. 56

2.6. Device identity. 57

2.7. Security . 58

2.8. Device Commissioning . 58

2.9. Intermittently Connected Device (ICD) . 59

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 9

2.9.1. Sleepy End Device (SED) . 59

2.10. Data Model Root . 59

2.11. Stack Limits . 59

2.11.1. System Model Limits . 60

2.11.2. Interaction Model Limits . 60

2.12. List of Provisional Items . 61

2.12.1. Invoke Multiple Paths . 61

2.12.2. Proxy Service . 61

2.12.3. Diagnostic Logs Cluster . 61

2.12.4. Long Idle Time ICD . 61

2.12.5. ICD Check-In Protocol feature . 61

2.12.6. Tag compression encoding for AttributePathIB, EventPathIB, and AttributeDataIB. . . . 62

3. Cryptographic Primitives . 63

3.1. Deterministic Random Bit Generator (DRBG) . 63

3.2. True Random Number Generator (TRNG) . 64

3.3. Hash function (Hash). 64

3.4. Keyed-Hash Message Authentication Code (HMAC). 65

3.5. Public Key Cryptography . 65

3.5.1. Group . 66

3.5.2. Key generation. 66

3.5.3. Signature and verification . 67

3.5.4. ECDH . 68

3.5.5. Certificate validation . 68

3.5.6. Time and date considerations for certificate path validation . 69

3.6. Data Confidentiality and Integrity . 70

3.6.1. Generate and encrypt . 71

3.6.2. Decrypt and verify . 72

3.7. Message privacy . 73

3.7.1. Privacy encryption . 73

3.7.2. Privacy decryption . 74

3.8. Key Derivation Function (KDF) . 74

3.9. Password-Based Key Derivation Function (PBKDF) . 76

3.10. Password-Authenticated Key Exchange (PAKE) . 77

3.10.1. Computation of pA . 79

3.10.2. Computation of pB . 79

3.10.3. Computation of transcript TT . 80

3.10.4. Computation of cA, cB and Ke . 80

4. Secure Channel . 83

4.1. General Description . 83

4.1.1. Messages . 83

4.2. IPv6 Reachability . 84

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 10 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.2.1. Stub Router Behavior. 85

4.2.2. Matter Node Behavior . 85

4.3. Discovery . 85

4.3.1. Commissionable Node Discovery . 87

4.3.2. Operational Discovery . 103

4.3.3. Commissioner Discovery . 107

4.3.4. Common TXT Key/Value Pairs . 110

4.4. Message Frame Format . 112

4.4.1. Message Header Field Descriptions . 113

4.4.2. Message Footer Field Descriptions . 116

4.4.3. Protocol Header Field Descriptions . 117

4.4.4. Message Size Requirements . 119

4.5. Message Framing Over Stream-Oriented Transports . 119

4.5.1. Message Length (16/32 bits) . 119

4.6. Message Counters. 120

4.6.1. Message Counter Types . 120

4.6.2. Secure Session Message Counters. 122

4.6.3. Check-In Counter . 122

4.6.4. Message Counters as Encryption Nonces . 123

4.6.5. Replay Prevention and Duplicate Message Detection . 123

4.6.6. Counter Processing of Outgoing Messages . 126

4.6.7. Counter Processing of Incoming Messages. 126

4.7. Message Processing . 127

4.7.1. Message Transmission. 127

4.7.2. Message Reception . 128

4.8. Message Security . 128

4.8.1. Data confidentiality and integrity with data origin authentication parameters 129

4.8.2. Security Processing of Outgoing Messages . 129

4.8.3. Security Processing of Incoming Messages . 132

4.9. Message Privacy . 133

4.9.1. Privacy Key. 133

4.9.2. Privacy Nonce . 133

4.9.3. Privacy Processing of Outgoing Messages . 134

4.9.4. Privacy Processing of Incoming Messages . 135

4.10. Message Exchanges . 135

4.10.1. Exchange Role . 135

4.10.2. Exchange ID . 136

4.10.3. Exchange Context . 136

4.10.4. Exchange Message Dispatch . 136

4.10.5. Exchange Message Processing. 137

4.11. Secure Channel Protocol. 139

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 11

4.11.1. Secure Channel Protocol Messages . 139

4.11.2. Parameters and Constants . 142

4.12. Message Reliability Protocol (MRP) . 143

4.12.1. Reliable Messaging Header Fields . 143

4.12.2. Reliable transfer . 143

4.12.3. Peer Exchange Management . 146

4.12.4. Transport Considerations . 146

4.12.5. Reliable Message Processing . 146

4.12.6. Reliable Message State. 151

4.12.7. MRP Messages . 151

4.12.8. Parameters and Constants . 152

4.13. Unicast Communication . 154

4.13.1. Session Establishment Phase . 154

4.13.2. Application Data Phase . 156

4.14. Session Establishment. 158

4.14.1. Passcode-Authenticated Session Establishment (PASE) . 158

4.14.2. Certificate Authenticated Session Establishment (CASE) . 164

4.15. Group Communication . 186

4.15.1. Groupcast Session Context . 187

4.15.2. Sending a group message . 187

4.15.3. Receiving a group message . 188

4.16. Group Key Management. 188

4.16.1. Operational Groups . 189

4.16.2. Operational Group Key Derivation . 189

4.16.3. Epoch Keys . 191

4.16.4. Distribution of Key Material . 195

4.17. Message Counter Synchronization Protocol (MCSP) . 196

4.17.1. Message Counter Synchronization Methods . 197

4.17.2. Group Peer State . 198

4.17.3. MCSP Messages . 198

4.17.4. Unsynchronized Message Processing . 199

4.17.5. Message Counter Synchronization Exchange . 200

4.17.6. Message Counter Synchronization Session Context. 203

4.17.7. Sequence Diagram . 203

4.18. Bluetooth Transport Protocol (BTP). 205

4.18.1. BTP Session Interface . 206

4.18.2. BTP Frame Format . 206

4.18.3. BTP Control Frames . 207

4.18.4. BTP GATT Service . 209

4.18.5. Parameters and Constants . 220

4.18.6. Bluetooth SIG Considerations . 221

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 12 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.19. Check-In Protocol . 221

4.19.1. Requirements . 222

4.19.2. Message Content . 222

4.19.3. Algorithms . 223

4.19.4. Protocol Operation . 224

5. Commissioning . 229

5.1. Onboarding Payload . 229

5.1.1. Onboarding Payload Contents . 229

5.1.2. Onboarding Material Representation . 230

5.1.3. QR Code . 231

5.1.4. Manual Pairing Code . 236

5.1.5. TLV Content . 239

5.1.6. Concatenation . 241

5.1.7. Generation of the Passcode . 242

5.1.8. NFC Tag . 243

5.2. Initiating Commissioning . 244

5.2.1. Purpose and Scope . 244

5.2.2. User Journey Details. 245

5.3. User Directed Commissioning . 250

5.3.1. Overview. 250

5.3.2. UDC Protocol Messages . 252

5.3.3. Message format . 252

5.3.4. Message Exchanges . 252

5.3.5. IdentificationDeclaration Message. 253

5.3.6. CommissionerDeclaration Message . 258

5.3.7. Example Message Exchanges. 260

5.4. Device Discovery . 264

5.4.1. Purpose and Scope . 264

5.4.2. Announcement by Device. 264

5.4.3. Discovery by Commissioner. 272

5.5. Commissioning Flows . 272

5.5.1. Commissioning Flows Error Handling . 277

5.5.2. Commissioning Flow Diagrams. 278

5.6. Administrator Assisted Commissioning Flows . 280

5.6.1. Introduction . 280

5.6.2. Basic Commissioning Method (BCM) . 280

5.6.3. Enhanced Commissioning Method (ECM). 281

5.6.4. Open Commissioning Window . 283

5.7. Device Commissioning Flows . 283

5.7.1. Standard Commissioning Flow . 283

5.7.2. User-Intent Commissioning Flow . 284

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 13

5.7.3. Custom Commissioning Flow. 285

5.7.4. Manual Pairing Code and QR Code Inclusion . 292

5.8. In-field Upgrade to Matter . 294

6. Device Attestation and Operational Credentials . 295

6.1. Certificate Common Conventions. 295

6.1.1. Encoding of Matter-specific RDNs . 295

6.1.2. Key Identifier Extension Constraints . 297

6.1.3. Certificate Sizes . 297

6.1.4. Presentation of example certificates . 297

6.2. Device Attestation . 298

6.2.1. Introduction . 298

6.2.2. Device Attestation Certificate (DAC). 298

6.2.3. Device Attestation Procedure . 312

6.2.4. Device attestation revocation . 315

6.3. Certification Declaration . 319

6.3.1. Certification Declaration (CD) Format . 319

6.3.2. Firmware Information . 322

6.3.3. Firmware information validation examples . 324

6.4. Node Operational Credentials Specification . 326

6.4.1. Introduction . 326

6.4.2. Node Operational Credentials Management . 326

6.4.3. Node Operational Identifier Composition . 327

6.4.4. Node Operational Key Pair . 327

6.4.5. Node Operational Credentials Certificates . 327

6.4.6. Node Operational Credentials Procedure . 329

6.4.7. Node Operational Certificate Signing Request (NOCSR) . 331

6.4.8. Node Operational Certificate Renewal . 332

6.4.9. Node Operational Certificate Revocation . 332

6.4.10. Security Considerations . 332

6.5. Operational Certificate Encoding . 332

6.5.1. Introduction . 332

6.5.2. Matter certificate . 333

6.5.3. Version Number . 334

6.5.4. Serial Number . 334

6.5.5. Signature Algorithm. 334

6.5.6. Issuer and Subject. 335

6.5.7. Validity . 340

6.5.8. Public Key Algorithm . 340

6.5.9. EC Curve Identifier . 340

6.5.10. Public Key. 341

6.5.11. Extensions . 341

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 14 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6.5.12. Matter certificate Extensions Encoding Rules . 345

6.5.13. Signature. 346

6.5.14. Invalid Matter certificates . 346

6.5.15. Examples . 347

6.6. Access Control . 354

6.6.1. Scope and Purpose . 354

6.6.2. Model . 354

6.6.3. Access Control List Examples. 358

6.6.4. Access Control Cluster update side-effects . 363

6.6.5. Conceptual Access Control Privilege Granting Algorithm . 364

6.6.6. Applying Privileges to Action Paths . 369

7. Data Model Specification . 371

7.1. Practical Information . 371

7.1.1. Revision History . 371

7.1.2. Scope & Purpose . 371

7.1.3. Origin Story . 371

7.1.4. Overview. 372

7.1.5. Glossary. 372

7.1.6. Conventions . 372

7.2. Data Qualities . 372

7.2.1. Common Data Table Columns . 372

7.2.2. Description Section. 373

7.2.3. Other Data Table Columns . 373

7.3. Conformance . 373

7.3.1. Operands in Conformance . 375

7.3.2. Feature Code in Conformance . 375

7.3.3. Element in Conformance . 375

7.3.4. Optional Conformance . 375

7.3.5. Provisional Conformance . 375

7.3.6. Mandatory Conformance . 376

7.3.7. Disallowed Conformance . 376

7.3.8. Deprecated Conformance . 376

7.3.9. Exclusivity Conformance . 376

7.3.10. Otherwise Conformance . 376

7.3.11. Quality Conformance. 376

7.3.12. Expressions and Optionality . 377

7.3.13. Choice . 378

7.3.14. Blank Conformance . 380

7.3.15. Feature Conformance . 380

7.4. Element . 381

7.4.1. Encoded Element Processing . 382

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 15

7.5. Fabric. 382

7.5.1. Accessing Fabric . 382

7.5.2. Fabric-Index . 382

7.5.3. Fabric-Scoped Data. 383

7.5.4. Fabric-Scoped IDs . 383

7.6. Access . 384

7.6.1. Read Access . 385

7.6.2. Write Access. 385

7.6.3. Invoke Access. 386

7.6.4. Fabric-Scoped Quality . 386

7.6.5. Fabric-Sensitive Quality . 386

7.6.6. View Privilege . 386

7.6.7. Operate Privilege . 386

7.6.8. Manage Privilege . 387

7.6.9. Administer Privilege . 387

7.6.10. Timed Interaction. 387

7.7. Other Qualities . 387

7.7.1. Changes Omitted Quality . 389

7.7.2. Fixed Quality . 389

7.7.3. Singleton Quality. 389

7.7.4. Diagnostics Quality. 389

7.7.5. Large Message Quality. 389

7.7.6. Non-Volatile Quality . 389

7.7.7. Reportable Quality . 389

7.7.8. Quieter Reporting Quality . 389

7.7.9. Scene Quality . 390

7.7.10. Nullable Quality . 390

7.8. Node. 390

7.9. Endpoint . 390

7.10. Cluster . 391

7.10.1. Cluster Revision . 391

7.10.2. Cluster Optional Features . 392

7.10.3. Cluster Data Version . 392

7.10.4. New Cluster . 393

7.10.5. Cluster Aliasing . 393

7.10.6. Cluster Inheritance. 393

7.10.7. Status Codes . 395

7.10.8. Cluster Classification . 395

7.11. Command. 396

7.11.1. Command Fields . 397

7.12. Attribute . 398

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 16 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.12.1. Persistence . 398

7.13. Global Elements . 399

7.13.1. ClusterRevision Attribute . 400

7.13.2. FeatureMap Attribute . 400

7.13.3. AttributeList Attribute. 401

7.13.4. AcceptedCommandList Attribute . 401

7.13.5. GeneratedCommandList Attribute . 401

7.13.6. EventList Attribute . 402

7.13.7. FabricIndex Field . 402

7.14. Event . 402

7.14.1. Event Record . 402

7.14.2. Buffering. 403

7.14.3. Event Filtering. 404

7.14.4. Fabric-Sensitive Event . 404

7.15. Device Type . 404

7.15.1. Device Type Revision. 405

7.15.2. Device Type Composition . 405

7.15.3. Device Type Classification . 405

7.15.4. Extra Clusters on an Endpoint. 406

7.16. Non-Standard . 407

7.17. Data Field . 407

7.17.1. Nullable. 408

7.17.2. Optional or Deprecated. 408

7.17.3. Constraint & Value . 409

7.17.4. Default Column . 412

7.18. Data Types . 413

7.18.1. Base Data Types . 413

7.18.2. Derived Data Types . 421

7.19. Manufacturer Specific Extensions . 436

7.19.1. Manufacturer Extensible Identifiers . 436

7.19.2. Manufacturer Extensible Identifier (MEI) . 437

7.19.3. Manufacturer Extensions . 439

7.19.4. Discoverability . 443

8. Interaction Model Specification . 445

8.1. Practical Information . 445

8.1.1. Revision History . 445

8.1.2. Scope & Purpose . 445

8.1.3. Origin Story . 445

8.1.4. Purpose . 446

8.1.5. Glossary. 446

8.1.6. Conventions & Conformance . 447

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 17

8.2. Concepts . 447

8.2.1. Path . 447

8.2.2. Interaction . 451

8.2.3. Transaction. 452

8.2.4. Action. 452

8.2.5. Common Action Behavior. 453

8.3. Status and Interaction . 455

8.3.1. Status Response Action . 455

8.4. Read Interaction . 456

8.4.1. Read Transaction . 457

8.4.2. Read Request Action. 457

8.4.3. Report Data Action . 458

8.5. Subscribe Interaction . 461

8.5.1. Subscribe Transaction . 463

8.5.2. Subscribe Request Action . 463

8.5.3. Subscribe Response Action. 465

8.6. Report Transaction. 466

8.6.1. Report Transaction Non-Empty. 466

8.6.2. Report Transaction Empty . 466

8.7. Write Interaction . 466

8.7.1. Write Transaction. 467

8.7.2. Write Request Action . 467

8.7.3. Write Response Action . 468

8.7.4. Timed Request Action . 470

8.8. Invoke Interaction . 471

8.8.1. Invoke Transaction. 471

8.8.2. Invoke Request Action . 472

8.8.3. Invoke Response Action . 475

8.9. Common Action Information Blocks and Paths . 476

8.9.1. Path Information . 476

8.9.2. Attribute Information Blocks. 477

8.9.3. Event Information Blocks and Paths . 482

8.9.4. Command Information Blocks and Paths . 484

8.9.5. Status Information Blocks and Paths . 486

8.10. Status Codes. 488

8.10.1. Status Code Table . 488

9. System Model Specification . 493

9.1. Practical Information . 493

9.1.1. Revision History . 493

9.1.2. Scope and Purpose . 493

9.1.3. Origin Story . 493

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 18 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.1.4. Overview. 493

9.2. Endpoint Composition. 493

9.2.1. Endpoint Composition Patterns . 495

9.2.2. Root Node Endpoint . 496

9.2.3. Disambiguation . 497

9.2.4. Dynamic Endpoint Allocation . 499

9.2.5. Superset Device Types . 500

9.3. Interaction Model Relationships. 501

9.3.1. Subscription . 501

9.4. Binding Relationship . 501

9.5. Descriptor Cluster. 502

9.5.1. Revision History . 502

9.5.2. Classification . 503

9.5.3. Cluster ID . 503

9.5.4. Features. 503

9.5.5. Data Types . 503

9.5.6. Attributes . 504

9.6. Binding Cluster . 505

9.6.1. Binding Mutation . 506

9.6.2. Revision History . 506

9.6.3. Classification . 506

9.6.4. Cluster ID . 506

9.6.5. Data Types . 506

9.6.6. Attributes . 507

9.7. Label Cluster . 508

9.7.1. Revision History . 508

9.7.2. Classification . 508

9.7.3. Cluster ID . 508

9.7.4. Data Types . 509

9.7.5. Attributes . 509

9.8. Fixed Label Cluster . 509

9.8.1. Revision History . 510

9.8.2. Classification . 510

9.8.3. Cluster ID . 510

9.8.4. Attributes . 510

9.9. User Label Cluster . 510

9.9.1. Revision History . 510

9.9.2. Classification . 511

9.9.3. Cluster ID . 511

9.9.4. Attributes . 511

9.10. Access Control Cluster. 511

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 19

9.10.1. Revision History . 511

9.10.2. Classification . 511

9.10.3. Cluster ID . 512

9.10.4. Data Types . 512

9.10.5. Attributes . 518

9.10.6. Error handling. 521

9.10.7. Events . 522

9.11. Group Relationship . 524

9.12. Bridge for non-Matter devices . 525

9.12.1. Introduction. 525

9.12.2. Exposing functionality and metadata of Bridged Devices . 526

9.12.3. Discovery of Bridged Devices . 530

9.12.4. Configuration of Bridged Devices. 531

9.12.5. New features for Bridged Devices . 533

9.12.6. Changes to the set of Bridged Devices . 533

9.12.7. Changes to device names and grouping of Bridged Devices . 534

9.12.8. Setup flow for a Bridge (plus Bridged Devices) . 534

9.12.9. Access Control . 534

9.12.10. Software update (OTA) . 534

9.12.11. Best practices for Bridge Manufacturers . 535

9.12.12. Best practices for Administrators. 535

9.13. Bridged Device Basic Information Cluster . 536

9.13.1. Revision History . 536

9.13.2. Classification . 536

9.13.3. Cluster ID . 537

9.13.4. Attributes . 537

9.13.5. Events . 539

9.14. Actions Cluster . 539

9.14.1. Revision History . 540

9.14.2. Classification . 540

9.14.3. Cluster ID . 540

9.14.4. Data Types . 541

9.14.5. Attributes . 546

9.14.6. Commands . 547

9.14.7. Events . 553

9.14.8. Examples . 555

9.15. Proxy Architecture. 561

9.15.1. Motivation . 561

9.15.2. Subscription Proxy: Overview. 561

9.15.3. Composition & Paths . 562

9.15.4. Proxy Subscriptions . 563

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 20 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.15.5. Schemas and Data Serialization/Deserialization . 565

9.15.6. Indirect Proxies. 565

9.15.7. Proxy Discovery & Assignment Flow. 565

9.15.8. Constraints . 572

9.15.9. Certification . 573

9.15.10. Security & Privacy . 573

9.15.11. Parameters and Constants . 574

9.15.12. Proxy Discovery Cluster . 574

9.15.13. Proxy Configuration Cluster . 576

9.15.14. Valid Proxies Cluster . 578

9.16. Intermittently Connected Devices Behavior . 579

9.16.1. ICD Server Behavior. 579

9.16.2. ICD Client Behavior . 586

9.17. ICD Management Cluster . 592

9.17.1. Revision History . 592

9.17.2. Classification . 593

9.17.3. Cluster ID . 593

9.17.4. Features. 593

9.17.5. Data Types . 594

9.17.6. Attributes . 596

9.17.7. Commands . 602

10. Interaction Model Encoding Specification. 609

10.1. Overview . 609

10.2. Messages. 609

10.2.1. IM Protocol Messages . 609

10.2.2. Common Action Information Encoding . 609

10.2.3. Chunking . 610

10.2.4. Transaction Flows . 611

10.3. Data Types . 614

10.3.1. Analog - Integer. 615

10.3.2. Analog - Floating Point . 615

10.3.3. Discrete - Enumeration . 615

10.3.4. Discrete - Bitmap. 616

10.3.5. Composite - String . 616

10.3.6. Composite - Octet String . 616

10.3.7. Collection - Struct . 616

10.3.8. Collection - List . 616

10.3.9. Derived Types . 616

10.3.10. Field IDs . 616

10.4. Sample Clusters . 616

10.4.1. Disco Ball Cluster . 616

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 21

10.4.2. Super Disco Ball Cluster . 626

10.5. Sample Device Types . 628

10.5.1. Disco Ball Device Type. 628

10.5.2. Super Disco Ball Device Type. 629

10.5.3. Disco Spot Device Type . 631

10.5.4. Disco Dance System Device Type . 632

10.5.5. Weather Station Device Type. 633

10.6. Information Blocks . 634

10.6.1. Tag Rules. 634

10.6.2. AttributePathIB . 634

10.6.3. DataVersionFilterIB . 638

10.6.4. AttributeDataIB. 638

10.6.5. AttributeReportIB . 642

10.6.6. EventFilterIB . 642

10.6.7. ClusterPathIB. 642

10.6.8. EventPathIB . 642

10.6.9. EventDataIB . 643

10.6.10. EventReportIB . 644

10.6.11. CommandPathIB. 645

10.6.12. CommandDataIB . 645

10.6.13. InvokeResponseIB . 646

10.6.14. CommandStatusIB . 647

10.6.15. EventStatusIB . 647

10.6.16. AttributeStatusIB . 647

10.6.17. StatusIB . 647

10.7. Message Definitions. 648

10.7.1. StatusResponseMessage . 648

10.7.2. ReadRequestMessage. 648

10.7.3. ReportDataMessage . 649

10.7.4. SubscribeRequestMessage . 651

10.7.5. SubscribeResponseMessage. 651

10.7.6. WriteRequestMessage . 652

10.7.7. WriteResponseMessage. 652

10.7.8. TimedRequestMessage . 652

10.7.9. InvokeRequestMessage . 653

10.7.10. InvokeResponseMessage . 653

11. Service and Device Management . 655

11.1. Basic Information Cluster . 655

11.1.1. Revision History . 655

11.1.2. Classification . 655

11.1.3. Cluster ID . 655

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 22 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.1.4. Data Types . 655

11.1.5. Attributes . 658

11.1.6. Events . 664

11.2. Group Key Management Cluster. 665

11.2.1. Revision History . 665

11.2.2. Classification . 666

11.2.3. Cluster ID . 666

11.2.4. Features. 666

11.2.5. Data Types . 666

11.2.6. Attributes . 670

11.2.7. Commands . 671

11.3. Localization Configuration Cluster . 675

11.3.1. Revision History . 675

11.3.2. Classification . 675

11.3.3. Cluster ID . 675

11.3.4. Attributes . 675

11.4. Time Format Localization Cluster . 676

11.4.1. Revision History . 676

11.4.2. Classification . 676

11.4.3. Cluster ID . 676

11.4.4. Features. 676

11.4.5. Data Types . 677

11.4.6. Attributes . 678

11.5. Unit Localization Cluster . 678

11.5.1. Revision History . 679

11.5.2. Classification . 679

11.5.3. Cluster ID . 679

11.5.4. Features. 679

11.5.5. Data Types . 679

11.5.6. Attributes . 680

11.6. Power Source Configuration Cluster . 680

11.6.1. Revision History . 680

11.6.2. Classification . 680

11.6.3. Cluster ID . 680

11.6.4. Attributes . 681

11.7. Power Source Cluster . 681

11.7.1. Revision History . 681

11.7.2. Classification . 681

11.7.3. Cluster ID . 681

11.7.4. Features. 682

11.7.5. Dependencies . 682

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 23

11.7.6. Data Types . 682

11.7.7. Attributes . 692

11.7.8. Events . 699

11.7.9. Configuration Examples . 701

11.8. Power Topology Cluster . 703

11.8.1. Revision History . 703

11.8.2. Classification . 703

11.8.3. Cluster ID . 703

11.8.4. Features. 703

11.8.5. Attributes . 704

11.9. Network Commissioning Cluster . 704

11.9.1. Revision History . 705

11.9.2. Classification . 705

11.9.3. Cluster ID . 705

11.9.4. Features. 705

11.9.5. Data Types . 705

11.9.6. Attributes . 710

11.9.7. Commands . 713

11.9.8. Usage of networking configurations . 726

11.10. General Commissioning Cluster . 728

11.10.1. Revision History . 729

11.10.2. Classification . 729

11.10.3. Cluster ID . 729

11.10.4. Data Types . 729

11.10.5. Attributes . 731

11.10.6. Commands . 732

11.11. Diagnostic Logs Cluster. 739

11.11.1. Revision History . 739

11.11.2. Classification . 739

11.11.3. Cluster ID . 739

11.11.4. Data Types . 739

11.11.5. Commands . 741

11.12. General Diagnostics Cluster. 744

11.12.1. Revision History . 744

11.12.2. Classification . 744

11.12.3. Cluster ID . 744

11.12.4. Features . 744

11.12.5. Data Types . 745

11.12.6. Attributes . 750

11.12.7. Commands . 752

11.12.8. Events . 756

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 24 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.13. Software Diagnostics Cluster. 758

11.13.1. Revision History . 758

11.13.2. Classification . 758

11.13.3. Cluster ID . 758

11.13.4. Features . 758

11.13.5. Data Types . 759

11.13.6. Attributes . 759

11.13.7. Commands . 760

11.13.8. Events . 761

11.14. Thread Network Diagnostics Cluster. 762

11.14.1. Revision History . 762

11.14.2. Classification . 762

11.14.3. Cluster ID . 762

11.14.4. Features . 762

11.14.5. Data Types . 763

11.14.6. Attributes . 770

11.14.7. Commands . 782

11.14.8. Events . 782

11.15. Wi-Fi Network Diagnostics Cluster . 783

11.15.1. Revision History . 783

11.15.2. Classification . 783

11.15.3. Cluster ID . 783

11.15.4. Features . 783

11.15.5. Data Types . 784

11.15.6. Attributes . 786

11.15.7. Commands . 788

11.15.8. Events . 789

11.16. Ethernet Network Diagnostics Cluster . 790

11.16.1. Revision History . 790

11.16.2. Classification . 790

11.16.3. Cluster ID . 790

11.16.4. Features . 791

11.16.5. Data Types . 791

11.16.6. Attributes . 791

11.16.7. Commands . 793

11.17. Time Synchronization Cluster. 793

11.17.1. Revision History . 794

11.17.2. Classification . 794

11.17.3. Cluster ID . 794

11.17.4. Terminology. 794

11.17.5. Features . 795

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 25

11.17.6. Data Types . 795

11.17.7. Status Codes . 800

11.17.8. Attributes . 801

11.17.9. Commands . 804

11.17.10. Events . 807

11.17.11. Time Synchronization at Commissioning . 809

11.17.12. Time Synchronization during operation . 809

11.17.13. Time source prioritization . 810

11.17.14. Time synchronization maintenance . 810

11.17.15. Acting as an NTP Server . 810

11.17.16. Implementation Guidance . 811

11.18. Node Operational Credentials Cluster . 813

11.18.1. Revision History . 813

11.18.2. Classification . 813

11.18.3. Cluster ID . 814

11.18.4. Data Types . 814

11.18.5. Attributes . 820

11.18.6. Commands . 822

11.19. Administrator Commissioning Cluster . 835

11.19.1. Revision History . 835

11.19.2. Classification . 835

11.19.3. Cluster ID . 835

11.19.4. Features . 836

11.19.5. Data Types . 836

11.19.6. Status Codes . 836

11.19.7. Attributes . 836

11.19.8. Commands . 838

11.20. Over-the-Air (OTA) Software Update . 841

11.20.1. Scope & Purpose . 841

11.20.2. Functional overview . 842

11.20.3. Software update workflow . 843

11.20.4. Security considerations. 860

11.20.5. Some special situations. 862

11.20.6. OTA Software Update Provider Cluster. 863

11.20.7. OTA Software Update Requestor Cluster . 873

11.21. Over-the-Air (OTA) Software Update File Format . 883

11.21.1. Scope & Purpose . 883

11.21.2. General Structure . 884

11.21.3. Security considerations. 887

11.22. Bulk Data Exchange Protocol (BDX) . 887

11.22.1. Overview . 887

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 26 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.22.2. Terminology. 888

11.22.3. Protocol Opcodes and Status Report Values. 889

11.22.4. Security and Transport Constraints . 891

11.22.5. Transfer Management Messages . 891

11.22.6. Data Transfer Messages . 901

11.22.7. Synchronous Transfers Message Flows . 905

11.22.8. Asynchronous Tranfers Message Flows . 913

11.23. Distributed Compliance Ledger . 915

11.23.1. Scope & Purpose . 915

11.23.2. Schemas . 916

11.23.3. Vendor Schema . 917

11.23.4. PAA Schema . 918

11.23.5. DeviceModel Schema. 919

11.23.6. DeviceSoftwareVersionModel Schema . 923

11.23.7. DeviceSoftwareCompliance / Compliance test result Schema. 926

11.23.8. Device Attestation PKI Revocation Distribution Points Schema . 928

11.23.9. APIs / CLI. 933

12. Multiple Fabrics . 935

12.1. Introduction. 935

12.2. User Consent . 935

12.3. Administrator-Assisted Commissioning Method . 935

12.4. Node Behavior . 935

13. Security Requirements . 937

13.1. Overview . 937

13.2. Device vs. Node. 937

13.3. Commissioning . 937

13.4. Factory Reset . 938

13.5. Firmware . 938

13.6. Security Best Practices . 939

13.6.1. Cryptography. 939

13.6.2. Commissioning and Administration . 939

13.6.3. Firmware . 940

13.6.4. Manufacturing . 940

13.6.5. Resiliency . 940

13.6.6. Battery Powered Devices . 940

13.6.7. Tamper Resistance . 940

13.6.8. Bridging . 940

13.6.9. Distributed Compliance Ledger . 941

13.7. Threats and Countermeasures . 941

Appendix A: Tag-length-value (TLV) Encoding Format. 959

A.1. Scope & Purpose. 959

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 27

A.2. Tags . 959

A.2.1. Profile-Specific Tags. 959

A.2.2. Context-Specific Tags. 959

A.2.3. Anonymous Tags . 960

A.2.4. Canonical Ordering of Tags . 960

A.3. Lengths . 960

A.4. Primitive Types. 960

A.5. Container Types . 961

A.5.1. Structures. 961

A.5.2. Arrays . 961

A.5.3. Lists . 961

A.6. Element Encoding . 962

A.7. Control Octet Encoding. 962

A.7.1. Element Type Field . 962

A.7.2. Tag Control Field . 964

A.8. Tag Encoding. 964

A.8.1. Fully-Qualified Tag Form . 964

A.8.2. Implicit Profile Tag Form . 965

A.8.3. Common Profile Tag Form . 965

A.8.4. Context-Specific Tag Form . 965

A.8.5. Anonymous Tag Form . 965

A.9. Length Encoding . 965

A.10. End of Container Encoding . 966

A.11. Value Encodings . 966

A.11.1. Integers. 966

A.11.2. UTF-8 and Octet Strings . 966

A.11.3. Booleans . 966

A.11.4. Arrays, Structures and Lists . 967

A.11.5. Floating Point Numbers . 967

A.11.6. Nulls . 967

A.12. TLV Encoding Examples. 967

Appendix B: Tag-length-value (TLV) Schema Definitions. 971

B.1. Introduction . 971

B.1.1. Basic Structure . 971

B.1.2. Keywords . 971

B.1.3. Naming . 971

B.1.4. Namespaces . 972

B.1.5. Qualifiers . 972

B.1.6. Tagging . 973

B.2. Definitions . 973

B.2.1. Type Definition (type-def) . 973

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 28 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

B.2.2. FIELD GROUP Definition (field-group-def). 974

B.2.3. Namespace Definition (namespace-def). 975

B.2.4. PROTOCOL Definition (protocol-def) . 977

B.2.5. VENDOR Definition (vendor-def) . 978

B.3. Types . 978

B.3.1. ARRAY / ARRAY OF . 978

B.3.2. BOOLEAN . 980

B.3.3. FLOAT32 / FLOAT64 . 981

B.3.4. SIGNED INTEGER / UNSIGNED INTEGER . 981

B.3.5. LIST / LIST OF . 982

B.3.6. OCTET STRING. 983

B.3.7. NULL . 984

B.3.8. STRING . 984

B.3.9. STRUCTURE . 984

B.4. Pseudo-Types. 987

B.4.1. ANY . 987

B.4.2. CHOICE OF . 987

B.5. Qualifiers . 990

B.5.1. any-order / schema-order / tag-order . 990

B.5.2. extensible . 990

B.5.3. id. 991

B.5.4. length. 992

B.5.5. nullable . 992

B.5.6. optional. 993

B.5.7. range . 993

B.5.8. tag. 994

B.5.9. Documentation and Comments . 996

Appendix C: Tag-length-value (TLV) Payload Text Representation Format . 997

C.1. Introduction . 997

C.2. Format Specification . 997

C.2.1. Tag/Value . 997

C.2.2. Context-Specific Tags . 997

C.2.3. Protocol-Specific Tags . 997

C.2.4. Anonymous Tags. 998

C.2.5. Primitive Types . 998

C.2.6. Complex Types: Structure. 999

C.2.7. Complex Types: Arrays . 999

C.2.8. Complex Types: List . 999

C.3. Examples . 999

C.3.1. TLV Schema . 999

C.3.2. TLV Payloads . 1000

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 29

Appendix D: Status Report Messages . 1003

D.1. Overview . 1003

D.2. Status Report elements. 1003

D.3. Message Format . 1003

D.3.1. General status codes (GeneralCode) . 1004

D.3.2. Protocol-specific codes (ProtocolId and ProtocolCode) . 1004

D.3.3. Protocol-specific data (ProtocolData). 1005

D.4. Presenting StatusReport messages in protocol specifications . 1005

Appendix E: Matter-Specific ASN.1 Object Identifiers (OIDs) . 1007

Appendix F: Cryptographic test vectors for some procedures . 1009

F.1. Certification Declaration CMS test vector . 1009

F.2. Device Attestation Response test vector . 1012

F.3. Node Operational CSR Response test vector . 1015

Appendix G: Minimal Resource Requirements. 1019

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 30 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 1. Introduction
The Matter specification defines fundamental requirements to enable an interoperable application
layer solution for smart home devices over the Internet Protocol.

1.1. Scope and Purpose
This specification details everything necessary to implement an application and transport layer
stack. It is intended to be used by implementers as a complete specification but where necessary
other references are noted with details on how these references apply to this specification.

In case of discrepancies between this specification and the SDK [https://github.com/project-chip/connect

edhomeip/], this specification SHALL take precedence.

1.2. Acronyms and Abbreviations

Acronym Definition

ACL Access Control List

AGID Application Group Identifier

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard (from FIPS 197)

AP Access Point (from IEEE 802.11-2020)

API Application Programming Interface

ASN.1 Abstract Syntax Notation 1 (from ITU ASN.1)

BLE Bluetooth Low Energy

BDX Bulk Data Exchange

BTP Bluetooth Transport Protocol

CA Certificate Authority (also known as Certification Authority)

CASE Certificate Authenticated Session Establishment

CAT CASE Authenticated Tag

CBC-MAC Cipher Block Chaining Message Authentication Code

CCM Counter mode of encryption with CBC-MAC (AEAD mode) (from
NIST 800-38C)

CD Certification Declaration

CMS Cryptographic Message Syntax

CN Common Name (from X.520)

CSR Certificate Signing Request

CTR Counter Mode (AES block cipher mode) (from NIST 800-38A)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 31

https://github.com/project-chip/connectedhomeip/

Acronym Definition

DAC Device Attestation Certificate

DER Distinguished Encoding Rule (from X.690)

DN Distinguished Name (from X.520)

DNS Domain Name System

DNS-SD DNS Based Service Discovery (from RFC 6763)

DRBG Deterministic Random Bit Generator (from NIST 800-90A)

ECC Elliptic Curve Cryptography (from SEC 1) (also "Error Correction
Code")

ECDHE Elliptic Curve Ephemeral Diffie-Hellman (from SEC 1)

ECDSA Elliptic Curve Digital Signature Algorithm (from SEC 1)

EUI Extended Unique Identifier

EUI-64 64-bit EUI

GATT Bluetooth Generic Attribute Profile

GID Group Identifier (also referred to as "Group ID")

GKH Group Key Hash

GUA Global Unicast Address

HMAC Keyed-Hash Message Authentication Code (from FIPS 198-1)

ICD Intermittently Connected Device

ID Identifier

IP Internet Protocol

IPK Identity Protection Key (a Universal Group key shared across a Fab
ric)

KDF Key Derivation Function (from RFC 5869)

KDM Key Derivation Method (from RFC 5869)

LLA Link local address

LLN Low power and Lossy Network

MAC Medium Access Control (or "Message Authentication Code")

MCSP Message Counter Synchronization Protocol

MIC Message Integrity Code (used as synonym for MAC (Message Authen
tication Code) to avoid confusion with MAC (Medium Access Control)
as used in network addressing contexts)

MRP Message Reliability Protocol

NFC Near Field Communication

NOC Node Operational Certificate

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 32 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Acronym Definition

NOCSR Node Operational Certificate Signing Request

OID Object Identifier (from ITU ASN.1)

OTA Over-the-air (used mostly in context of "Over-the-air Software
Update")

PAA Product Attestation Authority

PAI Product Attestation Intermediate

PAKE Password-Authenticated Key Exchange (from SPAKE2+)

PASE Passcode-Authenticated Session Establishment

PBKDF Password-Based Key Derivation Function (from NIST 800-132)

PDU Protocol Data Unit

PID Product Identifier (also Product ID)

PIN Personal Identification Number

PKI Public Key Infrastructure

PSK Pre-Shared Key

QR code Quick Response (code)

SDU Service Data Unit

SED Sleepy End Device

SHA Secure Hash Algorithm (from FIPS 180-4)

SRP Service Registration Protocol (from SRP)

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol (from RFC 1350)

TLV Tag Length Value (refers mostly to Tag-length-value (TLV) Encoding
Format)

TRNG True Random Number Generator (from NIST 800-90B)

UDP User Datagram Protocol

UGID Universal Group Identifier

ULA Unique local address

UTC Universal Time Coordinated

UUID Universally Unique Identifier

VID Vendor Identifier (also Vendor ID)

ZCL Zigbee Cluster Library

1.3. Definitions

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 33

Term Definition

Access Control List A list of entries in the Access Control Cluster expressing individual rules which
grant privileges to access cluster elements.

Administrator A Node having Administer privilege over at least the Access Control Cluster of
another Node.

Advertising Data A data container used in BLE Advertisements to convey a logical grouping of
information.

Attribute A data entity which represents a physical quantity or state. This data is com
municated to other Nodes using commands.

Binding A persistent attachment between an instance on one Node to one-or-more cor
responding instances on another (or the same) Node.

Border Router A router, also known as Edge Router, that provides routing services between
two IP subnets (typically, between a hub network and a peripheral network).

Bridge A Node that represents one or more non-Matter devices on the Fabric.

Bridged Device A non-Matter device that is represented on the Fabric by a Bridge so it can be
used by Nodes on the Fabric.

Broadcast The transmission of a message to every Node in a particular broadcast
domain, be it all Nodes on a Ethernet or Wi-Fi link, and/or all Nodes on a
Thread mesh.

Certificate Author
ity (CA)

An entity that issues digital certificates such as a DAC or NOC

Certification Dec
laration

A digitally signed token that conveys Matter certification status of a vendor’s
certified Device.

Client A Cluster interface that typically sends commands that manipulate the attrib
utes on the corresponding server cluster. A client cluster communicates with a
corresponding remote server cluster with the same cluster identifier.

Cluster A specification defining one or more attributes, commands, behaviors and
dependencies, that supports an independent utility or application function.
The term may also be used for an implementation or instance of such a specifi
cation on an endpoint.

Command Requests for action on a value with an expected response which may have
parameters and a response with a status and parameters.

Commission To bring a Node into a Fabric.

Commissionable
Node

A Node that is able to be commissioned. Specific actions such as a button press
may be required to put a Commissionable Node into Commissioning Mode in
order for it to allow Commissioning.

Commissionable
Node Discovery

Discovery of a Node that is able to be Commissioned, but not necessarily in
Commissioning Mode, for the purpose of performing Commissioning. The
Node may be brand new, after factory reset, or it may have already been Com
missioned.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 34 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Term Definition

Commissioner A Role of a Node that performs Commissioning.

Commissioner Dis
covery

Discovery of a Commissioner.

Commissionee An entity that is being Commissioned to become a Node.

Commissioning Sequence of operations to bring a Node into a Fabric by assigning an Opera
tional Node ID and Node Operational credentials.

Commissioning
Channel

A Secure Channel used to perform Commissioning.

Commissioning
Mode

The mode of a Node in which it allows Commissioning.

Controller A Role of a Node that has permissions to enable it to control one or more
Nodes.

Controlee A Role of a Node that has permissions defined to enable it to be controlled by
one or more Nodes.

Device A piece of equipment containing one or more Nodes.

Device Attestation
Certificate

An RFC 5280 [https://www.rfc-editor.org/rfc/rfc5280] compliant X.509 v3 document
with attestable attributes.

Discriminator A 12-bit value used to discern between multiple commissionable Matter device
advertisements. See Discriminator value.

Endpoint A particular component within a Node that is individually addressable.

Endpoint Address The address assigned to an Endpoint.

Fabric A logical collection of communicating Nodes, sharing a common root of trust,
and a common distributed configuration state.

Information Ele
ment

A Wi-Fi (IEEE 802.11-2020) data container used to convey various information
regarding a particular Wi-Fi network’s capabilities and operation.

Key Center A system component which takes the NOCSR from a Commissioner and allo
cates an Operational Node ID that is unique to the Fabric, inserts this Opera
tional Node ID as the DN into the NOC, and signs the NOC.

Manual Pairing
Code

An 11-digit or 21-digit numeric code that can be manually entered/spoken
instead of scanning a QR code, which contains the information needed to com
mission a Matter device.

Network A set of nodes that have addressability, connectivity, and reachability to one
another via Internet Protocol.

Node An addressable entity which supports the Matter protocol stack and (once
Commissioned) has its own Operational Node ID and Node Operational cre
dentials. A Device MAY host multiple Nodes.

Operational Dis
covery

Discovery of a previously commissioned Node for the purpose of performing
operations with that Node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 35

https://www.rfc-editor.org/rfc/rfc5280

Term Definition

Onboarding Pay
load

The information needed to start the process of commissioning a Device.

OTA Provider A Node implementing the OTA Software Update Provider role (see OTA Soft
ware Update Provider Cluster).

OTA Requestor A Node implementing the OTA Software Update Requestor role (see OTA Soft
ware Update Requestor Cluster).

Product Attesta
tion Authority

An entity which operates a root level Certificate Authority for the purpose of
Device Attestation.

Product Attesta
tion Intermediate

An entity which operates an intermediate level Certificate Authority for the
purpose of Device Attestation.

Product ID (PID) A 16-bit number that identifies the type of a Device, uniquely among the prod
uct types made by a given vendor. See Product ID.

QR Code A machine-readable optical label that contains information about the item to
which it is attached (see QR Code).

Rendezvous The process for commissioner and commissionee to establish an initial com
munication channel.

Role Some set of (related) behaviors of a Node. Each Node can have multiple roles.

Router A device that provides routing services in its network in cooperation with
other Routers.

Secure Channel A channel in which messages are encrypted and authenticated. Unicast secure
channels also provide authentication of each peer.

Server A Cluster interface that typically supports all or most of the attributes of the
Cluster. A Server Cluster communicates with a corresponding remote Client
Cluster with the same Cluster identifier.

Service Discovery The ability of a Node to locate services of interest.

Setup Code The low-entropy passcode used to secure commissioning.

Software Image A data blob, equivalent to a file, utilized by a Node to update its software. For
the purposes of OTA Software Update, this further refers to files conforming to
the OTA Software Image File Format.

Thread A low-power IEEE 802.15.4-based IPv6 mesh networking technology (see
Thread specification).

Vendor The organization that made a Device.

Vendor ID (VID) A 16-bit number that uniquely identifies the Vendor of the Device. See Vendor
ID.

1.4. Standards Terminology Mapping

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 36 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Matter HomeKit Weave Thread Zigbee

Administrator Admin Fabric provisioner Commissioner Coordinator

Attribute Characteristics Property Attribute

Binding Event subscription Subscription Link Binding

Broadcast Broadcast Broadcast

Client Service client Client Client

Cluster Services interface Cluster

Cluster Trait Service Cluster

Command Command Command Command Command

Commissioning Pairing Pairing Commissioning Association

Commissioner Admin Fabric provisioner Commissioner Coordinator

Device Accessory Device Device Device

End Device End Device End Device

Endpoint Profile Resource Interface Endpoint

Endpoint Address Device ID Resource ID Endpoint Identi
fier

Endpoint address

Fabric Network Fabric Partition Network

Network Manager Device / Controller Nest Service Leader Network manager

Node Accessory Node Node Node

Router Router Router

Server Service host Server Server

Service Discovery Service directory Service Discovery

1.5. Conformance Levels
The key words below are usually capitalized in the document to make the requirement clear.

Key Word Description

MAY A key word that indicates flexibility of choice with no implied preference.

NOT A key word that used to describe that the requirement is the inverse of the behav
ior specified (i.e. SHALL NOT, MAY NOT, etc)

SHALL A key word indicating a mandatory requirement. Designers are required to imple
ment all such mandatory requirements.

SHOULD A key word indicating flexibility of choice with a strongly preferred alternative.
Equivalent to the phrase is recommended.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 37

1.6. References
The following standards and specifications contain provisions, which through reference in this doc
ument constitute provisions of this specification. All the standards and specifications listed are nor
mative references. At the time of publication, the editions indicated were valid. All standards and
specifications are subject to revision, and parties to agreements based on this specification are
encouraged to investigate the possibility of applying the most recent editions of the standards and
specifications indicated below.

1.6.1. CSA Reference Documents

Reference Reference Location/URL Description

[CSA-05-
03874]

https://groups.csa-iot.org/wg/
members-all/document/
10905

CSA Manufacturer Code Database

[DeviceLi
brary]

https://groups.csa-iot.org/wg/
members-all/document/
27351

Device Library

[AppClusters] https://groups.csa-iot.org/wg/
members-all/document/
27350

Application Clusters

[Standard
Namespaces]

https://github.com/CHIP-
Specifications/connected
homeip-spec/raw/build-sam
ple/pdf/standard-name
spaces.pdf

Standard Namespaces

[Matter
Brand Guide
lines]

https://groups.csa-iot.org/wg/
members-all/document/
22901

Matter Brand Guidelines

1.6.2. External Reference Documents

Reference Reference Location/URL Description

[AdProx] https://tools.ietf.org/html/draft-
sctl-advertising-proxy

Advertising Proxy for DNS-SD
SRP

[ANSI C18] https://ansi.org ANSI C18 Standards on Portable
Cells and Batteries

[Bluetooth®] https://www.bluetooth.org/doc
man/handlers/download
doc.ashx?doc_id=441541

Bluetooth® Core Specification
4.2

[Bluetooth®] https://www.bluetooth.org/Doc
Man/handlers/Download
Doc.ashx?doc_id=556598

Bluetooth® Core Specification
Supplement 11

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 38 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://groups.csa-iot.org/wg/members-all/document/10905
https://groups.csa-iot.org/wg/members-all/document/10905
https://groups.csa-iot.org/wg/members-all/document/10905
https://groups.csa-iot.org/wg/members-all/document/27351
https://groups.csa-iot.org/wg/members-all/document/27351
https://groups.csa-iot.org/wg/members-all/document/27351
https://groups.csa-iot.org/wg/members-all/document/27350
https://groups.csa-iot.org/wg/members-all/document/27350
https://groups.csa-iot.org/wg/members-all/document/27350
https://github.com/CHIP-Specifications/connectedhomeip-spec/raw/build-sample/pdf/standard-namespaces.pdf
https://github.com/CHIP-Specifications/connectedhomeip-spec/raw/build-sample/pdf/standard-namespaces.pdf
https://github.com/CHIP-Specifications/connectedhomeip-spec/raw/build-sample/pdf/standard-namespaces.pdf
https://github.com/CHIP-Specifications/connectedhomeip-spec/raw/build-sample/pdf/standard-namespaces.pdf
https://github.com/CHIP-Specifications/connectedhomeip-spec/raw/build-sample/pdf/standard-namespaces.pdf
https://groups.csa-iot.org/wg/members-all/document/22901
https://groups.csa-iot.org/wg/members-all/document/22901
https://groups.csa-iot.org/wg/members-all/document/22901
https://tools.ietf.org/html/draft-sctl-advertising-proxy
https://tools.ietf.org/html/draft-sctl-advertising-proxy
https://ansi.org
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556598
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556598
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556598

Reference Reference Location/URL Description

[FIPS 180-4] https://csrc.nist.gov/publica
tions/detail/fips/180/4/final

NIST FIPS 180-4 Secure Hash
Standard (SHS), August 2015

[FIPS 186-4] https://csrc.nist.gov/publica
tions/detail/fips/186/4/final

NIST FIPS 186-4 Digital Signa
ture Standard (DSS), July 2013

[FIPS 197] https://doi.org/10.6028/
NIST.FIPS.197

NIST FIPS 197 Advanced
Encryption Standard (AES),
November 2001

[FIPS 198-1] https://csrc.nist.gov/publica
tions/detail/fips/198/1/final

NIST FIPS 198-1 The Keyed-
Hash Message Authentication
Code (HMAC), July 2008

[IANA Time Zone Database] https://www.iana.org/time-
zones

IANA Time Zone Database

[IEC 60086] https:///www.iec.ch IEC 60086 standard for Primary
Batteries

[IEEE 754-2019] https://ieeexplore.ieee.org/docu
ment/8766229

"IEEE Standard for Floating-
Point Arithmetic," in IEEE Std
754-2019 (Revision of IEEE 754-
2008) July 2019, doi:
10.1109/IEEESTD.2019.8766229.

[IEEE 802.11-2020] https://standards.ieee.org/stan
dard/802_11-2020.html

IEEE 802.11-2020 - IEEE Stan
dard for Information Technol
ogy - Telecommunications and
Information Exchange between
Systems - Local and Metropoli
tan Area Networks - Specific
Requirements - Part 11: Wire
less LAN Medium Access Con
trol (MAC) and Physical Layer
(PHY) Specifications

[IEEE 1588-2008] https://standards.ieee.org/stan
dard/1588-2008.html

IEEE Standard for a Precision
Clock Synchronization Protocol
for Networked Measurement
and Control Systems

[ISO 639] https://www.iso.org/iso-639-lan
guage-codes.html

Language Codes

[ISO/IEC 18004:2015] https://www.iso.org/standard/
62021.html

Information technology - Auto
matic identification and data
capture techniques - QR Code
bar code symbology specifica
tion

[ITU ASN.1] https://www.itu.int/en/ITU-T/
asn1/Pages/asn1_project.aspx

ITU ASN.1 Project

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 39

https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/publications/detail/fips/198/1/final
https://csrc.nist.gov/publications/detail/fips/198/1/final
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https:///www.iec.ch
https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
https://standards.ieee.org/standard/802_11-2020.html
https://standards.ieee.org/standard/802_11-2020.html
https://standards.ieee.org/standard/1588-2008.html
https://standards.ieee.org/standard/1588-2008.html
https://www.iso.org/iso-639-language-codes.html
https://www.iso.org/iso-639-language-codes.html
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx

Reference Reference Location/URL Description

[NFCForum-TS-NDEF 1.0] https://nfc-forum.org/our-work/
specification-releases/specifica
tions/nfc-forum-technical-speci
fications

Data Exchange Format (NDEF)
Technical Specification, NFC
Forum

[NFCForum-TS-RTD 1.0] https://nfc-forum.org/our-work/
specification-releases/specifica
tions/nfc-forum-technical-speci
fications/

Record Type Definition (RTD)
Technical Specification, NFC
Forum

[NFCForum-TS-RTD URI 1.0] https://nfc-forum.org/our-work/
specification-releases/specifica
tions/nfc-forum-technical-speci
fications/

URI Record Type Definition
Technical Specification, NFC
Forum

[NIST 800-38A] https://nvlpubs.nist.gov/nist
pubs/Legacy/SP/nistspecialpub
lication800-38a.pdf

NIST SP 800-38A Recommenda
tion for Block Cipher Modes of
Operation: Methods and Tech
niques, December 2001

[NIST 800-38C] https://nvlpubs.nist.gov/nist
pubs/Legacy/SP/nistspecialpub
lication800-38c.pdf

NIST SP 800-38C Recommenda
tions for Block Cipher Mode of
Operation: The CCM Mode for
Authentication and Confiden
tiality, Morris Dworkin, May
2004 (errata update 2007)

[NIST 800-90A] https://csrc.nist.gov/publica
tions/detail/sp/800-90a/rev-1/
final

NIST SP 800-90A Rev. 1 Recom
mendation for Random Number
Generation Using Deterministic
Random Bit Generators

[NIST 800-90B] https://csrc.nist.gov/publica
tions/detail/sp/800-90b/final

NIST SP 800-90B Recommenda
tion for the Entropy Sources
Used for Random Bit Genera
tion

[NIST 800-132] https://nvlpubs.nist.gov/nist
pubs/Legacy/SP/nistspecialpub
lication800-132.pdf

NIST SP 800-132 Recommenda
tion for Password-Based Key
Derivation, Part 1: Storage
Applications, December 2010

[NIST 800-186] https://nvlpubs.nist.gov/nist
pubs/SpecialPublications/
NIST.SP.800-186-draft.pdf

NIST Draft SP 800-186 Recom
mendation for Discrete Loga
rithm-Based Cryptography,
October 2019

[RFC 1350] https://www.rfc-editor.org/rfc/
rfc1350

The TFTP Protocol (Revision 2)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 40 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nfc-forum.org/our-work/specification-releases/specifications/nfc-forum-technical-specifications/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://www.rfc-editor.org/rfc/rfc1350
https://www.rfc-editor.org/rfc/rfc1350

Reference Reference Location/URL Description

[RFC 2119] https://www.rfc-editor.org/rfc/
rfc2119

Bradner, S., "Key words for use
in RFCs to Indicate Require
ment Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March
1997

[RFC 2782] https://www.rfc-editor.org/rfc/
rfc2782

A DNS RR for specifying the
location of services (DNS SRV)

[RFC 2986] https://www.rfc-editor.org/rfc/
rfc2986

PKCS #10: Certification Request
Syntax Specification Version 1.7

[RFC 3306] https://www.rfc-editor.org/rfc/
rfc3306

Unicast-Prefix-based IPv6 Multi
cast Addresses

[RFC 3587] https://www.rfc-editor.org/rfc/
rfc3587

IPv6 Global Unicast Address
Format

[RFC 3986] https://www.rfc-editor.org/rfc/
rfc3986

Uniform Resource Identifier
(URI)

[RFC 4007] https://www.rfc-editor.org/rfc/
rfc4007

IPv6 Scoped Address Architec
ture

[RFC 4191] https://www.rfc-editor.org/rfc/
rfc4191

Default Router Preferences and
More-Specific Routes

[RFC 4193] https://www.rfc-editor.org/rfc/
rfc4193

Unique Local IPv6 Unicast
Addresses (ULA)

[RFC 4291] https://www.rfc-editor.org/rfc/
rfc4291

IPv6 Addressing Architecture

[RFC 4506] https://www.rfc-editor.org/rfc/
rfc4506

XDR: External Data Representa
tion Standard

[RFC 4648] https://www.rfc-editor.org/rfc/
rfc4648

The Base16, Base32, and Base64
Data Encodings

[RFC 4861] https://www.rfc-editor.org/rfc/
rfc4861

Neighbor Discovery for IP ver
sion 6 (IPv6)

[RFC 4862] https://www.rfc-editor.org/rfc/
rfc4862

IPv6 Stateless Address Autocon
figuration

[RFC 5280] https://www.rfc-editor.org/rfc/
rfc5280

Internet X.509 Public Key Infra
structure Certificate and Certifi
cate Revocation List (CRL) Pro
file

[RFC 5505] https://www.rfc-editor.org/rfc/
rfc5505

Principles of Internet Host Con
figuration

[RFC 5646] https://tools.ietf.org/html/
rfc5646

Tags for Identifying Languages

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 41

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2782
https://www.rfc-editor.org/rfc/rfc2782
https://www.rfc-editor.org/rfc/rfc2986
https://www.rfc-editor.org/rfc/rfc2986
https://www.rfc-editor.org/rfc/rfc3306
https://www.rfc-editor.org/rfc/rfc3306
https://www.rfc-editor.org/rfc/rfc3587
https://www.rfc-editor.org/rfc/rfc3587
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc4007
https://www.rfc-editor.org/rfc/rfc4007
https://www.rfc-editor.org/rfc/rfc4191
https://www.rfc-editor.org/rfc/rfc4191
https://www.rfc-editor.org/rfc/rfc4193
https://www.rfc-editor.org/rfc/rfc4193
https://www.rfc-editor.org/rfc/rfc4291
https://www.rfc-editor.org/rfc/rfc4291
https://www.rfc-editor.org/rfc/rfc4506
https://www.rfc-editor.org/rfc/rfc4506
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc4861
https://www.rfc-editor.org/rfc/rfc4861
https://www.rfc-editor.org/rfc/rfc4862
https://www.rfc-editor.org/rfc/rfc4862
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5505
https://www.rfc-editor.org/rfc/rfc5505
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646

Reference Reference Location/URL Description

[RFC 5652] https://www.rfc-editor.org/rfc/
rfc5652

Cryptographic Message Syntax
(CMS)

[RFC 5869] https://www.rfc-editor.org/rfc/
rfc5869

HMAC-based Extract-and-
Expand Key Derivation Func
tion (HKDF)

[RFC 5905] https://www.rfc-editor.org/rfc/
rfc5905

Network Time Protocol Version
4

[RFC 5952] https://www.rfc-editor.org/rfc/
rfc5952

A Recommendation for IPv6
Address Text Representation

[RFC 6335] https://www.rfc-editor.org/rfc/
rfc6335

Service Name and Port Number
Procedures

[RFC 6760] https://www.rfc-editor.org/rfc/
rfc6760

Replacement of AppleTalk NBP

[RFC 6762] https://www.rfc-editor.org/rfc/
rfc6762

Multicast DNS

[RFC 6763] https://www.rfc-editor.org/rfc/
rfc6763

DNS-Based Service Discovery

[RFC 6920] https://www.rfc-editor.org/rfc/
rfc6920

Naming Things with Hashes

[RFC 6960] https://www.rfc-editor.org/rfc/
rfc6960

X.509 Internet Public Key Infra
structure Online Certificate Sta
tus Protocol - OCSP

[RFC 7230] https://www.rfc-editor.org/rfc/
rfc7230

Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and
Routing

[RFC 7346] https://www.rfc-editor.org/rfc/
rfc7346

IPv6 Multicast Address Scopes

[RFC 7468] https://www.rfc-editor.org/rfc/
rfc7468

Textual Encodings of PKIX,
PKCS, and CMS Structures

[RFC 7558] https://www.rfc-editor.org/rfc/
rfc7558

Scalable DNS-SD Requirements

[RFC 8305] https://www.rfc-editor.org/rfc/
rfc8305

Happy Eyeballs Version 2: Bet
ter Connectivity Using Concur
rency

[RFC 8490] https://www.rfc-editor.org/rfc/
rfc8490

DNS Stateful Operations

[RFC 8765] https://www.rfc-editor.org/rfc/
rfc8765

DNS Push Notifications

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 42 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://www.rfc-editor.org/rfc/rfc5652
https://www.rfc-editor.org/rfc/rfc5652
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5905
https://www.rfc-editor.org/rfc/rfc5905
https://www.rfc-editor.org/rfc/rfc5952
https://www.rfc-editor.org/rfc/rfc5952
https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc6760
https://www.rfc-editor.org/rfc/rfc6760
https://www.rfc-editor.org/rfc/rfc6762
https://www.rfc-editor.org/rfc/rfc6762
https://www.rfc-editor.org/rfc/rfc6763
https://www.rfc-editor.org/rfc/rfc6763
https://www.rfc-editor.org/rfc/rfc6920
https://www.rfc-editor.org/rfc/rfc6920
https://www.rfc-editor.org/rfc/rfc6960
https://www.rfc-editor.org/rfc/rfc6960
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7346
https://www.rfc-editor.org/rfc/rfc7346
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc7558
https://www.rfc-editor.org/rfc/rfc7558
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8490
https://www.rfc-editor.org/rfc/rfc8490
https://www.rfc-editor.org/rfc/rfc8765
https://www.rfc-editor.org/rfc/rfc8765

Reference Reference Location/URL Description

[RFC 8766] https://www.rfc-editor.org/rfc/
rfc8766

Discovery Proxy

[RFC 8915] https://www.rfc-editor.org/rfc/
rfc8915

Network Time Security for the
Network Time Protocol

[draft-lemon-stub-networks] https://datatracker.ietf.org/doc/
html/draft-lemon-stub-net
works-02

Connecting Stub Networks to
Existing Infrastructure

[SEC 1] https://www.secg.org/sec1-
v2.pdf

SEC 1: Elliptic Curve Cryptogra
phy, Version 2.0, Certicom
Research, May 2009

[SEC 2] https://secg.org/sec2-v2.pdf SEC 2: Recommended Elliptic
Curve Domain Parameters, Ver
sion 2.0, Certicom Research,
January 2010

[SIGMA] https://doi.org/10.1007/978-3-
540-45146-4_24

Krawczyk H. (2003) SIGMA: The
‘SIGn-and-MAc’ Approach to
Authenticated Diffie-Hellman
and Its Use in the IKE Protocols.
In: Boneh D. (eds) Advances in
Cryptology - CRYPTO 2003.
CRYPTO 2003. Lecture Notes in
Computer Science, vol 2729.
Springer, Berlin, Heidelberg.

[SPAKE2+] https://tools.ietf.org/pdf/draft-
bar-cfrg-spake2plus-02.pdf

SPAKE2+, an Augmented PAKE
(Draft 02, 10 December 2020)

[SRP] https://tools.ietf.org/html/draft-
ietf-dnssd-srp

Service Registration Protocol

[Thread] https://www.threadgroup.org Thread 1.3.0 Specification

[Verhoeff] https://ir.cwi.nl/pub/13045 Verhoeff, J. (1969). Error detect
ing decimal codes. MC Tracts.
Centrum Voor Wiskunde en
Informatica.

[X.501] https://www.itu.int/rec/T-REC-
X.501/en

ITU X.501 : Information technol
ogy - Open Systems Intercon
nection - The Directory: Models

[X.509] https://www.itu.int/rec/T-REC-
X.509/en

ITU X.509 : Information technol
ogy - Open Systems Intercon
nection - The Directory: Public-
key and attribute certificate
frameworks

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 43

https://www.rfc-editor.org/rfc/rfc8766
https://www.rfc-editor.org/rfc/rfc8766
https://www.rfc-editor.org/rfc/rfc8915
https://www.rfc-editor.org/rfc/rfc8915
https://datatracker.ietf.org/doc/html/draft-lemon-stub-networks-02
https://datatracker.ietf.org/doc/html/draft-lemon-stub-networks-02
https://datatracker.ietf.org/doc/html/draft-lemon-stub-networks-02
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://secg.org/sec2-v2.pdf
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://tools.ietf.org/pdf/draft-bar-cfrg-spake2plus-02.pdf
https://tools.ietf.org/pdf/draft-bar-cfrg-spake2plus-02.pdf
https://tools.ietf.org/html/draft-ietf-dnssd-srp
https://tools.ietf.org/html/draft-ietf-dnssd-srp
https://www.threadgroup.org
https://ir.cwi.nl/pub/13045
https://www.itu.int/rec/T-REC-X.501/en
https://www.itu.int/rec/T-REC-X.501/en
https://www.itu.int/rec/T-REC-X.509/en
https://www.itu.int/rec/T-REC-X.509/en

Reference Reference Location/URL Description

[X.520] https://www.itu.int/rec/T-REC-
X.520/en

ITU X.520 : Information technol
ogy - Open Systems Intercon
nection - The Directory:
Selected attribute types

[X.680] https://www.itu.int/rec/T-REC-
X.680/en

ITU X.680 : Information technol
ogy - Abstract Syntax Notation
One (ASN.1): Specification of
basic notation

[X.690] https://www.itu.int/rec/T-REC-
X.690/en

ITU X.690 : Information technol
ogy - ASN.1 encoding rules:
Specification of Basic Encoding
Rules (BER), Canonical Encod
ing Rules (CER) and Distin
guished Encoding Rules (DER)

1.7. Informative References

1.7.1. CSA Reference Documents

Reference Reference Location/URL Description

[DotdotArch] https://groups.csa-iot.org/wg/
matter-tsg/document/18649

Dotdot Architecture Model, document 13-0589, revi
sion 14, February 2019

[ZCL] https://groups.csa-iot.org/wg/
members-all/document/
23019

Zigbee Cluster Library Specification, document 07-
5123, revision 8, December 2019

[CSA-PNP] https://groups.csa-iot.org/wg/
members/document/21624

Organizational Processes and Procedures, 13-0625,
revision 8, November 2021

1.8. Conventions
The following conventions are used in this document.

1.8.1. Enumerations and Reserved Values

An undefined value or range of an enumeration, field, or identifier SHALL be considered reserved
for future revisions of this standard and SHALL NOT be available for implementation. It is RECOM
MENDED that a value stay undefined, rather than defining it as "reserved".

A value or range of an enumeration, field, or identifier that is available for non-standard imple
mentation SHALL be defined as manufacturer specific ("MS").

A value or range of an enumeration, field, or identifier that is available for other parts of this stan
dard SHALL be defined as such.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 44 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://www.itu.int/rec/T-REC-X.520/en
https://www.itu.int/rec/T-REC-X.520/en
https://www.itu.int/rec/T-REC-X.680/en
https://www.itu.int/rec/T-REC-X.680/en
https://www.itu.int/rec/T-REC-X.690/en
https://www.itu.int/rec/T-REC-X.690/en
https://groups.csa-iot.org/wg/matter-tsg/document/18649
https://groups.csa-iot.org/wg/matter-tsg/document/18649
https://groups.csa-iot.org/wg/members-all/document/23019
https://groups.csa-iot.org/wg/members-all/document/23019
https://groups.csa-iot.org/wg/members-all/document/23019
https://groups.csa-iot.org/wg/members/document/21624
https://groups.csa-iot.org/wg/members/document/21624

A value or range of an enumeration, field, or identifier that is deprecated, and not available for
implementation, SHALL be defined as deprecated ("D").

1.8.2. Reserved Bit Fields

An undefined bit or bit field SHALL be considered reserved for future revisions of this standard
and SHALL not be available for implementation.

It is RECOMMENDED that a bit stay undefined, rather than defining it as "reserved".

An implementation of a revision where a bit is reserved SHALL indicate that bit as zero when con
veying that bit in an interaction, and ignore that bit when conveyed from another implementation.

1.8.3. Number Format

In this specification, hexadecimal numbers are prefixed with the designation “0x” and binary num
bers are prefixed with the designation “0b”. All other numbers are assumed to be decimal unless
indicated otherwise within the associated text.

When a hexadecimal number is longer than 4 nibbles, the underscore ("_") character SHALL be
used to separate the number into groups of 4 nibbles. If the number of nibbles is not evenly divisi
ble by 4, the most significant group SHALL contain less than 4 nibbles and any lesser significant
groups SHALL contain 4 nibbles.

Examples of valid hexadecimal groups separated by an underscore:

• "0xAA_33CC"

• “0x1234_ABCD”

• “0x1234_ABCD_526E_6242”

Binary numbers are specified as successive groups of 4 bits, and SHALL be separated by a space (“
“) character from the most significant bit (next to the 0b prefix and leftmost on the page) to the least
significant bit (rightmost on the page), e.g. the binary number 0b0000 1111 represents the decimal
number 15.

Where individual bits are indicated (e.g. bit 3) the bit numbers are relative to the least significant
bit which is bit 0.

When a digit is specified as having any value in the range of that digit, it is specified with an “x”
(this should not be confused with the "x" in the prefix "0x" for hexadecimal notation).

For example:

• “0b0000 0xxx” indicates that the lower 3 bits can take any value but the upper 5 bits must
each be set to 0.

• “0x0000_0xxx” indicates that the lower 3 nibbles can take any value but the upper 5 nib
bles must each be set to 0.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 45

1.8.4. Provisional

Per [CSA-PNP], when a specification is completed there may be sections of specification text (or
smaller pieces of a section) that are not certifiable at this stage. These sections (or smaller pieces of
a section) are marked as provisional prior to publishing the specification. This specification uses
well-defined notation to mark Provisional Conformance or notes a section of text with the term
"provisional".

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 46 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 2. Architecture

2.1. Overview
Matter aims to build a universal IPv6-based communication protocol for smart home devices. The
protocol defines the application layer that will be deployed on devices as well as the different link
layers to help maintain interoperability. The following diagram illustrates the normal operational
mode of the stack:

Figure 1. Application and Network Stack

2.2. Layered Architecture
The architecture is divided into layers to help separate the different responsibilities and introduce a
good level of encapsulation amongst the various pieces of the protocol stack. The vast majority of
interactions flow through the stack captured in the following Figure.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 47

Figure 2. Layered Architecture

The Application layer corresponds to the high order business logic of a device. For example, an
application that is focused on lighting might contain logic to handle turning on/off a light bulb, as
well as its color characteristics.

The Data Model layer corresponds to the data and verb elements that help support the functionality
of the application. The Application operates on these data structures when there is intent to interact
with the device.

The Interaction Model layer defines a set of interactions that can be performed between a client and
server device. For example, reading or writing attributes on a server device would correspond to
application behavior on the device. These interactions operate on the elements defined at the data
model layer.

Once an action is constructed using the Interaction Model, it is serialized into a prescribed packed
binary format to encode for network transmission. This process is handled in the Action Framing
layer.

An encoded action frame is then processed by the Security Layer: the message is encrypted and
appended with a message authentication code. These actions ensure the data remain confidential
and authentic between sender and receiver of the message.

With an interaction now serialized, encrypted, and signed, the Message Layer constructs the pay
load format with required and optional header fields, which specify properties of the message as
well logical routing information.

After the final payload has been constructed by the Message Layer, it is sent to the underlying trans
port protocol (TCP or Matter’s Message Reliability Protocol) for IP management of the data.

Once the data is received on the peer device, it travels up the protocol stack, where the various lay
ers reverse the operations on the data performed by the sender, to finally deliver the message to
the Application for consumption.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 48 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

In addition to the data flows captured above, this specification defines secure session establishment
protocols based on operational certificates (see Section 4.14.2, “Certificate Authenticated Session
Establishment (CASE)”), or passcodes (see Section 4.14.1, “Passcode-Authenticated Session Establish
ment (PASE)”), group communication (see Section 4.15, “Group Communication”), a bulk data trans
fer protocol (BDX) suitable for sending bulk data between Nodes, and provisions for defining manu
facturer-specific protocols.

2.3. Network Topology
In principle, any IPv6-bearing network is suitable for Matter deployment, subject to supporting a
few core IPv6 standards. In this version of the specification, we focus on three link layer technolo
gies: Ethernet, Wi-Fi and Thread. We restrict the specification to the above so that the specification
can suitably cover provisioning of these link layers, and so that the amount of testing in certifica
tion is suitably bounded.

Matter treats networks as shared resources: it makes no stipulation of exclusive network owner
ship or access. As a result, it is possible to overlay multiple Matter networks over the same set of
constituent IP networks.

This protocol may operate in the absence of globally routable IPv6 infrastructure. This requirement
enables operation in a network disconnected or firewalled from the global Internet. It also enables
deployment in situations where the Internet Service Provider either does not support IPv6 on con
sumer premises or where the support proves otherwise limiting, for example, if the delegated pre
fix cannot accommodate all the networks and devices on premises.

This protocol supports local communications spanning one or more IPv6 subnets. Canonical net
works supporting a fabric may include a Wi-Fi/Ethernet subnet, or one or more low power and
lossy networks (LLN) subnets. In this version of the specification, Thread is the supported LLN stan
dard.

2.3.1. Single network

Figure 3. Single Thread network

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 49

Figure 4. Single Wi-Fi network

In the single network topology, all Matter devices are connected to a single logical network. This
could be a Thread/802.15.4 network, a Wi-Fi network or an Ethernet network. In the case of Wi-
Fi/Ethernet, the network could in fact span multiple Wi-Fi and/or Ethernet segments provided that
all the segments are bridged at the link layer. A Node is a single instance of a Matter device within a
fabric, operationally available on an IP network.

Each Node in the single-network topology communicates with every other Node in the Fabric via a
single network interface.

2.3.2. Star network topology

Figure 5. Star network topology

The star network topology consists of multiple peripheral networks joined together by a central
hub network. The hub network will typically be the customer’s home network (Wi-Fi/Ethernet net
work), while the peripheral networks can be of any supported network type. A peripheral network
MUST always be joined directly to the hub network via one or more Border Routers.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 50 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Architecturally, any number of peripheral networks may be present in a single Fabric, including
multiple networks of the same type. Nodes MAY have interfaces onto any network (hub or periph
eral), and MAY communicate directly to other Nodes on the same network. However, any communi
cation that must cross a network boundary to reach its destination MUST flow through a Border
Router.

This protocol places a set of requirements on the Border Router. These requirements pertain to
address assignment, route assignment and advertisement, multicast support, and discovery proxy
ing.

Note that in this version of the specification, Thread is the primary supported LLN. In many cases,
customer installations will attempt to maintain a simple network topology, with a single Wi-Fi/Eth
ernet subnet, and a single Thread network. However, more than one Thread network is possible
and supported.

To support home automation interoperability, this protocol supports the concept of bridging which
makes available, through a data model node, devices implementing other home automation tech
nologies, transports and link layers.

2.4. Scoped names
The Matter protocol explicitly supports multiple administrators, unrelated by any common roots of
trust (multi-admin). This functionality is addressed via multiple fabrics and is enabled by the core
aspects of name scoping (see below), and key considerations enabling multiple fabrics in onboard
ing, secure communication, and aspects of the data model (such as fabric-scoped data).

A Fabric is a collection of Matter devices sharing a trusted root. The root of trust in Matter is the
Root CA that issues the NOCs which underpin node identities. Within the fabric, each node is
uniquely identified by a stable Node ID. The scoped selection and allocation of these constructs
within Matter ensures the uniqueness of identifiers and gives clear guidance on ownership and
management of namespaces.

The operational root of trust — the root certificate authority (CA) as identified by its public key
(Root PK) — is responsible for the allocation of correctly scoped fabric identifiers. The security of all
public key infrastructures (PKI) depends on the private key of the CA being protected and neither
guessable nor obtainable; that property, in turn, implies that the public key is globally unique.
Within any root CA, the fabrics — identified by a 64-bit number — are unique. The uniqueness
mechanism emerges from the collaboration of the commissioner and the root CA associated with
that particular commissioner. Matter wraps the collaboration between the commissioner and its
associated root CA and other possible data stores into a concept called the "administrative domain
manager" (ADM). The algorithmic details and policies within the administrative domain manager
are out of the scope of the specification as long as the allocation of all identifiers obeys the unique
ness and scoping criteria. Fabrics are uniquely identified by the tuple of their root CA’s public key
and a Fabric ID. Similarly, within each fabric, the administrative domain manager is responsible for
assigning a unique and stable Operational Node ID to every node.

The scoping strategy as outlined here ensures that each scoped identifier can be allocated solely by
the entities responsible for the scoping, without consideration for collisions or forgeries. For exam
ple, two different CAs may allocate the same fabric identifiers and this would not create any prob

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 51

lems for the devices within the network. Scoped delegation of responsibility also provides for clear
guidelines for the removal of specific identifiers.

A Matter device may be a member of multiple fabrics and thus have multiple associated node IDs.
The scoping strategy also naturally lends itself towards unambiguous resolution of names and cre
dentials and places a clearly defined responsibility for managing the namespaces on each fabric’s
associated administrative domain manager service.

Prior to the first commissioning, such as in factory-reset state, a typical device contains no pre-allo
cated operational roots of trust, and no operational identities in the form of fabric IDs and node
IDs. Yet, various interactions expect the fabric ID, or a node ID. These identifiers emerge in a num
ber of internal constructs — from address discovery, through identifying secure sessions, to evaluat
ing access control privileges. In order to regularize all interactions with the device and solve the
bootstrapping problem, a special primordial fabric ID is reserved, and associates a set of initial
access control privileges with any communication that would be associated with the initial commis
sioning sessions.

2.5. Identifiers

2.5.1. Fabric References and Fabric Identifier

As described above, a Fabric ID is a 64-bit number that uniquely identifies the Fabric within the
scope of a particular root CA. Conceptually, the fully qualified fabric reference consists of the tuple
containing the public key of the root certificate authority, and the Fabric ID. Because the fully quali
fied fabric reference is cumbersome to use, a number of mechanisms for compression of the refer
ence are defined. The Fabric reference, in compressed form, is used during operational discovery to
provide operational naming separation, a form of namespacing, between unrelated collections of
devices.

Fabric ID 0 is reserved across all fabric root public key scopes. This fabric ID SHALL NOT be used as
the identifier of a fabric.

A fabric is defined in the Data Model as a set of nodes that interact by accessing Data Model ele
ments as defined in the Interaction Model (see Section 7.5, “Fabric”).

The layers below the data model, that convey data model interactions as messages, SHALL always
indicate either the fabric associated with the message, or that there is no fabric associated with the
message.

For example: A Data Model message that is conveyed over a message channel that uses the reserved
fabric ID '0' does not have a fabric associated with it.

2.5.2. Vendor Identifier (Vendor ID, VID)

A Vendor Identifier (Vendor ID or VID) is a 16-bit number that uniquely identifies a particular prod
uct manufacturer, vendor, or group thereof. Each Vendor ID is statically allocated by the Connectiv
ity Standards Alliance (see [CSA Manufacturer Code Database]).

The following Vendor IDs are reserved:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 52 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Table 1. Vendor ID Allocations

Range Type

0x0000 Matter Standard

0x0001 - 0xFFF0 reserved for individual Manufacturer Codes as per
CSA Manufacturer Code Database

0xFFF1 Test Vendor #1

0xFFF2 Test Vendor #2

0xFFF3 Test Vendor #3

0xFFF4 Test Vendor #4

All other allocations of Vendor ID are specified in CSA Manufacturer Code Database.

NOTE

The Test Vendor IDs are reserved for test and development by device manufacturers
or hobbyists. Commissioners SHOULD NOT commission devices using one of these
VIDs onto an operational Fabric under normal operation unless the user is made
fully aware of the security risks of providing an uncertified device with operational
and networking credentials.

2.5.3. Product Identifier (Product ID, PID)

A Product Identifier (Product ID or PID) is a 16-bit number that uniquely identifies a product of a
vendor. The Product ID is assigned by the vendor and SHALL be unique for each product within a
Vendor ID. Once a Product ID has been used, it SHALL NOT be reused by a different product type
under the same Vendor ID. These Product IDs SHOULD NOT be specific to a unique physical device;
rather they describe the product type, which might have many manufactured instances (e.g. multi
ple colors of the same product type).

A value of 0x0000 SHALL NOT be assigned to a product since Product ID = 0x0000 is used for these
specific cases:

• To announce an anonymized Product ID as part of device discovery (see Section 5.4.2,
“Announcement by Device”).

• To indicate an OTA software update file applies to multiple Product IDs equally.

• To avoid confusion when presenting the Onboarding Payload for ECM with multiple nodes.

2.5.4. Group Identifier (GID)

A Group Identifier (Group ID or GID) is a 16-bit number that identifies a set of Nodes across a Fabric
at the message layer (see Section 4.16, “Group Key Management”). A Group ID can further be bound
to one or more Endpoints within each Node in the group at the interaction layer.

The Group ID space is allocated as described in Table 2, “Group ID Allocations”:

Table 2. Group ID Allocations

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 53

Range Type

0xFF00 - 0xFFFF Universal Group ID range reserved for static multi
cast and anycast identifiers

0x0001 - 0xFEFF Application Group ID, assigned by fabric Administra
tor

0x0000 Null or unspecified Group ID

2.5.4.1. Universal Group ID

A Universal Group ID (UGID) is one that resides in the 16-bit subrange of Group ID that is reserved
for groups that are common across this standard. These special multicast, groupcast, or anycast des
tinations are constant and known to all Nodes on any Fabric. The Universal Group ID space is allo
cated as described in Table 3, “Universal Group ID Allocations”:

Table 3. Universal Group ID Allocations

Range Type

0xFFFF All Nodes

0xFFFE All non-ICD Nodes

0xFFFD All Proxies

0xFF00-0xFFFC Reserved for future use

The Commissioner SHALL configure one or more shared keys for these groups on all Nodes within
the Fabric. Because the keys and IPv6 multicast prefixes are different across Fabrics, Universal
Groups only enable communication within a specific Fabric.

All Nodes Group

This group is used to message all Nodes in a Fabric.

All non-ICD Nodes Group

This group is used to message all power-capable Nodes in a Fabric. ICD Nodes SHALL NOT sub
scribe to this group.

All Proxies Group

This group is used to discover Proxy Nodes during Section 9.15.4, “Proxy Subscriptions”.

2.5.5. Node Identifier

A Node Identifier (Node ID) is a 64-bit number that uniquely identifies an individual Node or a
group of Nodes on a Fabric. The Node Identifier space is allocated as described in Table 4, “Node
Identifier Allocations”:

Table 4. Node Identifier Allocations

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 54 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Range Type

0xFFFF_FFFF_FFFF_xxxx Group Node ID

0xFFFF_FFFF_0000_0000 to 0xFFFF_FFF
F_FFFE_FFFF

Reserved for future use

0xFFFF_FFFE_xxxx_xxxx Temporary Local Node ID

0xFFFF_FFFD_xxxx_xxxx CASE Authenticated Tag

0xFFFF_FFFC_xxxx_xxxx to 0xFFFF_FF
FC_FFFF_FFFF

Reserved for future use

0xFFFF_FFFB_xxxx_xxxx PAKE key identifiers

0xFFFF_FFF0_0000_0000 to 0xFFFF_FF
FA_FFFF_FFFF

Reserved for future use

0x0000_0000_0000_0001 to 0xFFFF_FFE
F_FFFF_FFFF

Operational Node ID

0x0000_0000_0000_0000 Unspecified Node ID

Node IDs are used for core messaging, within the internal APIs, within the data model, and to
resolve the operational IPv6 addresses of Nodes (see Section 4.3.2, “Operational Discovery”).

The span of Node IDs from 0xFFFF_FFF0_0000_0000 to 0xFFFF_FFFF_FFFF_FFFF, as well as the
value 0x0000_0000_0000_0000 are both reserved for special uses.

2.5.5.1. Operational Node ID

An Operational Node ID is a 64-bit number that uniquely identifies an individual Node on a Fabric.
All messages must have an Operational Node ID as the source address. All unicast messages must
have an Operational Node ID as the destination address.

While source or destination address MAY be elided from a message, it MUST remain unambigu
ously derivable from the Session ID.

2.5.5.2. Group Node ID

A Group Node ID is a 64-bit Node ID that contains a particular Group ID in the lower half of the
Node ID.

2.5.5.3. Temporary Local Node ID

A Temporary Local Node ID is a 64-bit Node ID that contains an implementation-dependent value in
its lower 32 bits. This allows implementations to keep track of connections or transport-layer links
and similar housekeeping internal usage purposes in contexts where an Operational Node ID is
unavailable.

2.5.5.4. PAKE key identifiers

This subrange of Node ID is used to assign an access control subject to a particular PAKE key as
specified in Section 6.6.2.1.1, “PASE and Group Subjects”. An example usage would be to create an

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 55

ACL entry to provide administrative access to any commissioner communicating via a PASE session
established with a particular pincode.

2.5.5.5. CASE Authenticated Tag

This subrange of Node ID is used to assign an access control subject to a group of peer nodes that
share a single CASE session as specified in Section 6.6.2.1.2, “Subjects identified by CASE Authenti
cated Tag”.

2.5.5.6. Unspecified Node ID

The Unspecified Node ID (0x0000_0000_0000_0000) is a reserved value that never appears in mes
sages or protocol usage. It exists to mark or detect the presence of uninitialized, missing, or invalid
Node IDs.

2.5.6. IPv6 Addressing

This protocol uses IPv6 addressing for its operational communication. Node IDs and Fabric IDs are
resolved to various types of IPv6 addresses [RFC 4291].

2.5.6.1. IPv6 Unicast Address

An IPv6 Unicast Address is one that uniquely identifies and addresses a single Node on an IPv6 net
work. A primary design goal for this standard is to allow Nodes to leverage native IPv6 technolo
gies. As such, an operational IPv6 Unicast address that provides connectivity and routability
between Nodes SHALL be used. This includes a global unicast address (GUA), a link-local address
(LLA), or a unique local address (ULA).

2.5.6.2. IPv6 Multicast Address

An IPv6 Multicast Address is formed using Unicast-Prefix-based IPv6 Multicast Addresses [
RFC 3306]:

• The first 12 bits are defined by [RFC 3306] and are 0xFF3.

• The next 4 bits are "scop" (scope) and set based on [RFC 7346] Section 2 to:

◦ Site-Local (0x5) - spans all networks in the Fabric, including Thread, Ethernet, and Wi-Fi.

• The next 8 bits are reserved (0x00).

• The next 8 bits are "plen", and set to 0x40 to indicate a 64-bit long network prefix field.

The network prefix portion of the Multicast Address is the 64-bit bitstring formed by concatenating:

• 0xFD to designate a locally assigned ULA prefix per [RFC 4193] Section 3.1

• The upper 56-bits of the Fabric ID for the network in big-endian order

The 32-bit group identifier portion of the Multicast Address is the 32-bits formed by:

• The lower 8-bits of the Fabric ID

• 0x00

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 56 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• The next 16-bits are the Group Identifier for the group, as specified in Group Identifier in big-
endian order

An example of the site local scoped multicast address for a given <Fabric ID> and <Group ID>:

 FF35:0040:FD<Fabric ID>00:<Group ID>

NOTE
though Site-Local scope is always used, the effective scope MAY be limited by setting
the IPv6 hop count.

The Multicast Address formation ensures a low probability of a node receiving a multicast message
it is not interested in. If a collision does occur on the multicast address (which requires two identi
cal 64-bit Fabric IDs and two identical 16-bit Group IDs), processing of the message disambiguates
which fabric and group is relevant by checking which operational group key leads to the message’s
64-bit MIC.

2.5.6.3. IPv6 Multicast Port Number

The IANA assigned port number is 5540.

2.5.6.4. IPv4 Coexistence

Matter devices SHALL be tolerant of IPv4 addresses and MAY ignore those addresses for the pur
poses of Matter operations.

2.6. Device identity
Each Matter device holds a number of certificate chains.

A Device Attestation Certificate (DAC) proves the authenticity of the manufacturer and a certifica
tion status of the device’s hardware and software. The Device Attestation Certificate is used during
the commissioning process by the Commissioner to ensure that only trustworthy devices are admit
ted into a Fabric. The details of the device attestation process are captured in Section 6.2, “Device
Attestation”.

Each Matter device is issued an Operational Node ID and a Node Operational Certificate (NOC) for
that Operational Node ID. The NOC enables a Node to identify itself within a Fabric by cryptographi
cally binding a unique Node Operational Key Pair to the operational identity of its subject,
attestable through the signature of a trusted Certificate Authority (CA). Operational Node IDs are
removed on factory reset or removal of Fabrics. A NOC is issued during the commissioning process
of a device into a Fabric. These steps help to protect the privacy of the end-user and to adapt to dif
ferent trust models.

The format of the Node Operational credentials and protocols for generating those credentials are
detailed in Section 6.4, “Node Operational Credentials Specification” and Section 6.5, “Operational
Certificate Encoding” sections.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 57

2.7. Security
Matter deploys modern security practices to protect the Fabric. Matter designates a core set of secu
rity primitives detailed in Chapter 3, Cryptographic Primitives to provide comprehensive protection.
Elliptic curve cryptography, based on the NIST P-256 curve (secp256r1) serves as the foundation for
public key cryptography and digital signatures. Commonly available AES modes of operation have
been selected to provide shared key cryptographic operations. In scenarios involving an out-of-
band passcode-based authentication, Matter uses SPAKE2+, an efficient augmented PAKE algorithm.

The core cryptographic primitives form the basis of a number of complementary secure protocols
used within Matter. All unicast Node-to-Node messages are secured, authenticated, and provide
replay protection. Building on top of IPv6 multicast, Matter also provides group messaging facilities,
useful for efficiently addressing on an LLN. The group messaging features prioritize low latency of
packet processing.

2.8. Device Commissioning
Device commissioning (see Chapter 5, Commissioning) is the process of joining a device to a Fabric.
The device being commissioned is referred to as the Commissionee and the device administering
commissioning is referred to as the Commissioner. Device commissioning consists of the following
steps:

1. Device discovery (see Section 5.4, “Device Discovery” and see Section 5.1, “Onboarding Pay
load”): The Commissioner discovers commissionable devices on network interfaces such as
Bluetooth Low Energy, Wi-Fi, or other connected IP network. The Commissioner obtains the out-
of-band secret (Passcode) from the commissionable device’s QR Code, Manual Pairing Code, NFC
Tag or other means. This secret is used by Passcode-Authenticated Session Establishment (PASE)
to establish a secure commissioning session. The order of discovering commissionable devices
and obtaining the out-of-band secret from commissionable device is not critical.

2. Security setup with PASE (see Section 4.14.1, “Passcode-Authenticated Session Establishment
(PASE)”): Establish encryption keys between the Commissioner and Commissionee using PASE.
All messages exchanged between the Commissioner and Commissionee are encrypted using
these PASE-derived keys. The process also establishes an attestation challenge used during the
device attestation procedure.

3. Device attestation verification (see Section 6.2, “Device Attestation”): Commissioner establishes
the authenticity of the Commissionee as a certified device, notifying the user if the device is not
certified.

4. Information configuration (see Section 6.4, “Node Operational Credentials Specification”, Sec
tion 11.10, “General Commissioning Cluster” and Section 11.18, “Node Operational Credentials
Cluster”): The Commissioner provides Commissionee with information such as regulatory
domain, UTC time, Operational Certificate and network interfaces configuration.

5. Join network (see Section 11.9, “Network Commissioning Cluster” and Section 4.3.2, “Opera
tional Discovery”): The Commissioner triggers the Commissionee to connect to the operational
network unless the Commissionee is already on the operational network. The Node’s/Commis
sionee’s IPv6 address is then either used (if already known) or discovered (if not known) by the
Commissioner or Administrator.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 58 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6. Security setup with CASE (see Section 4.14.2, “Certificate Authenticated Session Establishment
(CASE)”): Derive encryption keys used to establish secure communication between the Commis
sioner or Administrator and Node with CASE. All unicast messages between a Commissioner or
Administrator and a Node are encrypted using these CASE-derived keys.

7. Commissioning complete message exchange (see Section 11.10, “General Commissioning Clus
ter”): A message exchange encrypted using CASE-derived encryption keys on the operational
network that indicates successful completion of commissioning process.

A commissioner can reconfigure the Commissionee multiple times over the operational network
after the commissioning is complete or over the commissioning channel after PASE-derived encryp
tion keys are established during commissioning. The commissioning flows are described in Section
5.5, “Commissioning Flows”.

2.9. Intermittently Connected Device (ICD)
One goal of this standard is to provide support for communicating with devices that are intermit
tently connected to the network or unreachable for periods of time. The Intermittently Connected
Device operating mode behavior is specified in the Section 9.16, “Intermittently Connected Devices
Behavior” section. The Intermittently Connected Device (ICD) operating mode is defined to help
optimize network traffic, reachability, and power consumption for such nodes. Intermittent connec
tions can be caused by a number of factors, including duty cycling to minimize power consumption,
intermittent availability of network connectivity, device mobility, or intermittent availability of
power.

The ICD operating mode is designed to be agnostic to underlying network layer mechanisms and
may be leveraged over any supported IP interfaces, including Thread and Wi-Fi.

NOTE
Because clients and infrastructure devices may have limited buffering space to
cache messages on behalf of intermittently connected devices, ICD communication
patterns SHOULD be designed such that the ICD is predominantly the initiator.

2.9.1. Sleepy End Device (SED)

The Sleepy End Device (SED) operating mode is defined by the Thread standard to help extend and
optimize battery lifetimes for Thread devices running on limited power sources such as batteries or
limited energy scavenging. While the Matter ICD operating mode can leverage Thread Sleepy End
Device (SED) behavior for Thread ICD devices, it SHOULD NOT be confused with it.

2.10. Data Model Root
• Endpoint 0 (zero) SHALL be the root node endpoint.

• Endpoint 0 (zero) SHALL support the Root Node device type.

2.11. Stack Limits

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 59

2.11.1. System Model Limits

2.11.1.1. Access Control Limits

• A node SHALL guarantee that there are at least four Access Control Entries available for every
fabric supported by the node.

For example: A node that supports 5 fabrics must support at least 20 ACL entries, and if it sup
ports N entries must enforce that any K fabrics together do not use more than N - 4*(5-K)
entries.

• Device types MAY impose additional constraints on the number of ACL entries that need to be
supported.

2.11.1.2. Group Limits

• A node SHALL support at least one group key per fabric for managing the IPK.

• If the node implements one or more device types with support for the Groups cluster, the node
SHALL additionally support the maximum number of the required groups as specified by all of
these implemented device types, without going below the following mandatory minima:

◦ The node SHALL support at least three group keys per fabric.

◦ The node SHALL support at least four group table entries per fabric per endpoint having a
Groups cluster instance.

◦ Each Groups cluster instance SHALL support adding the endpoint to at least four groups.

For example: A node that supports 5 fabrics and has 1 endpoint with a Groups cluster must
support at least 20 group table entries. A node that supports 5 fabrics and has 2 endpoints
with a Groups cluster must support at least 40 group table entries.

• A node SHALL support one IPv6 multicast group membership for every operational group it
supports.

• Support for GroupKeyMulticastPolicy field in GroupKeySetStruct is provisional.

2.11.2. Interaction Model Limits

2.11.2.1. Read Interaction Limits

• A server SHALL ensure that every fabric the node is commissioned into can handle a single
Read Interaction from a client on that fabric containing up to 9 paths.

• A server MAY permit Read Interactions even when there is no accessing fabric, subject to avail
able resources (e.g over PASE).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 60 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

2.11.2.2. Subscribe Interaction Limits

• A publisher SHALL ensure that every fabric the node is commissioned into can support at least
three Subscribe Interactions to the publisher and that each subscription SHALL support at least
3 attribute/event paths.

• A server MAY permit Subscribe Interactions even when there is no accessing fabric, subject to
available resources (e.g over PASE).

• Device type specifications MAY require a larger number of supported subscriptions or paths.

• SUBSCRIPTION_MAX_INTERVAL_PUBLISHER_LIMIT defines the upper limit for the publisher-selected
maximum interval for any subscription.

◦ If the publisher is an ICD, this SHALL be set to the Idle Mode Duration.

◦ If not, this SHALL be set to 60 minutes.

• The minimal supported capabilities, subject to the minimal constraints above, are reported in
the CapabilityMinima attribute of the Basic Information cluster.

2.11.2.3. Invoke Interaction Limits

• An Invoke Request action MAY contain multiple concrete command paths, if supported by the
server, but the total number of commands included in a single Invoke Request action is still lim
ited by the maximum message size constraints.

2.12. List of Provisional Items
The following is a list of provisional items.

2.12.1. Invoke Multiple Paths

Support for an Invoke Interaction with wildcard paths is provisional.

2.12.2. Proxy Service

The Proxy Architecture, the Proxy Config and Proxy Discovery clusters are provisional.

2.12.3. Diagnostic Logs Cluster

The Diagnostic Logs Cluster is provisional.

2.12.4. Long Idle Time ICD

Long Idle Time ICDs are provisional.

2.12.5. ICD Check-In Protocol feature

The Section 9.17.4.1, “CheckInProtocolSupport Feature” Check-In Protocol support feature in the
ICD Management cluster is provisional.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 61

2.12.6. Tag compression encoding for AttributePathIB, EventPathIB, and
AttributeDataIB

The Section 10.6.2.1, “EnableTagCompression” mechanism for encoding the interaction model is
provisional.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 62 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 3. Cryptographic Primitives
This chapter introduces the various cryptographic primitives, algorithms and protocol building
blocks used in this protocol. It introduces for each of them a functional abstraction that can be
referred to in the other chapters of this specification. This chapter also maps those cryptographic
primitives to specific instances with the corresponding appropriate informative or normative refer
ences. Wherever relevant, it also gives necessary or relevant information about the use of these
mappings in a specific context to achieve a compliant implementation.

Given a version of the Message Format, the cryptographic primitives are mapped to specific
instances. There is no cryptosuite negotiation in this protocol: one version of the Message Format
has one cryptosuite as defined in this chapter.

Each section defines cryptographic primitives generically, together with concrete mappings to spe
cific instances of these cryptographic primitives for version 1.0 of the Message Format. This chapter
can also be used as guidance about which cryptographic primitives need to be supported by a
device, but it must be noted that not all devices will have to support all of them. For example, a
device may not require the Crypto_PBKDF() primitive, as values based on this operation could in
some instances be precomputed and stored during the manufacturing process of the device. The
proposed functional mapping in this chapter is normative with respect to the values computed by
the functions but informative with respect to the way the functions are interfaced within imple
mentations. For example, a function returning both a boolean to indicate success and a value if the
operation is successful could also be implemented using exception mechanisms instead of return
ing a boolean.

It must also be noted that not all cryptographic primitives are exposed to the other parts of the
specification. For example, the Crypto_TRNG() primitive SHALL NOT be called outside of the Crypto_
DRBG() implementation.

The cryptographic primitives discussed below operate on data local to the host. Where more com
plex data types are present and their external representation is applicable, the chapter notes the
details of the encoding. Simple multi-byte data types without any additional context are assumed to
be in host byte order when they are used internally to a procedure, unless otherwise stated.

All octet strings are presented with first octet having index 0, and presented from left to right for
indices 0 through N-1 for an octet string of length N.

3.1. Deterministic Random Bit Generator (DRBG)
This protocol relies on random numbers for many security purposes. For example, random num
bers are used in generating secret keys, counters, cryptographic signature generation random
secrets, etc. Those random numbers SHALL be generated using the Crypto_DRBG() function.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 63

Function and description

bit[len]
Crypto_DRBG(int len)

Returns an array of len random bits.

Mapping (Version 1.0)

Crypto_DRBG() SHALL be implemented with one of the following DRBG algorithms as defined in
NIST 800-90A (the choice of which one is left to the manufacturer because the choice has no
impact on the interoperability):

• CTR DRBG (with AES-CTR)

• HMAC DRBG (with SHA-256)

• HMAC DRBG (with SHA-512)

• Hash DRBG (with SHA-256)

• Hash DRBG (with SHA-512)

Crypto_DRBG() SHALL be seeded using Crypto_TRNG() with at least 256 bits of entropy (see among
others Chapter 4 and Section 8.4 of NIST 800-90A).

3.2. True Random Number Generator (TRNG)
A TRNG (a.k.a. Entropy Source) is required to provide an entropy seed as an input to the DRBG algo
rithm.

Function and description

bit[len]
Crypto_TRNG(int len)

Returns an array of len random bits.

Mapping (Version 1.0)

Crypto_TRNG() MAY be implemented according to the NIST 800-90B implementation guidelines but
alternate implementations MAY be used.

In accordance with good security practices, the Crypto_TRNG() SHALL never be called directly but
rather SHALL be used in the implementation of Crypto_DRBG().

3.3. Hash function (Hash)
Crypto_Hash() computes the cryptographic hash of a message.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 64 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Function and description

byte[CRYPTO_HASH_LEN_IN_BYTES]
Crypto_Hash(byte[] message)

Returns the cryptographic hash digest of the message.

Mapping (Version 1.0)

int CRYPTO_HASH_LEN_BITS := 256

int CRYPTO_HASH_LEN_BYTES := 32

int CRYPTO_HASH_BLOCK_LEN_BYTES := 64

Crypto_Hash(message) :=
 byte[CRYPTO_HASH_LEN_BYTES] SHA-256(M := message)

SHA-256() SHALL be computed as defined in Section 6.2 of FIPS 180-4.

3.4. Keyed-Hash Message Authentication Code (HMAC)
Crypto_HMAC() computes the cryptographic keyed-hash message authentication code of a message.

Function and description

byte[CRYPTO_HASH_LEN_BYTES]
Crypto_HMAC(byte[] key, byte[] message)

Returns the cryptographic keyed-hash message authentication code of a message using the given
key.

Mapping (Version 1.0)

Crypto_HMAC(key, message) :=
 byte[CRYPTO_HASH_LEN_BYTES] HMAC(K := key, text := message)

HMAC() SHALL be computed as defined in FIPS 198-1 using Crypto_Hash() as the underlying hash
function H (this is also referred to as HMAC-SHA256()) and CRYPTO_HASH_LEN_BYTES is defined in Section
3.3, “Hash function (Hash)”.

3.5. Public Key Cryptography
Matter specifies the following scheme and parameters for public key cryptography.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 65

3.5.1. Group

The public key cryptography of Matter relies on the group defined in the following mapping table.

Mapping (Version 1.0)

Matter public key cryptography SHALL be based on Elliptic Curve Cryptography (ECC) with the
elliptic curve: secp256r1 defined in Section 2.4.2 of SEC 2. (This curve is also referred to as NIST P-
256 or prime256v1 in FIPS 186-4 and NIST 800-186.)

PrivateKey is an opaque data type to hold either the private key or any handle or reference that
allows other primitives to access the corresponding private key.

PublicKey is an opaque data type to hold the public key or any handle or reference that allows
other primitives to access the corresponding public key. A public key is a point on the elliptic
curve. (At places in the specification where public keys are to be explicitly transmitted, the format
in which they are transmitted is specified.)

int CRYPTO_GROUP_SIZE_BITS := 256

int CRYPTO_GROUP_SIZE_BYTES := 32

int CRYPTO_PUBLIC_KEY_SIZE_BYTES : = (2 * CRYPTO_GROUP_SIZE_BYTES) + 1 = 65 is the size in bytes
of the public key representation when encoded using the uncompressed public key format as spec
ified in section 2.3 of SEC 1.

struct {
 PublicKey publicKey;
 PrivateKey privateKey;
} KeyPair;

3.5.2. Key generation

Crypto_GenerateKeyPair() is the function to generate a key pair.

Function and description

KeyPair
Crypto_GenerateKeyPair()

Generates a key pair and returns a KeyPair.

Mapping (Version 1.0)

Crypto_GenerateKeypair() :=
 KeyPair ECCGenerateKeypair()

ECCGenerateKeypair() SHALL generate a key pair according to Section 3.2.1 of SEC 1.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 66 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

3.5.3. Signature and verification

Crypto_Sign() is used to sign a message, and Crypto_Verify() is used to verify a signature on a mes
sage.

These functions either generate or verify a signature of type Signature defined by the following
mapping.

Mapping (Version 1.0)

struct {
 byte[CRYPTO_GROUP_SIZE_BYTES] r,
 byte[CRYPTO_GROUP_SIZE_BYTES] s
} Signature

3.5.3.1. Signature

Function and description

Signature
Crypto_Sign(
 PrivateKey privateKey,
 byte[] message)

Returns the signature of the message using the privateKey.

Mapping (Version 1.0)

Crypto_Sign(privateKey, message) :=
 Signature ECDSASign(dU := privateKey, M := message)

ECDSASign() SHALL be the ECDSA signature function as defined in Section 4.1 of SEC 1 using Cryp
to_Hash() as the underlying hash Hash() function.

3.5.3.2. Signature verification

Function and description

boolean
Crypto_Verify(
 PublicKey publicKey,
 byte[] message,
 Signature signature)

Verifies the signature of the message using the publicKey, returns TRUE if the verification succeeds,
FALSE otherwise.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 67

Mapping (Version 1.0)

Crypto_Verify(publicKey, message, signature) :=
 boolean ECDSAVerify(QU := publicKey, M := message, S := signature)

ECDSAVerify() SHALL be the ECDSA signature verification function as defined in Section 4.1.4 of
SEC 1 using Crypto_Hash() as the underlying hash function Hash(); returns TRUE if the verification
succeeds and FALSE otherwise.

3.5.4. ECDH

Crypto_ECDH() is used to compute a shared secret from the Elliptic Curve Diffie-Hellman (ECDH) pro
tocol.

Function and description

byte[CRYPTO_GROUP_SIZE_BYTES]
Crypto_ECDH(
 PrivateKey myPrivateKey,
 PublicKey theirPublicKey)

Computes a shared secret using Elliptic Curve Diffie-Hellman.

Mapping (Version 1.0)

Crypto_ECDH(myPrivateKey, theirPublicKey) :=
 byte[CRYPTO_GROUP_SIZE_BYTES] ECDH(dU := myPrivateKey, QV := theirPublicKey)

The output of ECDH() SHALL be the serialization of the x-coordinate of the resultant point as
defined in Section 3.3.1 of SEC 1.

3.5.5. Certificate validation

Crypto_VerifyChain() is used to verify Matter certificates.

Crypto_VerifyChainDER() is used to verify public key X.509 v3 certificates in X.509 v3 DER format.

Function and description

boolean
Crypto_VerifyChain(MatterCertificate[] certificates)

Given Matter certificates, Crypto_VerifyChain() performs all the necessary validity checks on cer
tificates, taking in account that the notion of "current time" for the purposes of validation SHALL
abide by the rules in Section 3.5.6, “Time and date considerations for certificate path validation”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 68 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Function and description

boolean
Crypto_VerifyChainDER(DERCertificate[] certificates)

Given a list of DER-encoded certificates in RFC 5280 format, starting at the end-entity (leaf) certifi
cate, and following the chain of trust towards the root, Crypto_VerifyChainDER() performs all the
necessary validity checks on certificates.
The Validity period validation for the root and optional intermediate certificates is performed
against the notBefore timestamp of the end-entity (leaf certificate) used as value for the current
time.

Mapping (Version 1.0)

Crypto_VerifyChain(certificates) :=
 boolean verified

verified is TRUE if the Matter certificates are verified as prescribed by RFC 5280.

Crypto_VerifyChainDER(certificates) :=
 boolean verified

verified is TRUE if the certificates are verified as prescribed by RFC 5280.

The primitives as described above verify cryptographic integrity of the certificate chains. This spec
ification imposes a number of additional constraints on certificates discussed below in sections on
Device Attestation Certificates, Node Operational Certificates and Certificate Common Conventions.

3.5.6. Time and date considerations for certificate path validation

The Basic Path Validation algorithm in RFC 5280 mandates the consideration of the "current time"
against the validity period (notBefore, notAfter fields) when validating paths. The usage of "current
time" assumes that such a time is available and correct, which is a strong assumption when consid
ering some constrained devices or devices only locally reachable on a network in the absence of
infrastructure to synchronize time against a global real-time reference.

When the Crypto_VerifyChain primitive is used, rather than overriding the Basic Path Validation
algorithm of RFC 5280, Nodes SHALL consider the following definition of "current time" that
accounts for the possible lack of a real time reference:

• If a Node has a current real-time clock value which is trusted according to implementation-
defined means to be accurate with regard to global real-time, whether using Time Synchroniza
tion features of this specification or other means, then it SHALL use that time;

• Otherwise, the current time SHALL be set to the last-known-good UTC time.

Upon failure to validate a certificate path, where the only reason for failure is an invalid validity
period of a path element, a Node MAY apply a policy of its choice to determine whether to ignore

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 69

this failure and still consider the path valid.

3.5.6.1. Last Known Good UTC Time

Nodes SHALL maintain a stored Last Known Good UTC Time. This time is used as a fallback for
cryptographic credentials expiry enforcement, if all other available time synchronization mecha
nisms fail.

The last known good UTC time SHALL be updated at commissioning and MAY be updated after a
successful time synchronization, or by an embedded time in an OTA. Nodes SHOULD store a Last
Known Good UTC Time value to persistent storage at least once a month. A Node’s initial out-of-box
Last Known Good UTC time SHALL be the compile-time of the firmware.

A Node MAY adjust the Last Known Good UTC Time backwards if it believes the current Last Known
Good UTC Time is incorrect and it has a good time value from a trusted source. The Node SHOULD
NOT adjust the Last Known Good UTC to a time before the later of:

• The build timestamp of its currently running software image

• The not-before timestamp of any of its operational certificates (see Section 6.4.5, “Node Opera
tional Credentials Certificates”).

If a Node has used the Last Known Good UTC Time, it SHOULD recheck its security materials and
existing connections if it later achieves time synchronization.

3.6. Data Confidentiality and Integrity
Symmetric block ciphers are used to provide message security.

All unicast and multicast messages between Nodes requiring protection for confidentiality and
integrity with data origin authentication SHALL use Authenticated Encryption with Associated Data
(AEAD) as primitive to protect those messages.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 70 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Mapping (Version 1.0)

Data confidentiality and integrity SHALL use the AES-CCM mode as defined in NIST 800-38C with
the following parameters:

• int CRYPTO_SYMMETRIC_KEY_LENGTH_BITS := 128 (this is the key length of the underlying block
cipher in bits)

• int CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES := 16 (this is the key length of the underlying block
cipher in bytes)

• int CRYPTO_AEAD_MIC_LENGTH_BITS := 128 (this is the MIC length in bits)

• int CRYPTO_AEAD_MIC_LENGTH_BYTES := 16 (this is the MIC length in bytes)

• int CRYPTO_AEAD_NONCE_LENGTH_BYTES := 13

• Key length SHALL be CRYPTO_SYMMETRIC_KEY_LENGTH_BITS bits.

• MIC length SHALL be CRYPTO_AEAD_MIC_LENGTH_BITS bits.

• The parameter q SHALL be 2 (length of encoding of maximum length) as specified in Appendix
A.1 of NIST 800-38C.

• The parameter n SHALL be CRYPTO_AEAD_NONCE_LENGTH_BYTES (length of nonce in bytes) as speci
fied in Appendix A.1 of NIST 800-38C.

SymmetricKey is an opaque data type to hold a symmetric block cipher key or any handle or refer
ence that allows other primitives to access the corresponding key.

3.6.1. Generate and encrypt

Function and description

byte[lengthInBytes(P) + CRYPTO_AEAD_MIC_LENGTH_BYTES]
Crypto_AEAD_GenerateEncrypt(
 SymmetricKey K,
 byte[lengthInBytes(P)] P,
 byte[] A,
 byte[CRYPTO_AEAD_NONCE_LENGTH_BYTES] N)

Performs the generate and encrypt computation on payload P and the associated data A using the
key K and a nonce N; the output contains the ciphertext and the tag truncated to Tlen bits (the
encoding of the output depends on the mapping to the specific instance of the cryptographic prim
itive).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 71

Mapping (Version 1.0)

Crypto_AEAD_GenerateEncrypt(K, P, A, N) :=
 byte[lengthInBytes(P) + CRYPTO_AEAD_MIC_LENGTH_BYTES] AES-CCM-GenerateEncrypt(K
:= K, P := P, A := A, N := N, Tlen := CRYPTO_AEAD_MIC_LENGTH_BITS)

AES-CCM-GenerateEncrypt() SHALL be the function described in Section 6.1 of NIST 800-38C with the
counter generation function of Appendix A.3 of NIST 800-38C and the formatting function as
defined in Appendix A.2 of NIST 800-38C; returns the encoding of the ciphertext and the tag of
length Tlen bits, as specified in Section 6.1 of NIST 800-38C as a byte array.

3.6.2. Decrypt and verify

Function and description

{boolean success, byte[lengthInBytes(P)] payload}
Crypto_AEAD_DecryptVerify(
 SymmetricKey K,
 byte[lengthInBytes(P) + CRYPTO_AEAD_MIC_LENGTH_BYTES] C,
 byte[] A,
 byte[CRYPTO_AEAD_NONCE_LENGTH_BYTES] N)

Performs the decrypt and verify computation on the combined ciphertext and tag C and the associ
ated data A using the key K and a nonce N. Note that the encoding of C depends on the mapping of
the specific instance of the cryptography primitive.

This function has two outcomes:

• If tag verification succeeds, the success output is TRUE and the payload array contains the
decrypted payload P.

• If tag verification fails, the success output is FALSE and the contents of the payload array is
undefined.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 72 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Mapping (Version 1.0)

Crypto_AEAD_DecryptVerify(K, C, A, N) :=
 {boolean, byte[lengthInBytes(P)]} AES-CCM-DecryptVerify(K := K, C := C, A := A,
N := N, Tlen := CRYPTO_AEAD_MIC_LENGTH_BITS)

AES-CCM-DecryptVerify() SHALL be the function described in Section 6.2 of NIST 800-38C with the
counter generation function of Appendix A.3 of NIST 800-38C and the formatting function as
defined in Appendix A.2 of NIST 800-38C and C SHALL be a byte array containing the ciphertext as
specified in Section 6.2 of NIST 800-38C.

• If tag verification succeeds, the success output is TRUE and the payload array contains the
decrypted payload P.

• If tag verification fails, the success output is FALSE and the contents of the payload array is
undefined.

3.7. Message privacy
Message privacy is implemented using a block cipher in CTR mode.

Mapping (Version 1.0)

Message privacy SHALL use the AES-CTR mode as defined in NIST 800-38A with the following
parameters:

• int CRYPTO_PRIVACY_NONCE_LENGTH_BYTES := 13

• Key length SHALL be CRYPTO_SYMMETRIC_KEY_LENGTH_BITS bits.

3.7.1. Privacy encryption

Function and description

byte[lengthInBytes(M)]
Crypto_Privacy_Encrypt(
 SymmetricKey K,
 byte[lengthInBytes(M)] M,
 byte[CRYPTO_PRIVACY_NONCE_LENGTH_BYTES] N)

Performs the encryption of the message M using the key K and a nonce N; the output contains the
data M encrypted.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 73

Mapping (Version 1.0)

Crypto_Privacy_Encrypt(K, M, N) :=
 byte[lengthInBytes(M)]
 AES-CTR-Encrypt(K := K, P := M, N := N)

AES-CTR-Encrypt() SHALL be the encryption function described in Section 6.5 of NIST 800-38A with
the sequence of counters T being generated according to the counter generation function of
Appendix A.3 of NIST 800-38C using N and the value of q = 2; returns the encrypted message as a
byte array.

3.7.2. Privacy decryption

Function and description

byte[lengthInBytes(C)]
Crypto_Privacy_Decrypt(
 SymmetricKey K,
 byte[lengthInBytes(C)] C,
 byte[CRYPTO_PRIVACY_NONCE_LENGTH_BYTES] N)

Performs the decryption of C using the key K and a nonce N; the output M is the decryption of C

Mapping (Version 1.0)

Crypto_Privacy_Decrypt(K, C, N) :=
 byte[lengthInBytes(C)]
 AES-CTR-Decrypt(K := K, C := C, N := N)

AES-CTR-Decrypt() SHALL be the decryption function described in Section 6.5 of NIST 800-38A with
the sequence of counters T being generated according to the counter generation function of
Appendix A.3 of NIST 800-38C using N and the value of q = 2; returns the decrypted message as a
byte array.

3.8. Key Derivation Function (KDF)
Matter specifies the following key derivation function to generate encryption keys.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 74 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Function and description

bit[len]
Crypto_KDF(
 byte[] inputKey,
 byte[] salt,
 byte[] info,
 int len)

Returns the key of len bits derived from inputKey using the salt and the info; len SHALL be a mul
tiple of 8.

Mapping (Version 1.0)

Crypto_KDF(inputKey, salt, info, len) :=
 bit[len] HKDF-Expand(
 PRK := HKDF-Extract(salt := salt, IKM := inputKey),
 info := info, L := (len / 8))

HKDF-Extract SHALL be the HKDF-Extract primitive from RFC 5869 section 2.2 using Crypto_HMAC
(i.e. HMAC-SHA256) as the auxiliary HMAC-Hash function.

HKDF-Expand SHALL be the HKDF-Expand primitive from RFC 5869 section 2.3 using Crypto_HMAC
(i.e. HMAC-SHA256) as the auxiliary HMAC-Hash function.

The primitive returns a bit array of len bits.

When multiple keys of the same length are generated by a single KDF call, the following shorthand
notation can be used:

Key1 || Key2 || Key3 = Crypto_KDF
 (
 inputKey = inputKeyMaterial,
 salt = [],
 info = [],
 // 3 below matches number of keys expressed in concatenated output
 len = 3 * CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

This is equivalent to the following:

Keys = Crypto_KDF
 (
 inputKey = inputKeyMaterial,
 salt = [],
 info = [],
 len = 3 * CRYPTO_SYMMETRIC_KEY_LENGTH_BITS

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 75

)

1. Set Key1 to the CRYPTO_SYMMETRIC_KEY_LENGTH_BITS most significant bits of Keys.

2. Set Key2 to the next CRYPTO_SYMMETRIC_KEY_LENGTH_BITS significant bits of Keys.

3. Set Key3 to the CRYPTO_SYMMETRIC_KEY_LENGTH_BITS least significant bits of Keys.

3.9. Password-Based Key Derivation Function (PBKDF)
Matter specifies the following password-based key derivation function to compute a derived key
from a cryptographically weak password.

Function and description

bit[len]
Crypto_PBKDF(
 byte[] input,
 byte[] salt,
 int iterations,
 int len)

Returns a value of len bits derived from the input using the salt and iterations iterations.

Type and description

STRUCTURE Crypto_PBKDFParameterSet

Maintains the set of parameters exchanged between a Commissioner and a Commissionee during
their pairing.

Mapping (Version 1.0)

int CRYPTO_PBKDF_ITERATIONS_MIN := 1000

int CRYPTO_PBKDF_ITERATIONS_MAX := 100000

Crypto_PBKDF(input, salt, iterations, len) :=
 bit[len] PBKDF2(P := input, S := salt, C := iterations, kLen := len)

PBKDF2() SHALL be the HMAC-based PBKDF function with Crypto_HMAC(key := P, message := U[j-
1]) as the auxiliary function HMAC as defined in Section 5.3 of NIST 800-132; it returns a bit array of
len bits.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 76 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Mapping (Version 1.0)

Crypto_PBKDFParameterSet => STRUCTURE [tag-order]
{
 iterations [1] : UNSIGNED INTEGER [range 32-bits],
 salt [2] : OCTET STRING [length 16..32],
}

• iterations: An integer value specifying the number of PBKDF2 iterations: CRYPTO_PBKDF_ITERA
TIONS_MIN <= iterations <= CRYPTO_PBKDF_ITERATIONS_MAX.

• salt: A random value per device of at least 16 bytes and at most 32 bytes used as the PBKDF2
salt.

3.10. Password-Authenticated Key Exchange (PAKE)
This protocol uses password-authenticated key exchange (PAKE) for the PASE protocol.

Mapping (Version 1.0)

Matter uses SPAKE2+ as described in SPAKE2+ as PAKE with:

• The SPAKE2+ verifier is the Commissionee/Responder and the SPAKE2+ prover is the Commis
sioner/Initiator

• Crypto_PBKDF() as underlying PBKDF (see Section 3.9, “Password-Based Key Derivation Func
tion (PBKDF)”), with arguments as described in the definition of Crypto_PAKEValues_Initiator

• NIST P-256 elliptic curve as underlying group (see Section 3.5.1, “Group”).

◦ SPAKE2+ requires two additional points on the curve: M and N. The values of M and N are
taken from the draft version 2 of the SPAKE2+ specification (SPAKE2+) and are listed below
in compressed format (format defined in section 2.3 of SEC 1):

▪ M = 02886e2f97ace46e55ba9dd7242579f2993b64e16ef3dcab95afd497333d8fa12f

▪ N = 03d8bbd6c639c62937b04d997f38c3770719c629d7014d49a24b4f98baa1292b49

• Crypto_Hash() as underlying hash function (see Section 3.3, “Hash function (Hash)”).

• Crypto_HMAC() as underlying HMAC function (see Section 3.4, “Keyed-Hash Message Authentica
tion Code (HMAC)”).

• KDF(info, key, salt) := Crypto_KDF(key, salt, info, CRYPTO_HASH_LEN_BITS) as underlying
KDF function (see Section 3.8, “Key Derivation Function (KDF)”).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 77

Mapping (Version 1.0)

Crypto_PAKEValues_Initiator := (w0, w1) where w0 and w1 SHALL be computed as follows:

CRYPTO_W_SIZE_BYTES := CRYPTO_GROUP_SIZE_BYTES + 8
CRYPTO_W_SIZE_BITS := CRYPTO_W_SIZE_BYTES * 8

byte w0s[CRYPTO_W_SIZE_BYTES] || byte w1s[CRYPTO_W_SIZE_BYTES] =
 (byte[2 * CRYPTO_W_SIZE_BYTES])
 bit[2 * CRYPTO_W_SIZE_BITS]
 Crypto_PBKDF(passcode, salt, iterations, 2 * CRYPTO_W_SIZE_BITS)
byte w0[CRYPTO_GROUP_SIZE_BYTES] = w0s mod p
byte w1[CRYPTO_GROUP_SIZE_BYTES] = w1s mod p

where:

• mod is the mathematical modulo operation and || is the string concatenation or split operator.

• passcode, is the Passcode defined in Section 5.1.1.6, “Passcode”, serialized as little-endian over 4
octets. For example, passcode 18924017 would be encoded as the octet string f1:c1:20:01 and
the passcode 00000005 would be encoded as the octet string 05:00:00:00.

• p is the order of the underlying elliptic curve.

• Both w0s and w1s SHALL have a length equal to (CRYPTO_GROUP_SIZE_BYTES + 8).

• salt and iterations are extracted from the Crypto_PBKDFParameterSet values.

• The pair (w0,w1) is also referred to as Commissioner PAKE input

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 78 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Mapping (Version 1.0)

Crypto_PAKEValues_Responder := (w0, L) where w0 and L SHALL be computed as follows:

byte w0s[CRYPTO_W_SIZE_BYTES] || byte w1s[CRYPTO_W_SIZE_BYTES] =
 (byte[2 * CRYPTO_W_SIZE_BYTES])
 bit[2 * CRYPTO_W_SIZE_BITS]
 Crypto_PBKDF(passcode, salt, iterations, 2 * CRYPTO_W_SIZE_BITS)
byte w0[CRYPTO_GROUP_SIZE_BYTES] = w0s mod p
byte w1[CRYPTO_GROUP_SIZE_BYTES] = w1s mod p
byte L[CRYPTO_PUBLIC_KEY_SIZE_BYTES] = w1 * P

where:

• passcode, is the Passcode defined in Section 5.1.1.6, “Passcode”.

• p is the order of the elliptic curve to be used.

• Both w0s and w1s SHALL have a length equal to (CRYPTO_GROUP_SIZE_BYTES + 8).

• salt and iterations are extracted from the Crypto_PBKDFParameterSet values.

• P is the generator of the underlying elliptic curve.

• When the computation of Crypto_PAKEValues_Responder is done, fields w0 and L SHALL be stored
in the Responder and w1 SHALL NOT be stored in the Responder.

• The pair (w0,L) is also referred to as Commissionee PAKE input or verification value

3.10.1. Computation of pA

Mapping (Version 1.0)

Crypto_pA(Crypto_PAKEValues_Initiator) :=
 byte pA[CRYPTO_PUBLIC_KEY_SIZE_BYTES]

pA is in uncompressed public key format as specified in section 2.3 of SEC 1. pA SHALL be com
puted as specified in SPAKE2+.

3.10.2. Computation of pB

Mapping (Version 1.0)

Crypto_pB(Crypto_PAKEValues_Responder) :=
 byte pB[CRYPTO_PUBLIC_KEY_SIZE_BYTES]

pB is in uncompressed public key format as specified in section 2.3 of SEC 1. pB SHALL be com
puted as specified in SPAKE2+.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 79

3.10.3. Computation of transcript TT

Mapping (Version 1.0)

Crypto_Transcript(PBKDFParamRequest, PBKDFParamResponse, pA, pB) :=
 byte[] TT

Crypto_Transcript() SHALL compute TT as specified in SPAKE2+ with:

byte ContextPrefixValue [26] = {
 0x43, 0x48, 0x49, 0x50, 0x20, 0x50, 0x41, 0x4b, 0x45, 0x20, 0x56, 0x31, 0x20, 0x43,
0x6f, 0x6d,
 0x6d, 0x69, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x69, 0x6e, 0x67
} // "CHIP PAKE V1 Commissioning" - The usage of CHIP here is intentional and due to
implementation in the SDK before the name change, should not be renamed to Matter.

Context := Crypto_Hash(ContextPrefixValue || PBKDFParamRequest || PBKDFParamResponse)

TT :=
 lengthInBytes(Context) || Context ||
 0x0000000000000000 || 0x0000000000000000 ||
 lengthInBytes(M) || M ||
 lengthInBytes(N) || N ||
 lengthInBytes(pA) || pA ||
 lengthInBytes(pB) || pB ||
 lengthInBytes(Z) || Z ||
 lengthInBytes(V) || V ||
 lengthInBytes(w0) || w0

Z and V SHALL be computed from pA and pB as specified in SPAKE2+.

Note the two 0x0000000000000000 null-lengths indicate that no identities are present and each null-
lengths is 8 bytes wide since it is specified by the SPAKE2+ specification that lengths are eight-byte
little-endian numbers. The SPAKE2+ specification indicates that we must include these length
fields.

Note in case PBKDFParamRequest and PBKDFParamResponse messages are not exchanged, they SHALL
be replaced by empty strings in the Context computation.

3.10.4. Computation of cA, cB and Ke

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 80 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Mapping (Version 1.0)

Crypto_P2(TT, pA, pB) :=
 {byte cA[CRYPTO_HASH_LEN_BYTES],
 byte cB[CRYPTO_HASH_LEN_BYTES],
 byte Ke[CRYPTO_HASH_LEN_BYTES/2]}

Crypto_P2() SHALL compute cA, cB and Ke as specified in SPAKE2+ with cA := CRYPTO_HMAC(KcA,pB)
and cB := CRYPTO_HMAC(KcB,pA).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 81

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 82 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 4. Secure Channel

4.1. General Description
The Secure Channel and Message Layer provides a consistent networking service substrate to allow
Nodes to communicate securely with one another.

During commissioning and unicast communication, a discovery mechanism is provided to deter
mine peer IPv6 addresses and operational parameters. Secure session establishment mechanisms
are provided using either certificates (CASE) or shared passcodes (PASE).

4.1.1. Messages

Communication is performed using messages. Messages are either secured or unsecured.

Each message has a Session Type and Session ID in order to identify whether it is secured and how
it is to be decrypted and authenticated if it is. Each message has a Message Counter field in order to
uniquely identify the message for the purposes of security and duplicate detection.

Operational communication is defined as traffic that uses the secured Matter message format
between commissioned nodes over an IP transport. All operational communication has message
security enabled. Operational communication between Nodes can be either unicast or multicast.

Unsecured communication is strictly limited to:

• Discovery, which does not use the Matter message format.

• User Directed Commissioning (UDC), which uses unsecured messages to initiate the commission
ing process.

• Session establishment, which uses unsecured messages to establish a CASE or PASE session.

4.1.1.1. Message Types

Messages are defined as either a control message or data message. Most messages are data mes
sages. Control messages are reserved for internal protocols such as MCSP to initialize security. Both
message types are identical in format, but use separate message counter domains so they can oper
ate securely over the same security key.

4.1.1.2. Message Transports

Messages are of finite size and are sent as individual packets over the supported transports:

• UDP transports each message as a separate datagram. Messages support a basic reliability pro
tocol called MRP for use when the underlying transport (in this case UDP) doesn’t provide such
features.

• TCP transports each message with a length prepended, performing segmentation and reassem
bly as needed.

• BTP transports each message over BLE as a separate SDU, performing segmentation and

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 83

reassembly as needed.

BTP is provided as a transport protocol for commissioning. TCP and MRP (UDP with added reliabil
ity) are provided as transport protocols for operational messaging.

4.1.1.3. Message Exchanges

Messages provide an Exchange Layer to track related messages that make up small, discrete trans
actions. The Exchange Layer provides this transaction tracking facility to the Interaction Model
Layer above, providing a means to multiplex multiple such concurrent transactions over a given
underlying session. The Exchange Layer also integrates the Message Reliability Protocol (MRP) as a
service for use over UDP transports. This Message Layer architecture is shown below in Figure 6,
“Message Layer Stack”:

Figure 6. Message Layer Stack

4.2. IPv6 Reachability
This section describes IPv6 network configuration requirements to enable IPv6 reachability
between Nodes. As described in Section 2.3, “Network Topology”, a Matter network may be com
posed of one or more IPv6 networks.

In a single network configuration, all Matter Nodes are attached to the same IPv6 link. A single net
work configuration may consist of a single bridged Wi-Fi / Ethernet network where all nodes
attached to that network are part of the same broadcast domain. When all Matter Nodes are
attached to the same Wi-Fi / Ethernet network, link-local IPv6 addressing is sufficient - no addi
tional IPv6 network infrastructure is required.

In a multiple network configuration, a Matter network is composed of (typically one) infrastructure
network and one or more stub networks. Unlike an infrastructure network, stub networks do not
serve as transit networks. Typically, the infrastructure network is a bridged Wi-Fi / Ethernet net
work and the Thread networks are stub networks. A stub router connects a stub network to an
infrastructure network and provides IPv6 reachability between the two networks.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 84 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.2.1. Stub Router Behavior

A stub router SHALL implement [draft-lemon-stub-networks]. In a multiple network configuration,
both the infrastructure and stub networks require routable IPv6 addresses to communicate across
networks. A routable IPv6 address SHALL have global scope (e.g. GUA or ULA) [RFC 4007] and
SHALL be constructed out of a prefix advertised as on-link. If there is no routable prefix on a given
network, the stub router SHALL provide its own routable prefix. Note that Thread’s "on-mesh pre
fix" is equivalent to Wi-Fi / Ethernet’s "on-link prefix".

Stub routers SHALL advertise reachability to all routable prefixes on the adjacent network. A stub
router connecting a Thread network SHALL advertise reachability to all of the Thread network’s
routable prefixes to the adjacent infrastructure network using Route Information Options
[RFC 4191] contained in Router Advertisements [RFC 4861]. That same stub router SHALL also
advertise reachability to all of the infrastructure network’s routable prefixes to the adjacent Thread
network in the Thread Network Data [Thread specification].

4.2.2. Matter Node Behavior

Matter Nodes SHALL configure a link-local IPv6 address. In addition, Nodes SHALL support configu
ration of at least three routable IPv6 addresses (in addition to the link-local and, in the case of
Thread, mesh-local addresses). On a Wi-Fi / Ethernet interface, ICMPv6 Router Advertisement (RA)
messages advertise prefixes for use on the link [RFC 4861]. On a Thread interface, the Thread Net
work Data contains prefixes for use on the link [Thread specification]. If a Node receives an on-link
prefix that allows autonomous configuration on a given interface and the Node has fewer than
three routable IPv6 addresses configured, the Node SHALL autonomously configure an IPv6
address out of that prefix.

Matter Nodes SHALL also configure routes to adjacent networks. On Wi-Fi / Ethernet networks,
Nodes SHALL process Route Information Options [RFC 4191] and configure routes to IPv6 prefixes
assigned to stub networks via stub routers. Wi-Fi / Ethernet interfaces SHALL support maintaining
at least 16 different routes configured using Route Information Options. On Thread networks,
Nodes SHALL route according to routing information provided in the Thread Network Data [Thread
specification]. Thread devices SHALL support as many routes as can be encoded in the Thread Net
work Data.

Matter Nodes SHALL support a number of IPv6 neighbor cache entries at least as large as the num
ber of supported CASE sessions plus the number of supported routes.

4.3. Discovery
This section describes Service Advertising and Discovery for Matter.

Service Advertising and Discovery is used within Matter in the following contexts:

• Commissionable Node Discovery

• Operational Discovery

• Commissioner Discovery

• User Directed Commissioning

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 85

Service Advertising and Discovery for Matter uses IETF Standard DNS-Based Service Discovery
(DNS‑SD) [RFC 6763]. Matter requires no modifications to IETF Standard DNS‑SD.

Using DNS‑SD means that both the unicast IPv6 address and port of the offered service are discov
ered, freeing Matter from requiring a single preallocated fixed port. This also makes it possible to
run multiple instances of Matter software on a single device, because each instance has its own
dynamically allocated port, instead of conflicting over attempting to use the same preallocated
fixed port.

On Wi‑Fi and Ethernet networks today, DNS‑SD [RFC 6763] uses Multicast DNS [RFC 6762] for zero-
configuration operation.

Since Matter protocols must support IPv6 at a minimum, Matter software discovering other Matter
instances SHALL process DNS AAAA (IPv6 address) records, but also MAY process DNS A (IPv4
address) records.

Because of this, where feasible in the underlying service discovery API, Matter software advertising
the availability of a service SHOULD indicate that announcements and answers for this service
need include only IPv6 address records, not IPv4 address records. On a general-purpose dual-stack
host that supports both IPv4 and IPv6, this can be achieved by having Matter-related SRV records
reference a Matter-specific target hostname that has only IPv6 address records attached. This
allows a general-purpose dual-stack host to offer discoverable IPv4 addresses for legacy client soft
ware that still requires IPv4, while offering optimized IPv6-only address discovery for Matter pur
poses.

Similarly, since Matter does not use IPv4, Matter software discovering other Matter instances
SHOULD NOT expect any IPv4 addresses included in responses.

These two items address the content of service discovery messages. When using Multicast DNS simi
lar efficiency questions arise related to the delivery of those service discovery messages, sent over
IPv4, IPv6, or both.

Where supported in the underlying service discovery API, Matter software using Multicast DNS to
advertise the availability of a service SHOULD indicate that announcements and answers for this
service need only be performed over IPv6.

Similarly, where supported in the underlying service discovery API, Matter application software
using Multicast DNS to issue service discovery queries SHOULD indicate that these queries need
only be performed over IPv6.

These optimizations reduce both the size and the number of multicast packets, which is particularly
beneficial on Wi‑Fi networks. A Matter device that only supports IPv6 gets these optimizations auto
matically, simply by virtue of not supporting IPv4 at all.

For Thread mesh networks, where excessive use of multicast would be detrimental [RFC 7558],
DNS‑SD uses Unicast DNS instead, leveraging capabilities of the Thread Service Registry on the
Thread Border Router [draft-lemon-stub-networks].

Conceptually, the DNS‑SD [RFC 6763] information being communicated is identical to when Multi
cast DNS [RFC 6762] is being used, except that the information is communicated in unicast packets

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 86 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

to and from a designated Service Registry, rather than being communicated in multicast packets to
and from every other Node in the same broadcast domain.

Using Service Registration Protocol [SRP] and an Advertising Proxy [AdProx] running on the Thread
Border Router, Matter Nodes on a Thread mesh can be discovered by other Matter Nodes on an
adjacent Ethernet or Wi‑Fi link, without the cost of using multicast on the Thread mesh. All Thread-
connected Matter Nodes SHALL implement Service Registration Protocol.

Thread Border Routers advertise available SRP servers in the Thread Network Data [Thread specifi
cation]. Thread devices SHALL register their services using an available SRP server [Thread specifi
cation].

When Matter Nodes issue short-lived requests to other Matter Nodes, the response is sent back to
the source IPv6 address and port of the request. When Matter Nodes issue long-lived requests to
other Matter Nodes, by the time the response is generated the requester may have changed IPv6
address or port, so the responder may have to discover the current IPv6 address and port of the ini
tiator in order to send the response.

A Thread Border Router SHALL implement DNS‑SD Discovery Proxy [RFC 8766] to enable clients on
the Thread mesh (e.g., other Nodes) to discover services (e.g., Matter Nodes) advertised using Multi
cast DNS on an adjacent Ethernet or Wi‑Fi link, also without the cost of using multicast on the
Thread mesh [draft-lemon-stub-networks]. For short-lived instantaneous queries, these queries can
be performed using unicast DNS over UDP to the DNS‑SD Discovery Proxy. For long-lived queries
with ongoing change notification, DNS Push Notifications [RFC 8765] with DNS Stateful Operations
[RFC 8490] allows clients on the Thread mesh to be notified of changes to the set of discovered ser
vices without expensive polling.

In principle, the Thread mesh Service Registry can be run on any capable Node(s) within (or even
outside) the Thread mesh, though in practice the Thread Border Router is an attractive candidate to
offer the Service Registry. Thread Border Router devices are typically AC-powered, and typically
have more capable CPUs with greater flash storage and RAM than more constrained battery-pow
ered Thread Nodes. Matter devices on Thread are dependent on Thread providing reliable service
for those Thread devices on the Thread mesh. This is similar to how Matter devices on Wi‑Fi are
dependent on the Wi‑Fi access point (AP) providing reliable service for those Wi‑Fi devices using
that Wi‑Fi access point.

4.3.1. Commissionable Node Discovery

The Matter protocol family supports UDP and TCP for Matter commissioning of Commissionees
already on the customer’s IP network (such as Ethernet-connected Nodes, or Wi‑Fi Nodes already
associated to the Wi‑Fi network via other means).

For these Commissionees, Matter Commissionable Node Discovery is performed using IETF Stan
dard DNS-Based Service Discovery (DNS‑SD) [RFC 6763] as described below.

For Matter Commissionable Node Discovery in the already-on-network case, the DNS‑SD instance
name SHALL be a dynamic, pseudo-randomly selected, 64-bit temporary unique identifier,
expressed as a fixed-length sixteen-character hexadecimal string, encoded as ASCII (UTF-8) text
using capital letters, e.g., DD200C20D25AE5F7. A new instance name SHALL be selected when the Node

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 87

boots. A new instance name SHALL be selected whenever the Node enters Commissioning mode. A
new instance name MAY be selected at other times, as long as the instance name does not change
while the Node is in commissioning mode.

A commissionable Node that is already connected to an IP-bearing network SHALL only make itself
discoverable on the IP network and SHALL use the relevant DNS-SD service (_matterc._udp)
described below.

If a Node is connected to multiple IP-bearing networks, and it receives either the OpenCommission
ingWindow or the OpenBasicCommissioningWindow command, it MAY make itself discoverable
only on the network on which the command was received. Otherwise, a commissionable Node that
is connected to multiple IP-bearing networks SHALL make itself discoverable on all of its connected
IP-bearing networks.

The Matter Commissionable Node Discovery DNS‑SD instance name SHALL be unique within the
namespace of the local network (the .local link-local namespace of the Ethernet and Wi‑Fi links
[RFC 6762], or the unicast domain selected by the Thread Border Router for devices on the Thread
mesh).

In the rare event of a collision in the selection of the 64-bit temporary unique identifier, the existing
DNS‑SD name conflict detection mechanism will detect this collision, and a new pseudo-randomly
selected 64-bit temporary unique identifier SHALL be generated by the Matter Commissionee that
is preparing for commissioning. Name conflict detection is described in Section 9 ("Conflict Resolu
tion") of the Multicast DNS specification [RFC 6762] and Section 2.4.3.1 ("Validation of Adds") of the
Service Registration Protocol specification [SRP].

The DNS‑SD service type [RFC 6335] for Matter Commissionable Node Discovery is _matterc._udp.

For link-local Multicast DNS the service domain SHALL be local. For Unicast DNS such as used on
Thread the service domain SHALL be as configured automatically by the Thread Border Router.

4.3.1.1. Host Name Construction

For DNS‑SD a target host name is required, in addition to the instance name. The target host name
SHALL be constructed using one of the available link-layer addresses, such as a 48-bit device MAC
address (for Ethernet and Wi‑Fi) or a 64-bit MAC Extended Address (for Thread) expressed as a
fixed-length twelve-character (or sixteen-character) hexadecimal string, encoded as ASCII (UTF-8)
text using capital letters, e.g., B75AFB458ECD.<domain>. In the event that a device performs MAC
address randomization for privacy, then the target host name SHALL use the privacy-preserving
randomized version and the hostname SHALL be updated in the record every time the underlying
link-layer address rotates. Note that it is legal to reuse the same hostname on more than one inter
face, even if the underlying link-layer address does not match the hostname on that interface, since
the goal of using a link-layer address is to ensure local uniqueness of the generated hostname. If
future link layers are supported by Matter that do not use 48-bit MAC addresses or 64-bit MAC
Extended Address identifiers, then a similar rule will be defined for those technologies.

4.3.1.2. Extended Discovery

A Matter Commissionee that advertises Commissionable Node Discovery service records is not nec
essarily in a state that will allow Commissioning (this state is referred to below as "in Commission

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 88 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ing Mode"). While Section 5.4.2.3, “Announcement Duration” is limited for some forms of device
advertisement, a Matter device MAY advertise Matter Commissionable Node Discovery service
records for longer periods, possibly permanently. Advertising Commissionable Node Discovery
when not in Commissioning Mode is referred to here as Extended Discovery. Extended Discovery is
allowed only for DNS-SD advertisements and not for the other forms of Device Discovery such as
BLE Commissioning Discovery.

To protect customer privacy on public networks, a Matter Commissionee SHALL provide a way for
the customer to set a timeout on Extended Discovery, or otherwise disable Extended Discovery. The
default behavior for Commissionable Node Discovery SHOULD default to limiting announcement as
defined in Section 5.4.2.3, “Announcement Duration” unless the Manufacturer wishes to enable
longer periods for specific use cases.

4.3.1.3. Commissioning Subtypes

The following subtypes for Matter Commissionable Node Discovery are defined:

1. _L<dddd>, where <dddd> provides the full 12-bit discriminator, encoded as a variable-length deci
mal number in ASCII text, omitting any leading zeroes.

2. _S<dd>, where <dd> provides the upper 4 bits of the discriminator, encoded as a variable-length
decimal number in ASCII text, omitting any leading zeroes.

3. _V<ddddd>, where <ddddd> provides the 16-bit Vendor ID, encoded as a variable-length decimal
number in ASCII text, omitting any leading zeroes.

4. _T<ddd>, where <ddd> provides the device type identifier for the device, encoded as a variable-
length decimal number in ASCII (UTF-8) text, omitting any leading zeroes. In case the device
combines multiple device types, the manufacturer SHOULD choose the device type identifier of
the primary function of the device for which the device wishes to be discoverable.

5. _CM, which represents "currently in Commissioning Mode" (due to any method, for example, a
factory new device that has just been put into commissioning mode by the user, or an already-
commissioned device which has just received the Open Commissioning Window command).

The long discriminator subtype (e.g., _L840) enables filtering of results to find only Commissionees
that match the full discriminator code, as provided in the onboarding payload.

The short discriminator subtype (e.g., _S3) enables filtering of results to find only Commissionees
that match the upper 4 bits of the discriminator code, as provided in the manual pairing code.

The optional Vendor ID subtype (e.g., _V123) enables a vendor-specific app to achieve filtering of
results to find only Nodes that match that Vendor ID.

The Commissioning Mode subtype (e.g., _CM) enables filtering of results to find only Nodes that are
currently in Commissioning Mode. Note that the subtype is _CM regardless of whether the TXT
record for commissioning mode is set to 1 (CM=1) or 2 (CM=2). A Commissionee that is not in commis
sioning mode (CM=0) SHALL NOT publish this subtype.

The optional device type subtype (e.g., _T10) enables filtering of results to find only Nodes that match
the device type, generally used for the User-Initiated Beacon Detection, Not Yet Commissioned
Device and the User-Initiated Beacon Detection, Already Commissioned Device use cases.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 89

In the event that a vendor-specific app wishes to show the user only some of that vendor’s Commis
sionees awaiting commissioning but not all of them, any desired filtering logic (based upon arbi
trary criteria, not only Product ID) MAY be implemented within that vendor’s proprietary commis
sioning app.

4.3.1.4. TXT Records

After discovery, IPv6 addresses are returned in the AAAA records and key/value pairs are returned
in the DNS‑SD TXT record.

Nodes SHALL publish AAAA records for all available IPv6 addresses upon which they are willing to
accept Matter commissioning messages.

TXT records available for Commissionable Node Discovery include the common TXT record
key/value pairs defined in Section 4.3.4, “Common TXT Key/Value Pairs”.

Commissioners SHALL silently ignore TXT record keys that they do not recognize. This is to facili
tate future evolution of this specification without breaking backwards compatibility with existing
Commissioners that do not implement the new functionality.

The following subsections describe key/value pairs that are defined specifically for Commissionable
Node discovery.

4.3.1.5. TXT key for discriminator (D)

The key D SHALL provide the full 12-bit discriminator for the Commissionable Node and SHALL be
present in the DNS-SD TXT record.

The discriminator value SHALL be encoded as a variable-length decimal number in ASCII text, with
up to four digits, omitting any leading zeroes.

Any key D with a value mismatching the aforementioned format SHALL be silently ignored.

As an example, value D=840 would indicate that this Commissionable Node has decimal long dis
criminator 840. When needed, the upper 4 bits of the discriminator provided by the manual pairing
code can be algorithmically derived from the full discriminator.

4.3.1.6. TXT key for Vendor ID and Product ID (VP)

The optional key VP, if present, MAY provide Vendor ID and Product ID information of the device.

A vendor MAY choose not to include it at all, for privacy reasons.

If the VP key is present then it MAY take two forms:

1. VP=123 gives Vendor ID

2. VP=123+456 gives Vendor ID + Product ID

The Vendor ID and Product ID SHALL both be expressed as variable-length decimal numbers,
encoded as ASCII text, omitting any leading zeroes, and of maximum length of 5 characters each to
fit their 16-bit numerical range.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 90 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

If the Product ID is present, it SHALL be separated from the Vendor ID using a ‘+’ character.

If the VP key is present without a Product ID, the value SHALL contain only the Vendor ID alone,
with no ‘+’ character.

If the VP key is present, the value SHALL contain at least the Vendor ID.

If the VP key is present, it SHALL NOT have a missing or empty value.

4.3.1.7. TXT key for commissioning mode (CM)

The key CM (Commissioning Mode) SHALL indicate whether or not the publisher of the record is cur
rently in Commissioning Mode and available for immediate commissioning. When in commission
ing mode, the value associated with the CM key indicates the source of the passcode.

Four situations are legal:

1. The absence of key CM SHALL imply a value of 0 (CM=0).

2. The key/value pair CM=0 SHALL indicate that the publisher is not currently in Commissioning
Mode.

3. The key/value pair CM=1 SHALL indicate that the publisher is currently in Commissioning Mode
and requires use of a passcode for commissioning provided by the Commissionee (e.g., printed
on a label or displayed on screen), such as when the device is in a factory-new state or when the
Open Basic Commissioning Window command has been used to enter commissioning mode.

4. The key/value pair CM=2 SHALL indicate that the publisher is currently in Commissioning Mode
and requires use of a dynamically generated passcode for commissioning corresponding to the
verifier that was passed to the device using the Open Commissioning Window command.

A key value of 2 MAY be used to disambiguate collisions of discriminators between uncommis
sioned Nodes and commissioned Nodes announcing after a commissioning window was opened. A
key value of 2 serves as a hint to Commissioners to possibly expect multiple Nodes with the same
discriminator (see Commissioning Discriminator), and to instruct the user to enter the Onboarding
Payload presented by another Administrator rather than a code provided by the Commissionee.

Since Extended Discovery can be disabled by the customer, a key value of 0 may not ever be
returned by a publisher. When Extended Discovery is disabled and the publisher is not in commis
sioning mode, then the publisher will not respond to Commissionable Node Discovery.

4.3.1.8. TXT key for device type (DT)

The optional key DT MAY provide the publisher’s primary device type (see Section 11.23.5.3, “Device
TypeID”). In case the device combines multiple device types, the manufacturer SHOULD choose the
device type identifier of the primary function of the device for which the device wishes to be dis
coverable. If present, it SHALL be encoded as a variable-length decimal number in ASCII text, omit
ting any leading zeroes.

For example, the DT=10 key/value pair would indicate that the primary device type is 10 (0x000A),
which is the device type identifier for a Door Lock.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 91

4.3.1.9. TXT key for device name (DN)

The optional key DN MAY provide a device advertisement name. If present, it SHALL be encoded as a
valid UTF-8 string with a maximum length of 32 bytes (matching the maximum length of the Node
Label string in the Basic Information Cluster).

When provided, the source of this value SHALL be editable by the user with use clearly designated
as being for on-network advertising and MAY be the value stored in the NodeLabel attribute of the
Basic Information Cluster) of the Node.

To protect customer privacy on public networks, if a Commissionee supports this key/value pair,
then the Commissionee SHALL provide a way for the customer to disable its inclusion.

A Commissionee SHOULD NOT include this field unless doing so for specific use cases which call for
it.

For example, the DN=Living Room key/value pair indicates that the advertisement name specified by
the user is 'Living Room'.

4.3.1.10. TXT key for rotating device identifier (RI)

The optional key RI MAY provide a Rotating Device Identifier.

If present, the value associated with the RI key SHALL contain the octets of the Rotating Device
Identifier octet string encoded as the concatenation of each octet’s value as a 2-digit uppercase
hexadecimal number.

The resulting ASCII string SHALL NOT be longer than 100 characters, which implies a Rotating
Device Identifier of at most 50 octets.

4.3.1.11. TXT key for pairing hint (PH)

The optional key PH MAY provide a pairing hint.

If present, it SHALL be encoded as a variable-length decimal number in ASCII text, omitting any
leading zeroes.

The pairing hint represents a base-10 numeric value for a bitmap of methods supported by the
Commissionee in its current state for putting it in Commissioning Mode.

For example, the PH=5 key/value pair represents a hint value with bits 0 and 2 are set.

This value MAY change during the lifecycle of the device.

For example, a device may have a value with bit 0 (Power Cycle) set and bit 2 (Administrator app)
unset when in a factory reset state, and then have a value with bit 0 unset and bit 2 set after it has
been Commissioned.

The bitmap of methods is defined in Table 5, “Pairing Hint Values”.

If the Commissionee has enabled Extended Discovery, then it SHALL include the key/value pair for
PH in the DNS‑SD TXT record when not in Commissioning Mode (CM=0).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 92 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

This key/value pair MAY be returned when in Commissioning Mode (CM=1).

If the Commissioner does not recognize this value, for example, if the value indicates bit indices
defined in a newer version of this specification than the version which the Commissioner imple
ments, then the Commissioner MAY utilize the bits that it does understand and MAY utilize addi
tional data sets available for assisting the user. For example, when a Vendor ID and Product ID are
available to the Commissioner, the Section 11.23, “Distributed Compliance Ledger” may also pro
vide a URL for the Device User Guide which can contain additional information to help in Commis
sioning this Commissionee.

Some of the pairing hints MAY require additional information to be encoded for proper expression
of their meaning. This is accomplished with the PI TXT key, described in a following section. Depen
dency on usage of the PI key is expressed by the PI Dependency column in the table below.

The following fields in the bitmap are defined for values of the PH key:

Table 5. Pairing Hint Values

Bit index Name PI Dependency Description

0 Power Cycle False The Device will auto
matically enter Com
missioning Mode upon
power cycle (unplug/re-
plug, remove/re-insert
batteries). This bit
SHALL be set to 1 for
devices using Standard
Commissioning Flow,
and set to 0 otherwise.

1 Device Manufacturer
URL

False This SHALL be set to 1
for devices requiring
Custom Commissioning
Flow before they can
be available for Com
missioning by any Com
missioner. For such a
flow, the user SHOULD
be sent to the URL spec
ified in the Commission
ingCustomFlowUrl of the
DeviceModel schema
entry indexed by the
Vendor ID and Product
ID (e.g., as found in the
announcement) in the
Distributed Compliance
Ledger.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 93

Bit index Name PI Dependency Description

2 Administrator False The Device has been
commissioned. Any
Administrator that
commissioned the
device provides a user
interface that may be
used to put the device
into Commissioning
Mode.

3 Settings menu on the
Node

False The settings menu on
the Device provides
instructions to put it
into Commissioning
Mode.

4 Custom Instruction True The PI key/value pair
describes a custom way
to put the Device into
Commissioning Mode.
This Custom Instruc
tion option is NOT rec
ommended for use by a
Device that does not
have knowledge of the
user’s language prefer
ence.

5 Device Manual False The Device Manual pro
vides special instruc
tions to put the Device
into Commissioning
Mode (see Section
11.23.5.8, “UserManu
alUrl”). This is a catch-
all option to capture
user interactions that
are not codified by
other options in this ta
ble.

6 Press Reset Button False The Device will enter
Commissioning Mode
when reset button is
pressed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 94 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Bit index Name PI Dependency Description

7 Press Reset Button with
application of power

False The Device will enter
Commissioning Mode
when reset button is
pressed when applying
power to it.

8 Press Reset Button for
N seconds

True The Device will enter
Commissioning Mode
when reset button is
pressed for N seconds.
The exact value of N
SHALL be made avail
able via PI key.

9 Press Reset Button until
light blinks

True The Device will enter
Commissioning Mode
when reset button is
pressed until associated
light blinks. Informa
tion on color of light
MAY be made available
via PI key (see Note 1).

10 Press Reset Button for
N seconds with applica
tion of power

True The Device will enter
Commissioning Mode
when reset button is
pressed for N seconds
when applying power
to it. The exact value of
N SHALL be made
available via PI key.

11 Press Reset Button until
light blinks with appli
cation of power

True The Device will enter
Commissioning Mode
when reset button is
pressed until associated
light blinks when
applying power to the
Device. Information on
color of light MAY be
made available via PI
key (see Note 1).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 95

Bit index Name PI Dependency Description

12 Press Reset Button N
times

True The Device will enter
Commissioning Mode
when reset button is
pressed N times with
maximum 1 second
between each press.
The exact value of N
SHALL be made avail
able via PI key.

13 Press Setup Button False The Device will enter
Commissioning Mode
when setup button is
pressed.

14 Press Setup Button with
application of power

False The Device will enter
Commissioning Mode
when setup button is
pressed when applying
power to it.

15 Press Setup Button for
N seconds

True The Device will enter
Commissioning Mode
when setup button is
pressed for N seconds.
The exact value of N
SHALL be made avail
able via PI key.

16 Press Setup Button
until light blinks

True The Device will enter
Commissioning Mode
when setup button is
pressed until associated
light blinks. Informa
tion on color of light
MAY be made available
via PI key (see Note 1).

17 Press Setup Button for
N seconds with applica
tion of power

True The Device will enter
Commissioning Mode
when setup button is
pressed for N seconds
when applying power
to it. The exact value of
N SHALL be made
available via PI key.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 96 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Bit index Name PI Dependency Description

18 Press Setup Button
until light blinks with
application of power

True The Device will enter
Commissioning Mode
when setup button is
pressed until associated
light blinks when
applying power to the
Device. Information on
color of light MAY be
made available via PI
key (see Note 1).

19 Press Setup Button N
times

True The Device will enter
Commissioning Mode
when setup button is
pressed N times with
maximum 1 second
between each press.
The exact value of N
SHALL be made avail
able via PI key.

Note 1: When the PH key indicates a light to blink (one or more of bits 9, 11, 16 or 18 is set), informa
tion on color of light MAY be made available via PI key. When using such color indication in PI key,
only basic primary and secondary colors that could unambiguously be decoded by a commissioner
and understood by an end-user, but without worry of localization, SHOULD be used, e.g. white, red,
green, blue, orange, yellow, purple.

Note 2: Any undefined values are reserved for future use.

Note 3: A Commissionee can indicate multiple ways of being put into Commissioning Mode by set
ting multiple bits in the bitmap at the same time. However, only one method can be specified which
has a dependency on the PI key (PI Dependency=True) at a time.

For example:

• A PH value of 33 (bits 0 and 5 are set) indicates that the user can cause the Commissionee to
enter Commissioning Mode by either power cycling it or by following special instructions pro
vided in the Device Manual.

• A PH value of 9 (bits 0 and 3 are set) indicates that the user can cause the Commissionee to enter
Commissioning Mode by either power cycling it or going to the settings menu and following
instructions there.

• A PH value of 1 (bit 0 is set) indicates that the user can cause the Commissionee to enter Commis
sioning Mode only by power cycling it.

• A PH value of 16 (bit 4 is set) indicates that the user can cause the Commissionee to enter Com
missioning Mode following a custom procedure described by the value of the PI key.

• A PH value of 256 (bits 8 is set) indicates that the user can cause the Commissionee to enter Com

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 97

missioning Mode by pressing the reset button for a duration of time in seconds specified via by
the value of the PI key.

When the PH key is provided, at least one bit in the above bitmap SHALL be set. That is, a PH value of
0 is undefined and illegal.

When the PH key is provided, the Commissioner SHOULD take its value into account when provid
ing guidance to the user regarding steps required to put the Commissionee into Commissioning
Mode.

4.3.1.12. TXT key for pairing instructions (PI)

The optional key PI MAY give the pairing instruction.

If present, the value SHALL be encoded as a valid UTF-8 string with a maximum length of 128 bytes.

The meaning of this key is dependent upon the PH key value, see Table 5, “Pairing Hint Values”.

For example, given PH=256, bit 8 is set which indicates "Press Reset Button for N seconds". Therefore,
a value of PI=10 would indicate that N is 10 in that context.

When bit 4 of the value expressed by the PH key is set, indicating presence of a custom string, the
Commissionee SHALL be responsible for localization (translation to user’s preferred language) as
required using the Device’s currently configured locale. The Custom Instruction option is NOT rec
ommended for use by a Commissionee that does not have knowledge of the user’s language prefer
ence.

It is RECOMMENDED to keep the length of PI field small and adhere to the guidance given in section
6.2 of [RFC 6763].

This key/value pair SHALL only be returned in the DNS‑SD TXT record if the PH bitmap value has a
bit set which has PI Dependency = True, see Table 5, “Pairing Hint Values”. The PH key SHALL NOT
not have more than one bit set which has a dependency on the PI key (PI Dependency = True) to
avoid ambiguity in PI key usage.

4.3.1.13. Examples

The examples below simulate a Node in commissioning mode advertising its availability for com
missioning.

Examples are shown using both the dns-sd command-line test tool and the avahi command-line test
tool. The dns-sd command-line test tool is included in all versions of macOS. It is installed as a DOS
command with Bonjour for Windows, and is available on Linux by installing the mDNSResponder
package [https://github.com/balaji-reddy/mDNSResponder]. The Avahi package of command line tools is
available from the Avahi project [https://github.com/lathiat/avahi] for most Linux distributions.

These examples are given for illustrative purposes only. Real Matter Commissionees and Commis
sioners would not use a command-line test tool for advertising and discovery. Real Matter Commis
sionees and Commissioners would use the appropriate DNS‑SD APIs in their respective chosen pro
gramming languages.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 98 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://github.com/balaji-reddy/mDNSResponder
https://github.com/balaji-reddy/mDNSResponder
https://github.com/lathiat/avahi

Consider a device on Wi-Fi using the 48-bit device MAC address of B75AFB458ECD as its host name and
a value of DD200C20D25AE5F7 as its commissionable service instance name. DNS-SD records for it can
be set up as follows:

dns-sd -R DD200C20D25AE5F7 _matterc._udp,_S3,_L840,_CM . 11111 D=840 CM=2

or

avahi-publish-service --subtype=_S3._sub._matterc._udp
--subtype=_L840._sub._matterc._udp DD200C20D25AE5F7 --subtype=_CM._sub._matterc._udp
_matterc._udp 11111 D=840 CM=2

• Short discriminator is filterable through _S3 subtype and algorithmically through D=840 TXT key.

• Long discriminator is filterable through _L840 subtype and directly through D=840 TXT key.

• The Commissionee is currently in Commissioning Mode after an Administrator having opened a
commissioning window (see Section 4.3.1.7, “TXT key for commissioning mode (CM)”), as shown
by CM=2 TXT key and availability by browsing the _CM subtype.

◦ Had the Commissionee been discoverable for initial commissioning rather than subsequent
additional commissioning, a CM=1 TXT key would have been published instead.

Avahi only sends a single AAAA record. To force the link-local address to be used, use avahi-pub
lish-address. For example:

avahi-publish-address B75AFB458ECD.local fe80::f515:576f:9783:3f30

The DNS‑SD service registration commands shown above results in the creation of the following
Multicast DNS records:

_matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_S3._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_L840._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_CM._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
DD200C20D25AE5F7._matterc._udp.local. SRV 0 0 11111 B75AFB458ECD.local.
DD200C20D25AE5F7._matterc._udp.local. TXT "D=840" "CM=2"
B75AFB458ECD.local. AAAA fe80::f515:576f:9783:3f30

Consider a device on Wi-Fi using the 48-bit device MAC address of B75AFB458ECD as its host name.
DNS-SD records for it can be set up as follows, when it is in Commissionable Node Discovery.

dns-sd -R DD200C20D25AE5F7 _matterc._udp,_S3,_L840,_V123,_CM,_T81 . 11111 D=840
VP=123+456 CM=2 DT=266 DN="Kitchen Plug" PH=256 PI=5

or

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 99

avahi-publish-service --subtype=_S3._sub._matterc._udp
--subtype=_L840._sub._matterc._udp --subtype=_V123._sub._matterc._udp
--subtype=_CM._sub._matterc._udp --subtype=_T81._sub._matterc._udp DD200C20D25AE5F7
_matterc._udp 11111 D=840 VP=123+456 CM=2 DT=81 DN="Kitchen Plug" PH=256 PI=5

• Short discriminator is 3, long discriminator is 840.

• Vendor ID is 123, Product ID is 456.

• Commissioning Mode is 2, indicating the Commissionee is currently in Commissioning Mode
due to the Open Commissioning Window command.

• Device type is 266 which is a smart plug (On/Off Plugin Unit, Device Type Identifier 0x010A).

• Device name is Kitchen Plug.

• Pairing hint is 256 which indicates that the Commissionee’s reset button must be held down for
5 seconds to enter Commissioning Mode where the value 5 is obtained by reading the value of
the PI key.

• Pairing instruction is 5.

Avahi only sends a single AAAA record. To force the link-local address to be used, use avahi-pub
lish-address. For example:

avahi-publish-address B75AFB458ECD.local fe80::f515:576f:9783:3f30

The DNS‑SD service registration commands shown above results in the creation of the following
Multicast DNS records:

_matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_S3._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_L840._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_V123._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_CM._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
_T81._sub._matterc._udp.local. PTR DD200C20D25AE5F7._matterc._udp.local.
DD200C20D25AE5F7._matterc._udp.local. TXT "D=840" "VP=123+456" "CM=1" "DT=81"
"DN=Kitchen Plug" "PH=256" "PI=5"
DD200C20D25AE5F7._matterc._udp.local. SRV 0 0 11111 B75AFB458ECD.local.
B75AFB458ECD.local. AAAA fe80::f515:576f:9783:3f30

The port number 11111 is given here purely as an example. One of the benefits of using DNS‑SD is
that services are not constrained to use a single predetermined well-known port. The port, along
with the IPv6 address, is discovered by Commissioners at run time.

A Commissioner can discover all available Commissionees awaiting commissioning:

dns-sd -B _matterc._udp

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 100 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

or

avahi-browse _matterc._udp -r

A Commissioner can discover Commissionees awaiting commissioning with short discriminator 3:

dns-sd -B _matterc._udp,_S3

or

avahi-browse _S3._sub._matterc._udp -r

A Commissioner can discover Commissionees awaiting commissioning with long discriminator 840:

dns-sd -B _matterc._udp,_L840

or

avahi-browse _L840._sub._matterc._udp -r

A Commissioner can discover Commissionees awaiting commissioning with Vendor ID 123:

dns-sd -B _matterc._udp,_V123

or

avahi-browse _V123._sub._matterc._udp -r

A Commissioner can discover all Commissionees in commissioning mode:

dns-sd -B _matterc._udp,_CM

or

avahi-browse _CM._sub._matterc._udp -r

A commissioner can discover Matter Nodes with Device Type 81:

dns-sd -B _matterc._udp,_T81

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 101

or

avahi-browse _T81._sub._matterc._udp -r

A Commissioner can discover Nodes that are currently in Commissioning Mode as a result of a com
missioning window opened by a current Administrator as a result of invoking either the Open Com
missioning Window command or the Open Basic Commissioning Window command, using the
presence of the _CM subtype as a browsing filter:

dns-sd -B _matterc._udp,_CM

or

avahi-browse _CM._sub._matterc._udp -r

4.3.1.14. Efficiency Considerations

Discovering and using an offered service on the network typically involves several steps:

1. Enumeration of instances available on the network ("browsing")

2. Lookup of a selected instance’s port number, host name, and other additional information, com
municated in DNS‑SD using SRV and TXT records ("resolving")

3. Lookup of the IPv6 address(es) associated with the desired target host.

4. Use of IPv6 Neighbor Discovery and/or IPv6 routing to translate from destination IPv6 address
to the next-hop link-layer address for that communication.

5. Establishing a cryptographically secure communication channel between the two endpoints,
and then engaging in useful communication.

Although the first three steps are exposed in some APIs as separate steps, at a protocol level they
usually require only a single network round-trip. When a PTR query is issued to discover service
instances, the usual DNS Additional Record mechanism, where packet space permits, automatically
places the related SRV, TXT, and address records into the Additional Record section of the reply.
These additional records are stored by the client, to enable subsequent steps in the sequence to be
performed without additional redundant network operations to learn the same information a sec
ond time.

DNS‑SD over Multicast DNS works by receiving replies from other Nodes attached to the same local
link, Nodes that may have been previously completely unknown to the requester. Because of this,
Multicast DNS, like IPv6 Neighbor Discovery, does not have any easy way to distinguish genuine
replies from malicious or fraudulent replies. Consequently, application-layer end-to-end security is
essential. Should a malicious device on the same local link give deliberately malicious or fraudulent
replies, the misbehavior will be detected when the device is unable to establish a cryptographically
secure application-layer communication channel. This reduces the threat to a Denial-of-Service
attack, which can be remedied by physically removing the offending device.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 102 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.3.2. Operational Discovery

For Matter Nodes that have already been commissioned onto a Matter Fabric, run-time dynamic
discovery of operational Matter Nodes is used, rather than assuming a fixed unchanging IPv6
address and port for the lifetime of the product. This is done to allow for greater flexibility, so that
the underlying IPv6 network can grow and evolve over time as needed without breaking Matter
functionality. This is the same reason that other networked consumer electronics products do not
assume a single fixed unchanging IP address for the lifetime of the product [RFC 5505].

4.3.2.1. Operational Instance Name

For Matter operational discovery the DNS‑SD instance name is constructed from a 64-bit com
pressed Fabric identifier, and a 64-bit Node identifier, as assigned by the commissioner, each
expressed as a fixed-length sixteen-character hexadecimal string, encoded as ASCII (UTF-8) text
using capital letters, separated by a hyphen. For example, a Matter Node with Matter compressed
fabric identifier 2906-C908-D115-D362 and Matter Node identifier 8FC7-7724-01CD-0696 has Matter
operational discovery DNS‑SD instance name 2906C908D115D362-8FC7772401CD0696.

The Matter operational discovery DNS‑SD instance name needs to be unique within the namespace
of the local network (the .local link-local namespace of the Ethernet and Wi‑Fi links [RFC 6762], or
the unicast domain selected by the Thread Border Router for devices on the Thread mesh). This
uniqueness is assumed to be guaranteed by appropriate selection of a unique Matter fabric identi
fier and unique Node identifier within that Matter fabric.

4.3.2.2. Compressed Fabric Identifier

In order to reduce the very large size of a full Fabric Reference which would need to be used as the
scoping construct in the instance name, a 64-bit compressed version of the full Fabric Reference
SHALL be used. The computation of the Compressed Fabric Identifier SHALL be as follows:

byte CompressedFabricInfo[16] = /* "CompressedFabric" */
 {0x43, 0x6f, 0x6d, 0x70, 0x72, 0x65, 0x73, 0x73,
 0x65, 0x64, 0x46, 0x61, 0x62, 0x72, 0x69, 0x63}

CompressedFabricIdentifier =
 Crypto_KDF(
 inputKey := TargetOperationalRootPublicKey,
 salt:= TargetOperationalFabricID,
 info := CompressedFabricInfo,
 len := 64)

Where:

• TargetOperationalRootPublicKey is the raw uncompressed elliptical curve public key of the root
certificate for the advertised Node’s Operational Certificate chain, without any format marker
prefix byte (i.e. after removing the first byte of the ec-pub-key field in the Operational Certifi
cate’s root).

• TargetOperationalFabricID is the octet string for the Fabric ID as it appears in the advertised

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 103

Node’s Operational Certificate's subject field, under the 1.3.6.1.4.1.37244.1.5 RDN, that is, a 64-bit
unsigned integer scalar in big-endian byte order.

For example, if the root public key for a given Operational Certificate chain containing the identity
to be advertised were the following:

pub:
 04:4a:9f:42:b1:ca:48:40:d3:72:92:bb:c7:f6:a7:e1:
 1e:22:20:0c:97:6f:c9:00:db:c9:8a:7a:38:3a:64:1c:
 b8:25:4a:2e:56:d4:e2:95:a8:47:94:3b:4e:38:97:c4:
 a7:73:e9:30:27:7b:4d:9f:be:de:8a:05:26:86:bf:ac:
 fa

Then the value for TargetOperationalRootPublicKey to use in the derivation of the compressed Fab
ric Identifier would be without the leading 04:

 4a:9f:42:b1:ca:48:40:d3:72:92:bb:c7:f6:a7:e1:1e:
 22:20:0c:97:6f:c9:00:db:c9:8a:7a:38:3a:64:1c:b8:
 25:4a:2e:56:d4:e2:95:a8:47:94:3b:4e:38:97:c4:a7:
 73:e9:30:27:7b:4d:9f:be:de:8a:05:26:86:bf:ac:fa

If using the above TargetOperationalRootPublicKey and a TargetOperationalFabricID value of
0x2906_C908_D115_D362 (octet string 29:06:c9:08:d1:15:d3:62 in big-endian), then the Compressed
FabricIdentifier to use in advertising would be 87E1B004E235A130 (octet string
87:e1:b0:04:e2:35:a1:30).

4.3.2.3. Operational Service Type

The DNS‑SD service type [RFC 6335] for Matter Operational Discovery is _matter._tcp. Note that the
string _tcp is boilerplate text inherited from the original DNS SRV specification [RFC 2782], and
doesn’t necessarily mean that the advertised application-layer protocol runs only over TCP. It is
merely mnemonic text which is there to help human readers, and in no way affects software adver
tising or using the application-layer protocol identified by that unique IANA-recorded service type
string.

The following subtype is defined:

1. Compressed Fabric Identifier _I<hhhh>, where <hhhh> is the Compressed Fabric Identifier
encoded as exactly 16 uppercase hexadecimal characters, for example _I87E1B004E235A130 for
the Compressed Fabric Identifier example of the previous section. This subtype enables filtering
of devices per Fabric if service enumeration (browsing) is attempted, to reduce the set of results
to Nodes of interest with operational membership in a given Fabric..

4.3.2.4. Operational Service Domain and Host Name

For link-local Multicast DNS the service domain SHALL be local. For Unicast DNS such as used on
Thread the service domain SHALL be as configured automatically by the Thread Border Router.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 104 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

For DNS‑SD a target host name is required, in addition to the instance name. The target host name
SHALL be constructed using one of the available link-layer addresses, such as a 48-bit device MAC
address (for Ethernet and Wi‑Fi) or a 64-bit MAC Extended Address (for Thread) expressed as a
fixed-length twelve-character (or sixteen-character) hexadecimal string, encoded as ASCII (UTF-8)
text using capital letters, e.g., B75AFB458ECD.<domain>. In the event that a device performs MAC
address randomization for privacy, then the target host name SHALL use the privacy-preserving
randomized version and the hostname SHALL be updated in the record every time the underlying
link-layer address rotates. Note that it is legal to reuse the same hostname on more than one inter
face, even if the underlying link-layer address does not match the hostname on that interface, since
the goal of using a link-layer address is to ensure local uniqueness of the generated hostname. If
future link layers are supported by Matter that do not use 48-bit MAC addresses or 64-bit MAC
Extended Address identifiers, then a similar rule will be defined for those technologies.

4.3.2.5. Operational Discovery Service Records

After discovery, IPv6 addresses are returned in the AAAA records and key/value pairs are returned
in the DNS-SD TXT record. The TXT record MAY be omitted if no keys are defined.

Nodes SHALL publish AAAA records for all available IPv6 addresses upon which they are willing to
accept operational messages.

Only the common TXT record key/value pairs defined in Section 4.3.4, “Common TXT Key/Value
Pairs” are defined for use in Operational Discovery.

Nodes SHALL silently ignore TXT record keys that they do not recognize.

4.3.2.6. Performance Recommendations

To improve overall performance of operational discovery, especially in large installations, the fol
lowing recommendations SHOULD be taken in account:

1. Nodes SHOULD cache the last-known IPv6 address and port for each peer Node with which they
interact from their SRV record resolved using DNS-SD, to save the cost of a run-time network
lookup operation when not needed. When the IPv6 address and port for a peer Node is not
known, or an attempt to communicate with a peer Node at its last-known IPv6 address and port
does not appear to be succeeding within the expected network round-trip time (i.e., the retrans
mission timeout value for the first message packet) a Node SHOULD then perform a run-time
discovery in parallel, to determine whether the desired Node has acquired a new IPv6 address
and/or port [RFC 8305].

2. Nodes SHOULD respond to nonspecific service enumeration queries for the generic Matter
Operational Discovery service type (_matter._tcp), but these queries SHOULD NOT be used in
routine operation, and instead it is RECOMMENDED that they only be used for diagnostics pur
poses or to determine new membership within a fabric. When used, it is RECOMMENDED that
service enumeration employ the _I<HHHH> Fabric-specific subtype to only enumerate the desired
Nodes on the Fabric of interest in the local network. Moreover, Known Answer Suppression
[RFC 6762] SHOULD be employed in such cases to further minimize the number of unnecessary
responses to such a query.

3. When resolving the operational service record of another Node, a Node SHOULD use an SRV

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 105

query for the desired operational service instance rather than doing general enumeration of all
nodes (e.g. PTR query) followed by filtering for the desired service instance. This recommenda
tion reduces the amount of multicast traffic generated on-link when Multicast DNS is used, and
reduces latency to successful service resolution.

4. Since proxied DNS-SD service discovery MAY be in use within a given network, and service
record caching is expected of DNS-SD clients, Nodes SHOULD NOT use DNS-SD as an operational
liveness determination method. This is because there may be stale records not yet expired after
a Node becomes unreachable which may still be available.

4.3.2.7. Operational Discovery DNS-SD Examples

The example below simulates a commissioned Matter Node advertising its availability for control
via the Matter protocol.

Examples are shown using both the dns-sd command-line test tool and the avahi command-line test
tool. The dns-sd command-line test tool is included in all versions of macOS. It is installed as a DOS
command with Bonjour for Windows, and is available on Linux by installing the mDNSResponder
package [https://github.com/balaji-reddy/mDNSResponder]. The avahi command line-test tool is available
from the Avahi project [https://github.com/lathiat/avahi] for most Linux distributions.

This example is given for illustrative purposes only. Real Matter Nodes and controllers would not
use a command-line test tool for advertising and discovery. Real Matter Nodes and controllers
would use the appropriate DNS‑SD APIs in their respective chosen programming languages.

Consider a device on Wi-Fi using the 48-bit device MAC address of B75AFB458ECD as its host name.
DNS-SD records for can be set up as follows:

dns-sd -R 87E1B004E235A130-8FC7772401CD0696 _matter._tcp . 22222

or

avahi-publish-service 87E1B004E235A130-8FC7772401CD0696 _matter._tcp 22222

The port number 22222 is given here purely as an example. One of the benefits of using DNS‑SD is
that services are not constrained to use a single predetermined well-known port. This means that
multiple instances of the Matter Node control service can run on the same device at the same time,
listening on different ports [RFC 6760]. The port, along with the IPv6 address, is discovered by the
Matter controller at run time.

Avahi only sends a single AAAA record. To force the link-local address to be used, use avahi-pub
lish-address. For example:

avahi-publish-address B75AFB458ECD.local fe80::f515:576f:9783:3f30

A Matter controller can discover the current IPv6 address and port for a known commissioned Mat
ter Node:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 106 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://github.com/balaji-reddy/mDNSResponder
https://github.com/balaji-reddy/mDNSResponder
https://github.com/lathiat/avahi

dns-sd -L 87E1B004E235A130-8FC7772401CD0696 _matter._tcp
87E1B004E235A130-8FC7772401CD0696._matter._tcp.local. can be reached at
B75AFB458ECD.local.:22222

dns-sd -Gv6 B75AFB458ECD.local
fe80::f515:576f:9783:3f30

or

avahi-browse _matter._tcp -r

hostname = [B75AFB458ECD.local]
address = [fe80::f515:576f:9783:3f30]
port = [22222]

4.3.3. Commissioner Discovery

A Commissionee MAY initiate the commissioning process by discovering Commissioners on the net
work (see Initiating Commissioning from an Existing Device). This MAY be done using Commis
sioner Discovery described in this section.

With Commissioner Discovery, a Commissionee, upon user interaction, MAY discover Commission
ers on the network and obtain a list of information for each which may include Vendor ID, Product
ID and friendly name. A Commissionee with a user interface, such as a Television, Thermostat or
Video Player device, MAY display the list of discovered commissioners to the user for selection.
Once selected, the Commissionee MAY use the User Directed Commissioning protocol with the Com
missioner to indicate that the user has selected it for commissioning of the Commissionee. The
Commissioner Discovery service records thus enable a form of "door bell" protocol to allow a Com
missionee to request Commissioning.

The Commissioner Discovery feature is optional for both the Commissionee and the Commissioner.
Any mandatory requirements described in this section SHALL apply only if the Node or the Com
missioner supports this feature. To protect customer privacy on public networks, a Matter Commis
sioner SHALL provide a way for the customer to set a timeout on Commissioner Discovery, or other
wise disable Commissioner Discovery.

For Commissioner Discovery, the DNS-SD instance name is generated the same way it is done for
Commissionable Node Discovery and has the same requirements (uniqueness on local network,
and collision detection and recovery) as those in Commissionable Node Discovery, but the require
ments for when a new instance name is selected from Commissionable Node Discovery do not
apply to Commissioner Discovery. The instance name for Commissioner Discovery MAY be selected
whenever the Commissioner deems necessary.

The DNS-SD service type [RFC 6335] is _matterd._udp.

The port advertised by a _matterd._udp service record SHALL be different than any port associated
with other advertised _matterc._udp, _matter._tcp or _matterd._udp services, in order to ensure that

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 107

the session-less messaging employed by the User Directed Commissioning protocol does not cause
invalid message handling from fully operational Matter nodes at the same address. In other words,
each _matterd._udp service instance needs to be independent from other services to ensure unam
biguous processing of the incoming User Directed Commissioning messages.

The following subtype is defined:

• _T<ddd> where <ddd> is the device type identifier (see Data Model Device Types), encoded as a
variable-length decimal number in ASCII (UTF-8) text, without leading zeroes. This optional
Device Type subtype enables filtering of results to find only Commissioners that match a device
type, for example, to discover Commissioners of type Video Player (35 is decimal representation
for Video Player device type identifier 0x0023). For such a Video Player filter, subtype _T35
would be used.

For link-local Multicast DNS the service domain SHALL be local. For Unicast DNS such as used on
Thread the service domain SHALL be as configured automatically by the Thread Border Router.

The target host name is generated the same way it is done for Commissionable Node Discovery (see
Host Name Construction).

After discovery, IPv6 addresses are returned in the AAAA records and key/value pairs are returned
in the DNS‑SD TXT record. The TXT record MAY be omitted if no keys are defined.

Nodes SHALL publish AAAA records for all their available IPv6 addresses.

In addition to the common TXT record key/value pairs defined in Section 4.3.4, “Common TXT
Key/Value Pairs”, the following key/value pairs are defined specifically for Commissioner discovery:

• The optional key VP gives vendor and product information. This key is optional for a vendor to
provide, and optional for a commissioner to use. This value takes the same format described for
the VP key in Commissionable Node Discovery (see Section 4.3.1.6, “TXT key for Vendor ID and
Product ID (VP)”). This key/value pair MAY be returned in the DNS‑SD TXT record.

• The optional key DT gives the device type identifier for the Commissioner (see Data Model
Device Types). This value takes the same format described for the DT key in Commissionable
Node Discovery (see Commissioning Device Type). This key/value pair MAY be returned in the
DNS‑SD TXT record.

• The optional key DN gives the device name. This value takes the same format described for the DN
key in Commissionable Node Discovery (see Commissioning Device Name). This key/value pair
MAY be returned in the DNS‑SD TXT record. To protect customer privacy on public networks, a
Matter Commissioner SHALL provide a way for the customer to disable inclusion of this key.

• The optional key CP indicates whether the Commissioner supports the Commissioner Passcode
feature. The absence of key CP SHALL imply a value of 0 (CP=0), and indicates that the publisher
does not support the Commissioner Passcode feature. The key/value pair CP=1 SHALL indicate
that the publisher supports the Commissioner Passcode feature.

Commissionees SHALL silently ignore TXT record keys that they do not recognize. This is to facili
tate future evolution of the Matter Commissioner Discovery protocol specification without breaking
backwards compatibility with existing Commissionees that do not implement the new functionality.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 108 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.3.3.1. Examples

The examples below simulate a Matter Commissioner advertising that it is present on the network.

Examples are shown using both the dns-sd command-line test tool and the avahi command-line test
tool. The dns-sd command-line test tool is included in all versions of macOS. It is installed as a DOS
command with Bonjour for Windows, and is available on Linux by installing the mDNSResponder
package [https://github.com/balaji-reddy/mDNSResponder]. The avahi command line-test tool is available
from the Avahi project [https://github.com/lathiat/avahi] for most Linux distributions.

These examples are given for illustrative purposes only.

Consider a device on Wi-Fi using the 48-bit device MAC address of B75AFB458ECD as its host name.
DNS-SD records for can be set up as follows:

dns-sd -R DD200C20D25AE5F7 _matterd._udp,_V123,_T35 . 33333 VP=123+456 DT=35
DN="Living Room TV"

or

avahi-publish-service --subtype=_V123._sub._matterd._udp DD200C20D25AE5F7
_matterd._udp 33333 VP=123+456 DT=35 DN="Living Room TV"

This produces DNS-SD messages with the following characteristics:

• Vendor ID is 123, Product ID is 456.

• Device type is 35 which is a Casting Video Player (Device Type Identifier 0x0023).

• Device name is Living Room TV.

Avahi only sends a single AAAA record. To force the link-local address to be used, use avahi-pub
lish-address. For example:

avahi-publish-address B75AFB458ECD.local fe80::f515:576f:9783:3f30

The DNS‑SD service registration command shown above results in the creation of the following
Multicast DNS records:

_matterd._udp.local. PTR DD200C20D25AE5F7._matterd._udp.local.
_V123._sub._matterd._udp.local. PTR DD200C20D25AE5F7._matterd._udp.local.
_T35._sub._matterd._udp.local. PTR DD200C20D25AE5F7._matterd._udp.local.
DD200C20D25AE5F7._matterd._udp.local. TXT "VP=123+456" "DT=35" "DN=Living Room TV"
DD200C20D25AE5F7._matterd._udp.local. SRV 0 0 33333 B75AFB458ECD.local.
B75AFB458ECD.local. AAAA fe80::f515:576f:9783:3f30

The port number 33333 is given here purely as an example.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 109

https://github.com/balaji-reddy/mDNSResponder
https://github.com/balaji-reddy/mDNSResponder
https://github.com/lathiat/avahi

A Commissionee can discover all Commissioners:

dns-sd -B _matterd._udp

or

avahi-browse _matterd._udp -r

A Commissionee can discover Commissioners with device type 35:

dns-sd -B _matterd._udp,_T35

or

avahi-browse _T35._sub._matterd._udp -r

A Commissionee can discover Commissioners with Vendor ID 123:

dns-sd -B _matterd._udp,_V123

or

avahi-browse _V123._sub._matterd._udp -r

4.3.4. Common TXT Key/Value Pairs

The TXT records provided during Commissionable, Operational and Commissioner discovery MAY
contain the following optional key/value pairs which are common to every discovery method:

• The optional key SII indicates the SESSION_IDLE_INTERVAL of the Node. This key defines the
MRP retry interval for a Node that is Idle. This key MAY optionally be provided by a Node to
override the default setting. If the key is not included or invalid, the Node querying the service
record SHALL use the default MRP parameter value. The SII value is an unsigned integer with
units of milliseconds and SHALL be encoded as a variable-length decimal number in ASCII
encoding, omitting any leading zeros. The SII value SHALL NOT exceed 3600000 (1 hour in mil
liseconds).

◦ Example: SII=5300 to override the initial retry interval value to 5.3 seconds.

• The optional key SAI indicates the SESSION_ACTIVE_INTERVAL of the Node. This key defines the
MRP retry interval for a Node that is Active. This key MAY optionally be provided by a Node to
override the default setting. If the key is not included or invalid, the Node querying the service
record SHALL use the default MRP parameter value. The SAI value is an unsigned integer with

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 110 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

units of milliseconds and SHALL be encoded as a variable-length decimal number in ASCII
encoding, omitting any leading zeros. The SAI value SHALL NOT exceed 3600000 (1 hour in mil
liseconds).

◦ Example: SAI=1250 to override the active retry interval value to 1.25 seconds.

• The optional key SAT indicates the SESSION_ACTIVE_THRESHOLD of the Node. This key defines
the duration of time the Node stays Active after the last network activity. This key MAY option
ally be provided by a Node to override the default setting. If the key is not included or invalid,
the Node querying the service record SHALL use the default MRP parameter value. The SAT
value is an unsigned integer with units of milliseconds and SHALL be encoded as a variable-
length decimal number in ASCII encoding, omitting any leading zeros. The SAT value SHALL
NOT exceed 65535 (65.535 seconds).

◦ Example: SAT=1250 to override the active retry interval value to 1.25 seconds.

This key defines the duration of time the Node stays Active after the last network activity.

• The optional key T indicates various additional transport protocol modes, apart from MRP over
UDP, that are supported by a Node. If the key is not included or invalid, the Node querying the
service record SHALL assume the default value of T=0 indicating that only MRP is supported as a
transport protocol. The T key, if included, SHALL be encoded as a decimal number in ASCII text,
omitting any leading zeroes.

◦ It represents a base-10 numeric value for a bitmap of various additional transport protocol
modes supported by the advertising Node.

◦ For example, the T=6 key/value pair represents a value with bits 1 and 2 set, and bit 0
cleared.

◦ Bit index 0 is deprecated and SHALL always be set to 0 by the advertising node and ignored
by nodes processing this key.

◦ The fields in the bitmap for values of the T key are currently defined below in Table 6, “Sup
ported Transport Mode Values” below.
Thus, a Node advertising with key T=6 represents both a TCP client and a TCP server, but a
Node advertising with T=2 can only be a TCP client.

Table 6. Supported Transport Mode Values

Bit index Name Description

0 Reserved This bit index is deprecated and
SHALL be set to 0. Clients
SHALL silently ignore this bit.

1 TCP Client The advertising Node imple
ments the TCP Client mode and
MAY connect to a peer Node
that is a TCP Server.

2 TCP Server The advertising Node imple
ments the TCP Server mode and
SHALL listen for incoming TCP
connections.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 111

• The optional key ICD indicates whether the Node is operating as a Long Idle Time ICD or as a
Short Idle Time ICD. The key SHALL NOT be provided by a Node that does not support the ICD
Long Idle Time operating mode. If the key is invalid or not included, the Node querying the ser
vice record SHALL assume the default value of ICD=0 indicating that the ICD is not in the Long
Idle Time operating mode. If the ICD key is included, it SHALL have one of the two valid values:

◦ 0 to indicate "Long Idle Time ICD is not operating as a Long Idle Time ICD",

◦ 1 to indicate "Long Idle Time ICD is operating as a Long Idle Time ICD".

▪ Example: ICD=1 to announce that the ICD is in the Long Idle Time operating mode.

4.4. Message Frame Format
This section describes the encoding of the Matter message format. The Matter message format pro
vides flexible support for various communication paradigms, including unicast secure sessions,
multicast group messaging, and session establishment itself. The process of encrypting Matter mes
sages is the same in all modes of communication, and assumes symmetric keys are shared between
communicating parties. Unencrypted messages are used only for protocols which bootstrap secure
messaging, such as session establishments.

Matter messages are used by Matter applications, as well as the Matter protocol stack itself, to con
vey application-specific data and/or commands. The Protocol portion of a Matter message contains
a Protocol ID and Protocol Opcode which identify both the semantic meaning of the message as well
as the structure of any associated application payload data. Matter messages also convey an
Exchange ID, which relates the message to a particular exchange (i.e. conversation) taking place
between two nodes. Finally, certain types of Matter messages can convey information that acknowl
edges the reception of an earlier message. This is used as part of the Message Reliability Protocol to
provide guaranteed delivery of messages over unreliable transports.

All multi-byte integer fields are transmitted in little-endian byte order unless otherwise noted in the
field description.

Matter messages are structured as follows:

NOTE [] denotes the field is optional.

Table 7. Matter Message format definition

Length Field

Message Header

1 byte Message Flags

2 bytes Session ID

1 byte Security Flags

4 bytes Message Counter

0/8 bytes [Source Node ID]

0/2/8 bytes [Destination Node ID]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 112 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Length Field

variable [Message Extensions . . .]

Message Payload

variable [Message Payload . . .] (encrypted)

Message Footer

variable [Message Integrity Check]

The Message Payload of a Matter message SHALL contain a Protocol Message with format as fol
lows:

Table 8. Protocol Message format definition

Length Field

Protocol Header

1 byte Exchange Flags

1 byte Protocol Opcode

2 bytes Exchange ID

2 bytes [Protocol Vendor ID]

2 bytes Protocol ID

4 bytes [Acknowledged Message Counter]

variable [Secured Extensions . . .]

Application Payload

variable [Application Payload . . .]

4.4.1. Message Header Field Descriptions

4.4.1.1. Message Flags (8 bits)

An unsigned integer bit field containing the following subfields:

Table 9. Message Flags field definition

bit 7
6 5 4 3 2 1 0

Version - S DSIZ

NOTE
All unused bits in the Message Flags field are reserved and SHALL be set to zero on
transmission and SHALL be silently ignored on reception.

Version (4 bits, positions 4-7)

An unsigned integer specifying the version of the Matter Message format used to encode the mes
sage. Currently only one version is defined:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 113

• 0 — Matter Message Format version 1.0

• 1-15 — Reserved for future use

Messages with version field set to reserved values SHALL be dropped without sending a message-
layer acknowledgement.

NOTE

The Version field conveys information solely about the structure of the Matter mes
sage itself, not about the structure of the application payload or the interpretation
of the message’s type. Thus, changes to how an application handles or interprets a
message do not result in the creation of a new message format version number.

S Flag (1 bit, position 2)

A single bit field which SHALL be set if and only if the Source Node ID field is present.

DSIZ Field (2 bits, position 0-1)

This field SHALL indicate the size and meaning of the Destination Node ID field.

• 0 — Destination Node ID field is not present

• 1 — Destination Node ID field is present as a 64-bit Node ID

• 2 — Destination Node ID field is present as a 16-bit Group ID

• 3 — Reserved for future use

Messages with DSIZ field set to reserved values SHALL be dropped without sending a message-layer
acknowledgement.

4.4.1.2. Session ID (16 bits)

An unsigned integer value identifying the session associated with this message. The session identi
fies the particular key used to encrypt a message out of the set of available keys (either session or
group), and the particular encryption/message integrity algorithm to use for the message. The Ses
sion ID field is always present. For details on derivation of this field, see respective sections on uni
cast and group session ID derivation.

4.4.1.3. Security Flags (8 bits)

An unsigned integer bit field containing the following subfields:

Table 10. Security Flags field definition

bit 7
6 5 4 3 2 1 0

P C MX Reserved Session Type

NOTE
All unused bits in the Security Flags field are reserved and SHALL be set to zero on
transmission and SHALL be silently ignored on reception.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 114 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

P Flag (1 bit, position 7)

The Privacy (P) flag is a single bit field which, when set, SHALL identify that the message is encoded
with privacy enhancements as specified in Section 4.9.3, “Privacy Processing of Outgoing Mes
sages”.

C Flag (1 bit, position 6)

The Control message (C) flag is a single bit field which, when set, SHALL identify that the message is
a control message, such as for the Message Counter Synchronization Protocol, and uses the control
message counter for the nonce field as specified in Section 4.8.1.1, “Nonce”.

MX Flag (1 bit, position 5)

The Message Extensions (MX) flag is a single bit field which, when set, SHALL indicate that the Mes
sage Extensions portion of the message is present and has non-zero length. Version 1.0 Nodes
SHALL set this flag to zero.

Session Type (2 bit, position 0-1)

An unsigned integer specifying the type of session associated with the message. The following val
ues are defined:

• 0 — Unicast Session

• 1 — Group Session

• 2-3 — Reserved for future use

Messages with Session Type set to reserved values are not valid and SHALL be dropped without
sending a message-layer acknowledgement.

The Session Type defines how the Session ID is to be interpreted.

The Unsecured Session SHALL be indicated when both Session Type and Session ID are set to 0. The
Unsecured Session SHALL have no encryption, privacy, or message integrity checking.

A Secure Unicast Session SHALL be indicated when Session Type is Unicast Session and Session ID is
NOT 0.

4.4.1.4. Message Counter (32 bits)

An unsigned integer value uniquely identifying the message from the perspective of the sending
node. The message counter is generated based on the Session Type and increases monotonically for
each unique message generated. When messages are retransmitted, using the reliable messaging
capabilities, the counter remains the same, as logical retransmission is of a given message as identi
fied by its message counter. Similarly, acknowledgements refer to values of the message counter
being acknowledged.

NOTE

The Message Counter field is scoped to a given Encryption Key. Also, the Message
Counter values are independent for control messages and data messages, as indi
cated by the C Flag. So it is possible to have the same Message Counter for two mes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 115

sages encrypted with different keys, as well as two messages encrypted with the
same key but different values of the C Flag.

4.4.1.5. Source Node ID (64 bits)

An optional sequence of 8 bytes containing the unique identifier of the source node. The Source
Node ID field SHALL only be present in a message when the S Flag in the Message Flags field is set
to 1.

4.4.1.6. Destination Node ID

The optional Destination Node ID field contains the unique Node Identifier of the destination Node
or group to which the message is being sent. The size and encoding of the Destination Node ID field
depends on the value of the DSIZ field.

4.4.1.7. Message Extensions (variable)

The Message Extensions field is a variable length block of data for providing backwards compatible
extensibility. The format of the Message Extensions block is shown in Table 11, “Message Extensions
block format definition”. The Message Extensions block SHALL be present only if the MX Flag is set
to 1 in the Security Flags field.

Table 11. Message Extensions block format definition

Length Field

2 bytes Message Extensions Payload Length, in bytes

variable [Message Extensions Payload]

If the MX Flag is set to 1, the Message Extensions Payload Length field SHALL be present and SHALL
contain the length of the Message Extensions Payload. The Message Extensions Payload Length field
SHALL NOT be privacy obfuscated.

Version 1.0 Nodes SHALL ignore the contents of the Message Extensions payload, by skipping it, to
access the Message Payload.

4.4.2. Message Footer Field Descriptions

4.4.2.1. Message Integrity Check (variable length)

A sequence of bytes containing the message integrity check value (a.k.a. tag or MIC) for the mes
sage. The length and byte order of the field depend on the integrity check algorithm in use as speci
fied in Section 3.6, “Data Confidentiality and Integrity”.

The Message Integrity Check field SHALL be present for all messages except those of Unsecured Ses
sion Type.

The MIC is calculated as described in Section 4.8.2, “Security Processing of Outgoing Messages”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 116 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.4.3. Protocol Header Field Descriptions

4.4.3.1. Exchange Flags (8 bits)

An unsigned integer bit field containing the following subfields:

Table 12. Exchange Flags field definition

bit 7
6 5 4 3 2 1 0

- - - V SX R A I

NOTE
All unused bits in the Exchange Flags field are reserved and SHALL be set to zero on
transmission and SHALL be silently ignored on reception.

I Flag (1 bit, position 0)

The Initiator (I) flag is a single bit field which, when set, SHALL indicate that the message was sent
by the initiator of the exchange.

A Flag (1 bit, position 1)

The Acknowledgement (A) flag is a single bit field which, when set, SHALL indicate that the mes
sage serves as an acknowledgement of a previous message received by the current message sender.

R Flag (1 bit, position 2)

The Reliability (R) flag is a single bit field which, when set, SHALL indicate that the message sender
wishes to receive an acknowledgement for the message.

SX Flag (1 bit, position 3)

The Secured Extensions (SX) flag is a single bit field which, when set, SHALL indicate that the
Secured Extensions portion of the message is present and has non-zero length. Version 1.0 Nodes
SHALL set this flag to zero.

V Flag (1 bit, position 4)

The Vendor (V) protocol flag is a single bit field which, when set, SHALL indicate whether the Proto
col Vendor ID is present.

4.4.3.2. Protocol Opcode (8 bits)

An unsigned integer value identifying the type of the message. The Protocol Opcode is interpreted
relative to the Matter protocol specified in the Protocol ID field.

Opcodes are defined by the corresponding Protocol specification, for example Secure Channel Pro
tocol.

4.4.3.3. Exchange ID (16 bits)

An unsigned integer value identifying the exchange to which the message belongs. An Exchange ID

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 117

is allocated by the initiator of the exchange, and is unique within the initiator exchange number
space as specified in Section 4.10.2, “Exchange ID”.

4.4.3.4. Protocol ID (16 bits)

An unsigned integer value identifying the protocol in which the Protocol Opcode of the message is
defined.

When the Protocol Vendor ID is the Matter Standard Vendor ID, the Protocol ID SHALL have one of
the values specified by Table 13, “Protocol IDs for the Matter Standard Vendor ID”.

Table 13. Protocol IDs for the Matter Standard Vendor ID

Range Type Message Specification

0x0000 PROTOCOL_ID_SECURE_CHAN
NEL

Section 4.11.1, “Secure Channel Protocol Messages”

0x0001 PROTOCOL_ID_INTERACTION_
MODEL

Section 10.2.1, “IM Protocol Messages”

0x0002 PROTOCOL_ID_BDX Section 11.22.3.1, “BDX Protocol Messages”

0x0003 PROTOCOL_ID_USER_DIRECTED_
COMMISSIONING

Section 5.3.2, “UDC Protocol Messages”

0x0004 PROTOCOL_ID_FOR_TESTING Reserved for bespoke protocols run in an isolated test
environment.

0x0005 -
0xFFFF

reserved reserved

4.4.3.5. Protocol Vendor ID (16 bits)

An optional, unsigned integer value that contains the Vendor ID namespacing for the Protocol ID
field. This field SHALL only be present when the V Flag is set; otherwise the default is 0, corre
sponding to the Matter Standard Vendor ID.

4.4.3.6. Acknowledged Message Counter (32 bits)

An optional, unsigned integer value containing the message counter of a previous message that is
being acknowledged by the current message. The Acknowledged Message Counter field is SHALL
only be present when the A Flag in the Exchange Flags field is 1.

4.4.3.7. Secured Extensions (variable)

The Secured Extensions field is a variable length block of data for providing backwards compatible
extensibility. The format of the Secured Extensions block is shown in Table 14, “Secured Extensions
block format definition”. The Secured Extensions block SHALL be present only if the SX Flag is set
to 1 in the Exchange Flags field.

Version 1.0 Nodes SHALL ignore the contents of the Secured Extensions payload.

The Secured Extensions block SHALL be encrypted and authenticated based on the Security Flags

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 118 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

settings.

Table 14. Secured Extensions block format definition

Length Field

2 bytes Secured Extensions Payload Length, in bytes.

variable [Secured Extensions Payload]

4.4.3.8. Application Payload (variable length)

A sequence of zero or more bytes containing the application data conveyed by the message.

4.4.4. Message Size Requirements

Support for IPv6 fragmentation is not mandatory in Matter, and the expected supported MTU is
1280 bytes, the minimum required by IPv6. Therefore, all messages, including transport headers,
SHALL fit within that minimal IPv6 MTU. This message size limit SHALL apply to the UDP transport.
A message received over UDP that exceeds this message size limit SHALL NOT be processed. Mes
sages sent over TCP or BTP transports MAY exceed the message size limit if both nodes are capable
of supporting larger message sizes.

4.5. Message Framing Over Stream-Oriented
Transports
When Matter messages are transferred over stream-oriented transport protocols, such as TCP or
BTP, they need to be framed appropriately to enable the receiver to read each message from the
stream. To allow that, each Matter Message SHALL be prepended with a Message Length field. This
field SHALL only be present when the message is being transmitted over a stream-oriented chan
nel. When transmitted over a datagram channel, the message length SHALL be conveyed by the
underlying channel. For example, when transmitted over UDP, the message length SHALL be equal
to the payload length of the UDP datagram.

4.5.1. Message Length (16/32 bits)

An optional unsigned integer value, in little-endian byte order, specifying the overall length of the
message in bytes, not including the size of this field itself. The size of this field, when present,
SHALL depend on the transport protocol being used to transfer the message. For example, for TCP,
it SHALL be set to 4 bytes to allow for large payloads, whereas for BTP it SHALL be set to 2 bytes.

Protocol Size Location Description in Stream

TCP 4 bytes Field present before the Message Header of each Matter message.

BTP 2 bytes Field present before the segment payload in the beginning BTP
Packet PDU for each Matter message/BTP SDU.

MRP N/A Field not present.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 119

4.6. Message Counters
All messages contain a 32-bit message counter assigned by the sender of the message. Message
counters are assigned sequentially, by monotonically increasing the counter value maintained by
the sender of the message. Message counters serve several purposes:

• Duplicate Message Detection – Receiving systems use message counters to detect messages
that have been retransmitted by the sender, e.g. in response to packet loss in the network.

• Message Acknowledgement – In the Message Reliability Protocol (MRP), message counters pro
vide a way for receivers to identify messages for the purpose of acknowledging their receipt.

• Encryption Nonces – When encrypted messages are sent, message counters provide an encryp
tion nonce that ensures each message is encrypted in a unique manner.

• Replay Prevention – Related to encryption, message counters also provide a means for detect
ing and preventing the replay of encrypted messages.

4.6.1. Message Counter Types

All Nodes implement three global 32-bit counters to generate message counters for certain types of
messages:

• Global Unencrypted Message Counter

• Global Group Encrypted Data Message Counter

• Global Group Encrypted Control Message Counter

Additionally, Nodes implement a separate 32-bit counter for each session as part of secure session
state:

• Secure Session Message Counter

Additionally, Nodes implement a separate 32-bit counter for each Check-In Protocol use case:

• Check-In Counter

Technical details for how each counter type works are described in the following sections. Table 15,
“Message Counter Type Overview” is provided to summarize higher-level differences between Mes
sage Counter Types:

Table 15. Message Counter Type Overview

Message Counter Type Session Type Lifetime Rollover Pol
icy

Nonvolatile

Global Unencrypted Unsecured Unlimited Allowed Optional

Global Encrypted Data Group Operational Group Key Allowed Mandatory

Global Encrypted Con
trol

Group Operational Group Key Allowed Mandatory

Secure Session Unicast Session Key Expires Optional

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 120 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Message Counter Type Session Type Lifetime Rollover Pol
icy

Nonvolatile

Check-In Counter Unsecured Unlimited Allowed Mandatory

4.6.1.1. Message Counter Initialization

All message counters SHALL be initialized with a random value using the Crypto_DRBG(len = 28) +
1 primitive. Message counters are initialized to a random number to increase the difficulty of traffic
analysis attacks by making it harder to determine how long a particular session has been open. The
random initializer ranges from 1 to 228 in order to maximize initial entropy while still reserving the
vast majority of the range to actual counter values (roughly 232 - 228).

4.6.1.2. Global Unencrypted Message Counter

All Nodes SHALL implement an unencrypted message counter, which is used to generate counters
for unencrypted messages.

Typically, Nodes store the Global Unencrypted Message Counter in RAM. This makes the counter sub
ject to loss whenever the system reboots or otherwise loses its state. This is permissible because
retaining the Global Unencrypted Message Counter is not essential to the confidentiality or integrity
of the message. In the event that the Global Unencrypted Message Counter for a Node is lost, Nodes
SHALL randomize the initial value of this counter on startup per Section 4.6.1.1, “Message Counter
Initialization”.

4.6.1.3. Global Group Encrypted Message Counters

The Global Group Encrypted Message Counters are used to generate the counter for messages
encrypted using group keys. There are two such counters:

• The Global Group Encrypted Data Message Counter is used to encode regular data messages
encrypted with a group key.

• The Global Group Encrypted Control Message Counter is used to encode control messages
encrypted with a group key.

Some Nodes might not be required to implement communication using group keys, in which case
they MAY omit the Global Group Encrypted Message Counters. In contrast to the Global Unencrypted
Message Counter, Nodes are required to persist the Global Group Encrypted Message Counters in
durable storage. In particular, Nodes are required to ensure that the value of the Global Group
Encrypted Message Counters never rolls back and that it is monotonic within the bounds of its range
for its use for a given group key. A Node SHALL randomize the initial value of this counter on fac
tory reset per Section 4.6.1.1, “Message Counter Initialization”.

While Global Group Encrypted Message Counters are shared by many group keys to generate
nonces, rollover is not an issue as long as the Epoch Key that generates each operational group key
rotates frequently enough.

NOTE
If a nonce is duplicated for a given key, the security consequences are isolated only
to the specific key with which the duplicate nonce occurred — a key that has not

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 121

been updated prior to rollover and has been presumably abandoned or aged out.

4.6.2. Secure Session Message Counters

A Secure Session Message Counter is a per-session, 32-bit, ephemeral counter that is used by the
encoding of any encrypted messages using an associated session key. Each peer in a Secure Unicast
Session SHALL maintain its own message counters, with independent counters being used for each
unique session used. Session Message Counters SHALL exist for as long as the associated security
session is in effect. A Node SHALL randomize the initial value of this counter on session establish
ment per Section 4.6.1.1, “Message Counter Initialization”.

The Secure Session Message Counter history window SHALL be maintained for the lifetime of the
session, and SHALL be deleted at the same time as the session keys, when the session ends.

Sessions SHALL be discarded and re-established before any Secure Session Message Counter over
flow or repetition occurs.

4.6.3. Check-In Counter

The Check-In Counter is an unsigned 32-bit counter used during the encryption process of the
Check-In Protocol. The only purpose of the Check-In Counter is during the encryption process of the
Check-In Protocol.

Each device will have a total of one Check-In Counter shared between fabrics for each Check-In Pro
tocol use case. The device SHALL randomize the initial value of the counter on factory reset per
Section 4.6.1.1, “Message Counter Initialization”.

The Check-In Counter SHALL be monotonically increased each time a Check-In message is sent. This
monotonicity guarantee SHALL be preserved across idle and active states. The Check-In Counter
can roll over to zero when it exceeds the maximum value of the counter (32-bits). Nodes are
required to persist the Check-In Counter in durable storage.

When a node reboots, the Check-In Counter MAY increase by a larger step than 1. Nodes do not need
to write every new value of the Check-In Counter to permanent storage each time it is increased
(e.g. to prevent flash wear due to many write operations). One example strategy to achieve reduc
tion of non-volatile storage updates is described below:

1. Read the counter value at start-up.

2. Before processing the first message after startup, write counter + N to storage, where N is a
carefully chosen number (e.g. 1000). This number N should be chosen carefully in order not to
exhaust the lifetime 32-bit counter space.

3. Process messages normally until the counter has a value one less than the counter in storage.
When this happens, store counter + N to storage.

NOTE
The Check-In Counter has an unlimited lifetime. To ensure that a nonce is not
reused since it is derived from the Check-In Counter and the ICD key, the key needs
to be refreshed before using all valid counter values for the key.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 122 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.6.4. Message Counters as Encryption Nonces

In the context of encrypted messages, message counters serve as nonces for the encryption algo
rithm, ensuring that every message is encrypted in a unique manner. The uniqueness of an
encrypted message’s counter is vital to the confidentiality of the message, as the encryption algo
rithm makes it trivial for an eavesdropper to decrypt messages if the attacker can find two different
messages with the same message counter that were encrypted using the same key. Specifically, an
attacker can XOR the two different messages that share the same key and nonce to obtain a "block
key" which can be used to decrypt any message that uses that key and nonce.

Nodes SHOULD rotate their encryption keys on a regular basis, to ensure that old encryption keys
are retired before a Global Group Encrypted Message Counter has a chance to wrap to a value previ
ously used with the encryption key. In practice, the frequency of message transmission is such that
encryption keys generally rotate at a rate that is much faster than the rate at which a Global Group
Encrypted Message Counter wraps. In the event that a Global Group Encrypted Message Counter
wraps before the associated keys are rotated, all keys associated with that Global Group Encrypted
Message Counter are considered exhausted and are no longer valid to use. In such cases, a new uni
cast session SHALL be established to the Matter Node to rotate such retired keys before secure com
munication can resume. Given the importance of confidentiality and message integrity, every effort
SHOULD be made to ensure that keys are rotated on a regular basis.

4.6.5. Replay Prevention and Duplicate Message Detection

Beyond their role as encryption nonces, message counters also serve as a means to detect repeated
reception of the same message. Message duplication may occur for a number of reasons: out-of-
order arrival, network latency, malicious attack, or network error. For example, a duplicate can be
caused when a sender retransmits a message after failing to receive an acknowledgement, or
because a malicious third party attempted to replay an old message to gain some advantage. To
detect duplicate messages, Nodes maintain a history window of the message counters they have
received from a particular sender (see Message Reception State). Whenever a message is received,
its message counter is checked against the history window of message counters from that sender to
determine whether it is a duplicate. The Message Layer SHALL discard duplicate messages before
they reach the application layer.

4.6.5.1. Message Reception State

The state maintained by a Node about the messages it has received from a particular peer is
referred to as message reception state. Nodes use this state information to determine whether a
newly arrived message is a duplicate of a previous message. Message reception state is maintained
on a per-peer or per-session basis, depending on the type of message encryption being used.

At a conceptual level, message reception state consists of a set of integers corresponding to the
counters of all the messages that have been received from a particular peer. To limit the amount of
memory required to store this state, Nodes employ a lossy compression scheme that takes advan
tage of the fact that message counters are generated sequentially by the sender. The scheme allows
for a limited amount of out-of-order message arrivals due to network effects without inducing false
detection of duplicates.

In the compressed form, message reception state is structured as a pair of values: a integer repre

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 123

senting the largest valid, or maximum message counter received from the peer (max_message_
counter), and a bitmap of size MSG_COUNTER_WINDOW_SIZE indicating which messages immedi
ately prior to the max message have been received. The offset into the bitmap equates to the differ
ence between the corresponding message counter and the max message counter, i.e. the first bit in
the bitmap indicates whether the message with the counter of max_message_counter - 1 has been
received, the second indicates whether message max_message_counter - 2 has been received, and so
on. A message counter is within the range of the bitmap, also known as the message counter win
dow, when the counter value is between [(max_message_counter - MSG_COUNTER_WINDOW_SIZE) to
(max_message_counter - 1) mod 232]. As messages arrive, the message reception state is queried to
determine if an arriving message is new or duplicate. If a message is new, the state is then updated
to reflect the arrival of the message. When a message arrives with a message counter that is logi
cally greater than the current maximum message counter for that peer, the maximum message
counter value for the peer is updated and the bitmap shifted accordingly.

Figure 7. Message Reception State Example

4.6.5.2. Use of Message Reception State for Encrypted Messages

The algorithm for querying and updating message reception state varies slightly depending on
whether the system is tracking reception of encrypted messages or unencrypted messages.

Message Counters with maximum

For encrypted messages of Secure Unicast Session Type, any arriving message with a counter in the
range [(max_message_counter + 1) to (232 - 1)] SHALL be considered new, and cause the max_mes
sage_counter value to be updated. Message counters within the range of the bitmap SHALL be con
sidered duplicate if the corresponding bit offset is set to true. All other message counters SHALL be

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 124 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

considered duplicate.

Message Counters with rollover

A message counter with rollover is a free running message counter that monotonically increases,
but rolls over to zero when it exceeds the maximum value of the counter (32-bits). Group keys are
secured by a shared, global message counter with rollover as described in Section 4.6.1.3, “Global
Group Encrypted Message Counters”.

For encrypted messages of Group Session Type, any arriving message with a counter in the range
[(max_message_counter + 1) to (max_message_counter + 231 - 1)] (modulo 232) SHALL be considered
new, and cause the max_message_counter value to be updated. Messages with counters from
[(max_message_counter - 231) to (max_message_counter - MSG_COUNTER_WINDOW_SIZE - 1)] (modulo 2
32) SHALL be considered duplicate. A message counter equal to max_message_counter SHALL be con
sidered duplicate. Message counters within the range of the bitmap SHALL be considered duplicate
if the corresponding bit offset is set to true.

This scheme for encrypted messages effectively divides the message counter space in half: those
counters that are forward of the max message counter, which are considered new, and those coun
ters that are behind the max message counter, which are considered duplicates unless indicated
otherwise by the values in the bitmap.

4.6.5.3. Use of Message Reception State for Unencrypted Messages

For unencrypted messages, the algorithms for tracking messages and detecting duplicates are simi
lar to, but more permissive than for encrypted messages using Section 4.6.5.2.2, “Message Counters
with rollover”. This reflects the fact that duplicate detection of unencrypted messages is not done
for security reasons, but rather to catch duplicates caused by network errors (e.g. loss of an ack),
which are generally more bounded in time. The more relaxed algorithm for unencrypted duplicate
detection also relaxes the durability requirement on the sender’s message counter, allowing
senders to store the counter in RAM.

For unencrypted messages, any message counter equal to max_message_counter or within the mes
sage counter window, where the corresponding bit is set to true SHALL be considered duplicate. All
other message counters, whether behind the window or ahead of max_message_counter, are consid
ered new and SHALL update max_message_counter and shift the window accordingly. Messages with
a counter behind the window are likely caused by a node rebooting and are thus processed as
rolling back the window to the current location. Note that when max_message_counter is close to the
minimum of the range, the window SHALL roll back to cover message counters near the maximum
of the range.

4.6.5.4. Message Reception State Initialization

To initialize Message Reception State for a given Peer Node ID, initial max_message_counter, Message
Type (control or data), Encryption Level (encrypted or unencrypted), and Encryption Key (for any
Encryption Level except unencrypted):

• The Message Reception State fields SHALL be set as follows:

◦ The Peer Node ID SHALL reference the given Peer Node ID.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 125

◦ The Message Type SHALL be the given Message Type.

◦ The Encryption Level SHALL be the given Encryption Level.

◦ If the Encryption Level is NOT unencrypted, the Encryption Key SHALL reference the given
key.

◦ The max_message_counter SHALL be set to the given max_message_counter.

◦ The Message Counter bitmap SHALL be set to all 1, indicating that only new messages with
counter greater than max_message_counter SHALL be accepted.

4.6.6. Counter Processing of Outgoing Messages

1. Obtain the outgoing message counter of the sending Node for the given Security Flags, Session
Id, and Encryption Key:

a. A message of Unsecured Session Type SHALL use the current Global Unencrypted Message
Counter.

b. A message of Secure Unicast Session Type SHALL use the current Secure Session Message
Counter for the session associated with the Session ID.

c. A message of Group Session Type SHALL use:

i. The Global Group Encrypted Data Message Counter if the Security Flags C Flag = 0.

ii. The Global Group Encrypted Control Message Counter if the Security Flags C Flag = 1.

2. The outgoing message counter from step 1 SHALL be incremented by 1.

3. Store the incremented outgoing message counter in the OutgoingMessageCounter element asso
ciated with the Session Context for the message.

a. If the message counter wraps around from 0xFFFF_FFFF to 0x0000_0000 and the message is
of Secure Unicast Session Type:

i. The Encryption Key SHALL be expired in the Session Context. The session will need to be
renegotiated to resume communication after transmission of this final message.

4.6.7. Counter Processing of Incoming Messages

1. Determine the Message Reception State for the sending peer and get the current max_message_
counter.

a. Given a decrypted message of Unicast Session Type:

i. Get the session-specific Message Reception State from the Secure Unicast Session Con
text.

b. Given a decrypted message of Group Session Type:

i. Extract the Source Node ID from the Message Header.

A. If there is no Source Node ID for the message, drop the message.

ii. Get the Message Reception State for the Source Node ID of the given message:

A. If the Security Flags C Flag = 0, get the Data Message Reception State for the peer
node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 126 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

B. If the Security Flags C Flag = 1, get the Control Message Reception State for the peer
node.

iii. If there is no Message Reception State for the groupcast message, initiate Section 4.17.4,
“Unsynchronized Message Processing”.

c. Given an unencrypted message:

i. Get the Message Reception State associated with the Unsecured Session Context.

ii. If there is no Message Reception State for the unencrypted message, create it with the
information from the given message.

2. If the Message Counter is outside the valid message counter window, the message SHALL be
marked as a duplicate. Note that while messages may be outside of the window for reasons
other than being a duplicate, and we always mark them as such.

3. If the message is a duplicate:

a. If the message is marked as encrypted, follow Section 4.6.5.2, “Use of Message Reception
State for Encrypted Messages”.

b. If the message is marked as unencrypted, follow Section 4.6.5.3, “Use of Message Reception
State for Unencrypted Messages”.

c. If the message is encrypted and marked as a duplicate, i.e. Message Counter is outside the
valid message counter window or marked as previously received in the Message Reception
State:

i. Perform Section 4.12.5.2, “Reliable Message Processing of Incoming Messages” on the
duplicate message.

d. Otherwise, update the Message Reception State as detailed in Section 4.6.5.1, “Message
Reception State”, and accept the message for further processing.

4.7. Message Processing
This sub-clause describes the fundamental procedures for transmission and reception.

4.7.1. Message Transmission

To prepare a message for transmission with a given Session ID, Destination Node ID (which may be
a group node id or an operational node id) and Security Flags, the following steps SHALL be per
formed, in order:

1. Process the message as described in Section 4.6.6, “Counter Processing of Outgoing Messages”.

2. If the message’s Session Type is a Unicast Session:

a. Set SessionTimestamp to a timestamp from a clock which would allow for the eventual deter
mination of the last session use relative to other sessions.

b. Process the message as described in Section 4.8.2, “Security Processing of Outgoing Mes
sages”.

c. Process the message as described in Section 4.9.3, “Privacy Processing of Outgoing Mes
sages”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 127

4.7.2. Message Reception

To process a received message, the following steps SHALL be performed in order:

1. Perform validity checks on the message; if any fail, processing of the message SHALL stop, and a
'message invalid' error SHOULD be indicated to the next higher layer:

a. The Version field SHALL be 0.

b. If the message is of Secure Unicast Session Type:

i. The DSIZ field SHALL NOT indicate a Group ID is present.

c. If the message is of Group Session Type:

i. The DSIZ field SHALL NOT be 0.

ii. The S Flag field SHALL NOT be 0.

2. If the message is NOT of Unsecured Session Type:

a. Obtain the Privacy and Encryption Keys associated with the given Session ID:

i. If no keys are found, security processing SHALL indicate a failure to the next higher
layer with a status of 'message security failed' and no further security processing SHALL
be done on this message.

b. For each Privacy and Encryption Key, of which there may be more than one in the case of
group messages:

i. If the P Flag is set, follow Section 4.9.4, “Privacy Processing of Incoming Messages” to
deobfuscate the message.

ii. Follow Section 4.8.3, “Security Processing of Incoming Messages” to decrypt and authen
ticate the message.

3. Follow Section 4.6.7, “Counter Processing of Incoming Messages” to enforce replay protection
and duplicate detection.

4. If the message transport is UDP, follow Section 4.12.5.2, “Reliable Message Processing of Incom
ing Messages” to process message reliability.

5. If the message’s Session Type is a Unicast Session:

a. Set SessionTimestamp and ActiveTimestamp to a timestamp from a clock which would allow for
the eventual determination of the last session use relative to other sessions.

6. The received message is then delivered to Section 4.10.5, “Exchange Message Processing”.

4.8. Message Security
The detailed steps involved in security processing of outgoing and incoming Matter messages are
described in Section 4.8.2, “Security Processing of Outgoing Messages” and Section 4.8.3, “Security
Processing of Incoming Messages” respectively. Section 4.8.1, “Data confidentiality and integrity
with data origin authentication parameters” defines how the cryptographic parameters are set for
securing Matter messages.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 128 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.8.1. Data confidentiality and integrity with data origin authentication
parameters

This section specifies the parameters to use the data confidentiality and integrity cryptographic
primitive as defined in Section 3.6, “Data Confidentiality and Integrity”.

The parameters in this section SHALL apply for all encrypted messages, i.e. all messages except
those of Unsecured Session Type.

4.8.1.1. Nonce

The nonce SHALL be formatted as specified in Table 16, “Nonce”.

Table 16. Nonce

Octets: 1 4 8

Security Flags Message Counter Source Node ID

The nonce used for the Authenticated Encryption with Additional Data (AEAD) algorithm (see Sec
tion 3.6, “Data Confidentiality and Integrity”) for a given message SHALL be defined as the concate
nation of the Security Flags, the Message Counter, and the Source Node ID of that message. The
scalar fields in the nonce, namely the Message Counter and the Source Node ID SHALL be encoded
in little-endian byte order for the purposes of serialization within the nonce, that is, in the same
byte ordering as the segment of the message from which its data originates.

The Source Node ID field used in the nonce SHALL be set to the Operational Node ID of the node
originating security protection of the message:

• If the message is of Secure Unicast Session Type:

◦ For a CASE session, the Nonce Source Node ID SHALL be determined via the Secure Session
Context associated with the Session Identifier.

◦ For a PASE session, the Nonce Source Node ID SHALL be Unspecified Node ID.

• If the message is of Group Session Type:

◦ The S Flag of the message SHALL be 1 and the Nonce Source Node ID SHALL be the Source
Node ID of the message.

◦ If the S Flag of the message is 0 the message SHALL be dropped.

NOTE
Because PASE negotiates strong one-time keys per session and the I2RKey and R2IKey
are distinct for each direction of communication, the use of the Unspecified Node ID
as the Nonce Source Node ID remains semantically secure.

4.8.2. Security Processing of Outgoing Messages

The process for encrypting Matter messages is depicted graphically in Figure 8, “Matter Message
Encryption” with color code conventions described in Figure 9, “Matter Message Encryption Leg
end”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 129

Figure 8. Matter Message Encryption

Figure 9. Matter Message Encryption Legend

To prepare a secure message for transmission with a given Session ID, Destination Node ID (which
may be a group node id or an operational node id) and Security Flags, the Node SHALL perform the
following steps:

1. Obtain the Encryption Key associated with the Session ID and Destination Node ID and the Ses
sion Type associated with the Destination Node ID:

a. If no key is found for the given Session ID, security processing SHALL fail and no further
security processing SHALL be done on this message.

2. Obtain the outgoing message counter of the sending Node as per Section 4.6.6, “Counter Process

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 130 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ing of Outgoing Messages”.

3. Set the Security fields as follows:

a. The Session ID field SHALL be set to the value provided to step 1.

b. The Security Flags field SHALL be set to the value provided to step 1 with the following sub
fields updated:

i. The Session Type field SHALL be set to the value obtained from step 1.

4. Set the Message Flags, Destination Node ID, and Source Node ID fields as follows:

a. If the Session Type is a unicast session:

i. Set S Flag to 0.

ii. Set DSIZ to 0.

iii. Omit both Destination Node ID, and Source Node ID.

b. Else if the Session Type is a group session:

i. Set S Flag to 1.

ii. Set DSIZ to 2.

iii. Set Source Node ID field to the operational node id of the sending node.

iv. Set Destination Node ID field to the 16-bit Group ID derived from the Destination Node
ID.

5. Set the Message Counter field to the outgoing message counter from step 2.

6. Execute the AEAD generate and encrypt operation, as specified in Section 3.6.1, “Generate and
encrypt”, with the following instantiations:

a. The bit string key K SHALL be the Encryption Key obtained from step 1;

b. The nonce N SHALL be the CRYPTO_AEAD_NONCE_LENGTH_BYTES-octet string constructed accord
ing to Table 16, “Nonce”;

c. The parameter P SHALL be the Message Payload;

d. The additional data octet string A SHALL be the Message Header contents, using little-endian
byte order for all scalars, exactly as they appear in the message segments from which they
originate:

Message Flags || Session ID || Security Flags || Message Counter

with the optional fields appended according to the Message Flags:

[Source Node ID] || [Destination Node ID] || [Message Extensions]

e. C = Crypto_AEAD_GenerateEncrypt(K, P, A, N)

7. If the AEAD operation invoked in step 6 results in an error, then security processing SHALL fail
and no further security processing SHALL be done on this message.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 131

8. Let C be the output from step 6. C contains the tag of CRYPTO_AEAD_MIC_LENGTH_BITS bits (Message
Integrity Check (MIC)) as specified by Section 3.6.1, “Generate and encrypt”. The secured outgo
ing message SHALL be:

A || C

4.8.3. Security Processing of Incoming Messages

All incoming message processing SHALL occur in a serialized manner. If an implementation
chooses to process messages in a parallel manner, it must ensure that the behavior is opaque-box
identical to a serialized processing implementation.

If the transport layer receives a secured message as indicated by the Session ID, it SHALL perform
the following steps:

1. Determine the Session Type, Session ID, and Message Counter from the message header of the
received message.

2. Obtain the Encryption Key associated with the Session Context of the given Session ID and Ses
sion Type:

a. If no key is found for the given Session ID, security processing SHALL indicate a failure to
the next higher layer with a status of 'message security failed' and no further security pro
cessing SHALL be done on this message.

3. Execute the AEAD decryption and verification operation as specified in Section 3.6.2, “Decrypt
and verify” with the following instantiations:

a. The bit string key K SHALL be the Encryption Key obtained from step 2;

b. The nonce N SHALL be the CRYPTO_AEAD_NONCE_LENGTH_BYTES-octet string constructed accord
ing to Table 16, “Nonce”;

c. The parameter C SHALL be the encrypted and authenticated Message Payload;

d. The additional data octet string A SHALL be the authenticated Message Header:

e. {success, P} = Crypto_AEAD_DecryptVerify(K, C, A, N)

4. Return the result {success, P} of the AEAD operation:

a. If the success is FALSE, security processing SHALL fail and further processing SHALL NOT be
performed on this message. An appropriate error SHOULD be raised to the upper layer to
indicate the error.

b. Otherwise, set the octet string PlaintextMessage to the string

A || P

5. PlaintextMessage now represents the deciphered, authenticated, received message.

a. NOTE: The message has not yet undergone counter processing nor replay detection.

b. The PlaintextMessage SHALL be marked as successfully security processed and SHALL be

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 132 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

released to the next processing layer.

4.9. Message Privacy
Privacy processing of a message describes the obfuscation and deobfuscation of the message
header fields after encryption and before decryption.

The detailed steps involved in privacy processing of outgoing and incoming Matter messages are
described in Section 4.9.3, “Privacy Processing of Outgoing Messages” and Section 4.9.4, “Privacy
Processing of Incoming Messages” respectively. They rely on the cryptographic primitives in Section
3.7, “Message privacy”.

4.9.1. Privacy Key

The Privacy Key is a symmetric key specifically used for Privacy Processing that is derived from the
EncryptionKey used for Security Processing of a given message. Given a Session ID reference to a
specific Encryption Key, the Privacy Key is derived as follows:

PrivacyKey =
 Crypto_KDF
 (
 InputKey = EncryptionKey,
 Salt = [],
 Info = "PrivacyKey",
 Length = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

4.9.2. Privacy Nonce

The Privacy Nonce is a nonce specifically used for Privacy Processing that is derived from the Ses
sionId and MIC of the message. The Privacy Nonce SHALL be the CRYPTO_AEAD_NONCE_LENGTH_BYTES
-octet string constructed as the 16-bit Session ID (in big-endian format) concatenated with the lower
11 (i.e. CRYPTO_AEAD_MIC_LENGTH_BYTES-5) bytes of the MIC:

 PrivacyNonce = Session ID || MIC[5..15]

For example if Session ID is 42 (i.e. 0x002A) and the computed MIC is
c5:a0:06:3a:d5:d2:51:81:91:40:0d:d6:8c:5c:16:3b:

 Session ID = 00:2a
 MIC = c5:a0:06:3a:d5:d2:51:81:91:40:0d:d6:8c:5c:16:3b
 MIC[5..15] = d2:51:81:91:40:0d:d6:8c:5c:16:3b
 PrivacyNonce = SessionID || MIC[5..15] = 00:2a || d2:51:81:91:40:0d:d6:8c:5c:16:3b
 PrivacyNonce = 00:2a:d2:51:81:91:40:0d:d6:8c:5c:16:3b

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 133

4.9.3. Privacy Processing of Outgoing Messages

The process for privacy encoding Matter message headers is depicted graphically in Figure 10,
“Matter Message Privacy”.

Figure 10. Matter Message Privacy

To apply privacy obfuscation to an encrypted message prepared for transmission by Section 4.7.1,
“Message Transmission”, apply obfuscation steps as follows:

1. If P Flag is not set, do nothing.

2. Obtain the Privacy Key for the Encryption Key used to secure the message.

3. Execute the encryption operation as specified in Section 3.7.1, “Privacy encryption” with the fol
lowing instantiations:

a. The bit string key K SHALL be the Privacy Key obtained from step 1;

b. The MIC SHALL be the last CRYPTO_AEAD_MIC_LENGTH_BYTES bytes of the C outcome of the mes
sage security protection as specified in Section 4.8.2, “Security Processing of Outgoing Mes
sages” (MIC = C[(CRYPTO_AEAD_MIC_LENGTH_BYTES-1)..0])

c. The nonce N SHALL be the PrivacyNonce of the message.

d. The parameter M SHALL be the message header fields where optional fields are only
present in M if they are present in the message:

M = Message Counter || [Source ID] || [Destination ID]

e. CP = Crypto_Privacy_Encrypt(K, M, N)

4. Let CP be the obfuscated output from step 2. CP SHALL be used in the final private message in
place of the message header fields.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 134 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.9.4. Privacy Processing of Incoming Messages

To deobfuscate a private message received by Section 4.7.2, “Message Reception” with a given Pri
vacy Key, perform security processing as follows:

1. If P Flag is not set, do nothing.

2. With the given Privacy Key, execute the decryption as specified in Section 3.7.2, “Privacy decryp
tion” with the following instantiations:

a. The bit string key K SHALL be the Privacy Key obtained from step 1;

b. The MIC SHALL be the last CRYPTO_AEAD_MIC_LENGTH_BYTES bytes of the C outcome of the mes
sage security protection as specified in Section 4.8.3, “Security Processing of Incoming Mes
sages” (MIC = C[(CRYPTO_AEAD_MIC_LENGTH_BYTES-1)..0])

c. The nonce N SHALL be the PrivacyNonce of the message.

d. The parameter CP SHALL be the message header fields where optional fields are only
present in CP if they are present in the message:

CP = Message Counter || [Source ID] || [Destination ID]

e. M = Crypto_Privacy_Decrypt(K, CP, N)

3. Let M be the deobfuscated output from step 2.

a. M SHALL be used in the final private message in place of the message header fields.

b. The first successfully validated message, M, by Section 4.8.3, “Security Processing of Incom
ing Messages” SHALL terminate iteration through Privacy Keys in step 2.

4.10. Message Exchanges
An Exchange provides a way to group related messages together, organize communication flows,
and enable higher levels of the communication stack to track semantically relevant groupings of
messages.

An Exchange SHALL be bound to exactly one underlying session that will transport all associated
Exchange messages for the life of that Exchange. The underlying session SHALL be one of the fol
lowing session types: secure unicast (as established by PASE or CASE), unsecured (as is used for the
initial session establishment phase of a PASE/CASE session), secure group, or MCSP.

When used with reliability, Exchanges assume basic flow control by the upper layer. The Exchange
Layer SHALL not accept a message from the upper layer when there is an outbound reliable mes
sage pending on the same Exchange.

4.10.1. Exchange Role

The first Node to send a message in an Exchange is said to be in the Initiator role, and all the other
Nodes that subsequently participate in the Exchange are said to be in a Responder role. An
Exchange is always between one Initiator and one or more peer Responder Nodes. An Exchange

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 135

does not survive a reboot of one of the participants. Adjacent layers MAY close an Exchange at any
time.

4.10.2. Exchange ID

An Exchange of messages is identified by the Exchange ID field described in Section 4.4.3.3,
“Exchange ID (16 bits)”. The Exchange ID is allocated by the Initiator. The first message the Initiator
sends in a new Exchange SHALL contain a fresh value for the Exchange ID field. The Exchange is
then identified by the tuple {Session Context, Exchange ID, Exchange Role} where Session Context is
one of an Unsecured, Secured, Groupcast or MCSP session context. All messages that are part of a
given Exchange, whether they are sent by the Initiator or not, share the same Exchange ID, allow
ing the Initiator and Responder Nodes to match responses to requests or otherwise group messages
together that are part of more complex transactions. The first Exchange ID for a given Initiator
Node SHALL be a random integer. All subsequent Exchange IDs created by that Initiator SHALL be
the last Exchange ID it created incremented by one. An Exchange ID is an unsigned integer that
rolls over to zero when its maximum value is exceeded.

4.10.3. Exchange Context

An Exchange context is the metadata tracked for an Exchange by all exchange participants. An
Exchange context tracks the following data:

1. Exchange ID: The Exchange ID assigned by the Initiator

2. Exchange Role: Initiator or Responder

3. Session Context: The underlying Unsecured, Secured, Groupcast or MCSP session context

◦ Together, Session Context, Exchange ID and Role comprise a unique key allowing partici
pants to identify any exchange.

4.10.3.1. Protocol ID Registration

The Interaction Model layer indicates to the Exchange Layer which Protocols it will accept. Any
message for a Protocol ID that is not registered with the Exchange Layer SHALL be dropped.

4.10.4. Exchange Message Dispatch

When sending a message to the Exchange Layer, the next higher layer SHALL specify whether the
message is part of an existing Exchange, or the first of a new Exchange. For the case of a first mes
sage, the Initiator creates a new Exchange. The Node in the Initiator role SHALL always set the I
Flag in the Exchange Flags of every message it sends in that Exchange.

Each Node in a Responder role for an Exchange SHALL use the Exchange ID received in previous
messages for the Exchange. Each Node in the Responder role SHALL NOT set the I Flag in the
Exchange Flags of every message it sends in that Exchange. Each Node in a Responder role SHALL
NOT set the Destination Node ID field to a value that identifies any Node other than the Node in the
Initiator role for the Exchange.

Processing SHALL then proceed to Section 4.12.5.1, “Reliable Message Processing of Outgoing Mes
sages”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 136 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.10.5. Exchange Message Processing

After completion of Section 4.7.2, “Message Reception”, if the message matches an existing
Exchange, it is dispatched to the appropriate protocol handler in the next higher layer. Messages
for an existing Exchange are dispatched to the handler for that Exchange. Otherwise, the unso
licited message that created the Exchange is dispatched to the unsolicited message handler.

4.10.5.1. Exchange Message Matching

Upon receipt of a message, the Exchange Layer attempts to match the message to an existing
Exchange. A given message is part of an Exchange if it satisfies all the following criteria:

1. The message was received over the session associated with the Exchange.

2. The Exchange ID of the message matches the Exchange ID of the Exchange,

3. The message has the I Flag set and the Exchange Role of the Exchange is Responder,
OR the message does not have the I Flag set and the Exchange Role of the Exchange is Initiator.

If the message does not match an existing Exchange, the message is considered an unsolicited mes
sage.

4.10.5.2. Unsolicited Message Processing

An unsolicited message is processed as follows:

1. If the unsolicited message is not marked as having a duplicate message counter, has a registered
Protocol ID, and the I Flag is set:

a. Create a new exchange from the incoming message.

b. The new exchange will be used by the upper layer for generating responses and subsequent
processing of the message.

2. Otherwise, if the message has the R Flag set:

a. Create an ephemeral exchange from the incoming message and send an immediate stand
alone acknowledgement.

b. The message SHALL NOT be forwarded to the upper layer, and excluding the sending of an
immediate standalone acknowledgment, SHALL be ignored.

c. The ephemeral exchange created for such duplicate or unknown messages with R Flag set is
automatically closed in Section 4.12.5.2.2, “Standalone acknowledgement processing”.

3. Otherwise, processing of the message SHALL stop.

Creating an Exchange based on an Incoming Message

The steps to create a new Exchange based on an incoming message are as follows:

1. A new Exchange and Exchange Context SHALL be created with the following settings:

a. The Exchange ID SHALL be set to the Exchange ID of the message.

b. The Exchange Role SHALL be set to the inverse of the incoming message I Flag, for example
set the Exchange Role to Responder if the message is from an Initiator.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 137

c. The Session Context SHALL be set to the Session on which the message was received.

A node SHOULD limit itself to a maximum of 5 concurrent exchanges over a unicast session. This is
to prevent a node from exhausting the message counter window of the peer node.

4.10.5.3. Closing an Exchange

An Exchange MAY be closed by the application layer or a fatal connection error from the lower
message layer. The process of closing an Exchange follows:

1. Any pending acknowledgements associated with the Exchange SHALL be flushed. If there is a
pending acknowledgment in the acknowledgement table for the Exchange and it has Stand
aloneAckSent set to false:

a. Immediately send a standalone acknowledgement for the pending acknowledgement.

b. Remove the acknowledgement table entry for the pending acknowledgement.

2. Wait for all pending retransmissions associated with the Exchange to complete.

a. If the retransmission list for the Exchange is empty, remove the Exchange.

b. Otherwise, leave the Exchange open and only close it once the retransmission list is empty.

These steps are depicted in Figure 11, “Exchange close flow”.

Figure 11. Exchange close flow

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 138 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.11. Secure Channel Protocol
This section specifies the formal protocol definition for the Secure Channel Protocol. Secure Chan
nel Protocol defines the control plane for secure channel communication and security.

4.11.1. Secure Channel Protocol Messages

Secure Channel Protocol is composed of a collection of sub-protocols, including:

• Message Counter Synchronization Protocol (MCSP)

• Message Reliability Protocol (MRP)

• Passcode Based Session Establishment (PASE)

• Certificate Based Session Establishment (CASE)

The protocol opcodes for messages within the Secure Channel Protocol are grouped based on the
underlying sub-protocol that uses the message type. Table 17, “Secure Channel Protocol Opcodes”
lists the messages defined by Secure Channel Protocol.

Table 17. Secure Channel Protocol Opcodes

Protocol
Opcode

Protocol Command
Name

Description

Protocol ID = PROTOCOL_ID_SECURE_CHANNEL

0x00 MsgCounterSyncReq The Message Counter Synchronization Request message
queries the current message counter from a peer to boot
strap replay protection.

0x01 MsgCounterSyncRsp The Message Counter Synchronization Response message
provides the current message counter from a peer to boot
strap replay protection.

0x10 MRP Standalone Acknowl
edgement

This message is dedicated for the purpose of sending a
stand-alone acknowledgement when there is no other data
message available to piggyback an acknowledgement on
top of.

0x20 PBKDFParamRequest The request for PBKDF parameters necessary to complete
the PASE protocol.

0x21 PBKDFParamResponse The PBKDF parameters sent in response to PBKDF
ParamRequest during the PASE protocol.

0x22 PASE Pake1 The first PAKE message of the PASE protocol.

0x23 PASE Pake2 The second PAKE message of the PASE protocol.

0x24 PASE Pake3 The third PAKE message of the PASE protocol.

0x30 CASE Sigma1 The first message of the CASE protocol.

0x31 CASE Sigma2 The second message of the CASE protocol.

0x32 CASE Sigma3 The third message of the CASE protocol.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 139

Protocol
Opcode

Protocol Command
Name

Description

0x33 CASE Sigma2_Resume The second resumption message of the CASE protocol.

0x40 StatusReport The Status Report message encodes the result of an opera
tion in the Secure Channel as well as other protocols.

0x50 ICD Check-In message The Check-in message notifies a client that the ICD is avail
able for communication.

4.11.1.1. Session Establishment - Out of Resources

After a successful session establishment using CASE or PASE, a responder may not have enough
resources to save all of the session context information. To free resources, a responder SHALL evict
an existing session using the following procedure:

1. Use the SessionTimestamp to determine the least-recently used session.

2. Determine the session that was least-recently used then:

a. Send a status report: StatusReport(GeneralCode: SUCCESS, ProtocolId: SECURE_CHANNEL, Pro
tocolCode: CLOSE_SESSION) message to the peer node

b. Remove all state associated with the session (see Section 4.13.2.1, “Secure Session Context”).
The Node MAY save state necessary to perform Session Resumption, see Section 4.14.2.2.1,
“Session Resumption State” for more details.

3. Respond to the initiator with the appropriate session establishment message

4.11.1.2. Status Report

The Status Report message is sent from protocol handlers to convey the status of an operation using
a common format as defined in Appendix D, Status Report Messages. The StatusReport message is a
part of the Secure Channel protocol, but embeds an additional context-specific ProtocolID field in
its message-specific payload. In this way, the StatusReport can convey status for any protocol han
dler.

4.11.1.3. Secure Channel Status Report Messages

Status Reports specific to the Secure Channel are designated by embedding the PROTOCOL_ID_SE
CURE_CHANNEL in the ProtocolId field of the StatusReport body. All Secure Channel Status Report Mes
sages SHALL use the PROTOCOL_ID_SECURE_CHANNEL protocol id. For example, a failure to find a com
mon root of trust may be written in the specification as follows: StatusReport(GeneralCode: FAILURE,
ProtocolId: SECURE_CHANNEL, ProtocolCode: NO_SHARED_TRUST_ROOTS).

There are several cases for which the secure channel layer may emit a status report:

1. To indicate successful session establishment

2. In response to errors during session establishment

3. In response to errors after session establishment

4. To indicate that a Node is terminating a session

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 140 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

For each of these cases, a Secure Channel Status Report message SHALL be sent with an appropriate
ProtocolCode as detailed below.

The following table describes the Secure Channel Status Report Protocol Specific codes. Each entry
in the list details the appropriate General Code to be utilized with the message and whether it may
be sent unencrypted. Secure Channel Status Report messages which are marked as encrypted below
SHALL only be sent encrypted in a session established with CASE or PASE.

Table 18. Secure Channel Protocol Codes

Protocol
Code

Error General
Code

Encrypted Additional
Data

Description

0x0000 SESSION_ESTABLISH
MENT_SUCCESS

SUCCESS N N Indication that the last session
establishment message was
successfully processed.

0x0001 NO_SHARED_TRUST_
ROOTS

FAILURE N N Failure to find a common set of
shared roots.

0x0002 INVALID_PARAMETER FAILURE N N Generic failure during session
establishment.

0x0003 CLOSE_SESSION SUCCESS Y N Indication that the sender will
close the current session. See
Section 4.11.1.4, “CloseSession”
for more details.

0x0004 BUSY BUSY N Y Indication that the sender can
not currently fulfill the request.
See Section 4.11.1.5, “Busy” for
more details.

4.11.1.4. CloseSession

A node may choose to close a session for a variety of reasons including, but not limited to, the fol
lowing:

1. The interaction between nodes is complete

2. The node needs to free up resources for a new session

3. Fabric configuration associated with the CASE session was removed with the RemoveFabric
command invoked by an Administrator while the session was open

The CloseSession StatusReport SHALL only be sent encrypted within an exchange associated with a
PASE or CASE session. The CloseSession StatusReport SHALL be sent within a new exchange and
SHALL NOT set the R Flag.

If a Node has either sent or received a CloseSession StatusReport, that Node SHALL remove all state
associated with the session (see Section 4.13.2.1, “Secure Session Context”). The Node MAY save
state necessary to perform Session Resumption, see Section 4.14.2.2.1, “Session Resumption State”
for more details.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 141

4.11.1.5. Busy

When a receiver receives a request to start a new secure session via a Sigma1 or PBKDFParamRe
quest message, the receiver MAY respond with the BUSY StatusReport when it is unable to fulfill the
request. The BUSY StatusReport SHALL:

1. Set the R Flag to 0

2. Set the S Flag to 0

3. Set the StatusReport ProtocolData to a 16-bit (two byte) little-endian value indicating the mini
mum time in milliseconds to wait before retrying the original request.

4. Set the Exchange ID to the Exchange ID present in the Sigma1 or PBKDFParamRequest message
which triggered this response.

For example, a responder wishing to indicate they are unable to fulfill the request and that the ini
tiator should wait 500 milliseconds before trying again would send StatusReport(GeneralCode:
BUSY, ProtocolId: SECURE_CHANNEL, ProtocolCode: BUSY, ProtocolData: [0xF4, 0x01]).

The BUSY StatusReport SHALL NOT be sent in response to any message except for Sigma1 or
PBKDFParamRequest.

An initiator receiving a BUSY StatusReport from a responder SHALL wait for at least a period of t
milliseconds before retrying the request where t is the value obtained from the Busy StatusReport
ProtocolData field.

If the initiator sends a new session establishment request after receiving a BUSY StatusReport, the
request SHALL contain new values for all randomized parameters.

4.11.2. Parameters and Constants

Table 19, “Glossary of constants” is a glossary of constants used in the secure channel protocol,
along with a brief description and the default for each constant.

Table 19. Glossary of constants

Constant Name Description Value

MSG_COUNTER_WINDOW_SIZE Maximum number of previously processed mes
sage counters to accept from a given Node and
key.

32

MSG_COUNTER_SYNC_REQ_JIT
TER

Maximum amount of random delay before send
ing a MsgCounterSyncReq when the synchroniza
tion request is triggered by receipt of a multicast
message.

500 millisec
onds

MSG_COUNTER_SYNC_TIMEOUT The maximum amount of time (in milliseconds)
which a Node SHALL wait for a MsgCounterSyn
cRsp after sending a MsgCounterSyncReq.

400 millisec
onds

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 142 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.12. Message Reliability Protocol (MRP)
The Message Reliability Protocol (MRP) provides confirmation of delivery for messages that require
reliability. The protocol is optimized for constrained devices that may not be able to receive a mes
sage at the point it is due to be delivered to them. Reliable messaging MAY be enabled on an indi
vidual message basis as required by the protocol design of the higher layer application. Reliability
is achieved through time-bounded delivery confirmation, ensuring best effort delivery of critical
messages over what may be an inherently lossy and unreliable communication medium.

Flow control mechanisms are not incorporated in MRP because it is intended to be used for short
interactions with small numbers of messages in them.

4.12.1. Reliable Messaging Header Fields

The following fields are defined in the Exchange Flags for use exclusively by MRP:

• R Flag

Indicates a reliable message. This flag SHALL be set by the sender when a message being sent
requires the receiver to send back an acknowledgment. To support unreliable messages, this
flag bit MAY be clear, so that no acknowledgements are requested from the receiver.

• A Flag

Indicates the message is acting as an acknowledgement. This flag MAY be set on any message.
When set, the Acknowledged Message Counter field SHALL be present and valid. This flag SHALL
always be set for MRP Standalone Acknowledgement messages.

• Acknowledged Message Counter

This field SHALL be set to the Message Counter of the message that is being acknowledged.

4.12.2. Reliable transfer

When the reliability bit is set, the reliable message is transmitted at most MRP_MAX_TRANSMIS
SIONS times until an acknowledgement of receipt is received from the peer or a timeout.

4.12.2.1. Retransmissions

Senders provide an automatic retransmission mechanism for reliable messages. In order for the
receiver to receive a message reliably, the sender SHALL trigger the automatic retry mechanism
after a period of mrpBackoffTime milliseconds without receiving an acknowledgement, where mrp
BackoffTime is calculated according to the formula below. The sender SHALL retry up to a config
ured maximum number of times (MRP_MAX_TRANSMISSIONS - 1) before giving up and notifying
the application.

Messages sent to a Node can be lost for various reasons such as lossy network or insufficient buffer
space at the receiver. In the case of Intermittently Connected Devices, which are active infrequently
to receive messages destined for them, a sender must be aware of the characteristics of the recipi
ent to ensure it does not attempt to send at a rate beyond the recipient’s capability. Therefore, the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 143

sender SHALL choose retransmission timeouts based on the session characteristics of the destina
tion Node exposed via Section 4.3.2, “Operational Discovery”.

At each sender, a retransmission timer is started each time a reliable message is transmitted. The
duration of the retransmission timer SHALL be calculated as follows:

"mrpBackoffTime" = i * "MRP_BACKOFF_BASE"^(max(0,n-"MRP_BACKOFF_THRESHOLD")) * (1.0 +
"random"(0,1) * "MRP_BACKOFF_JITTER")

Where:

{:("mrpBackoffTime", =, "the resultant retransmission timeout for this
transmission"),(n, =, "the number of send attempts before the current one for this
message (0 if this is the initial transmission)"),(i, =, "the base retry interval for
the Exchange (either IDLE or ACTIVE)"):}

For each unique Exchange, the sender SHALL wait for the acknowledgement message until the
retransmission timer, mrpBackoffTime, expires.

When waiting for an acknowledgement, an Intermittently Connected Device will always be in
Active Mode since it will have at least one active exchange. An Intermittently Connected Device
sender SHOULD increase the mrpBackoffTime by its fast polling interval to take into account the
delay that might happen in receiving the acknowledgment while in Active Mode.

For the first message of a new exchange, the base interval, i, SHALL be set according to the active
state of the peer node as stored in the Session Context of the session (either the Secure Session Con
text or the Unsecured Session Context depending on the Session Type). For all subsequent messages
of the exchange, the base interval, i, SHOULD be set according to the active state of the peer node as
stored in the Session Context of the session (either the Secure Session Context or the Unsecured Ses
sion Context depending on the Session Type), unless the sender has other means to determine
whether the device is active or idle. The backoff base interval SHALL be set to a value at least 10%
greater than the idle interval of the destination:

• If PeerActiveMode in the Session Context is true:

◦ i = SESSION_ACTIVE_INTERVAL of the peer

• Else the peer is in idle mode:

◦ i = SESSION_IDLE_INTERVAL of the peer

• i = MRP_BACKOFF_MARGIN * i

The MRP_BACKOFF_THRESHOLD parameter creates a two-phase scheme which begins with linear
backoff to improve initial latency when congestion is not the cause of packet drops, and then transi
tions to exponential backoff to provide convergence when the network is congested. If a positive
acknowledgment is received before the retransmission timer expires, the retransmission timer is
stopped. Otherwise, if the retransmission timer expires, the message is retransmitted and the timer
started again.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 144 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The following table illustrates minimum, maximum, and cumulative retransmission times using
default parameters.

Table 20. Example MRP Retransmission Times

Metric Transmission Time [ms]

Min Jitter 330 330 528 845 1352

Max Jitter 413 413 660 1056 1690

Min Total 330 660 1188 2033 3385

Max Total 413 825 1485 2541 4231

Transmission # 0 1 2 3 4

The sender SHOULD initiate Section 4.3.2, “Operational Discovery” in parallel with the first retry to
re-resolve the address of the destination Node if the initial transmission fails after one expected
round trip. The sender SHOULD use the latest MRP parameters for the destination that result from
subsequent Operational Discovery.

When a client is communicating with an ICD (i.e. the ICD Management cluster is present), the
sender SHALL initiate Section 4.3.2, “Operational Discovery” in parallel with the first retry to re-
resolve the address of the destination Node if the initial transmission fails after one expected round
trip. The sender SHALL use the latest MRP parameters for the destination that result from subse
quent Operational Discovery.

4.12.2.2. Acknowledgements

A receiver SHALL acknowledge a reliable message by either using a "piggybacked" acknowledg
ment in the next message destined to the peer, or a standalone acknowledgment, or both.

The acknowledgement message SHALL set the Acknowledged Message Counter field to the value of
the Message Counter of the reliable message to be acknowledged.

Piggybacking Acknowledgments on Responses

Acknowledgements MAY be conveyed at the same time (i.e. piggybacked) as data in a response mes
sage. The receiver tries to optimize message transmission by deferring acknowledgments when a
reliable message is received (see Section 4.12.5.2.2, “Standalone acknowledgement processing”) and
piggybacking outstanding acknowledgments on messages that it needs to send back (see Section
4.12.5.1.1, “Piggyback acknowledgment processing” for more details).

Duplicate Message Detection

Since the reliable messaging protocol has a provision for the sender to retransmit messages, there
is a significant chance that a duplicate message may arrive at the receiver. The receiver SHALL
detect and mark duplicate messages that it receives using the standard authentication and replay
protection mechanisms of the secure message layer (see Section 4.6.5, “Replay Prevention and
Duplicate Message Detection”). The receiver SHALL send an acknowledgment message to the
sender for each instance of an authenticated, reliable message, including duplicates. The reliability
layer SHALL only propagate the first instance of a message to the next higher layer. Any message

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 145

marked as a duplicate SHALL be dropped by the reliability layer.

4.12.3. Peer Exchange Management

The Reliable Messaging Protocol operates within the scope of an Exchange between two Nodes.
MRP SHALL support one pending acknowledgement and one pending retransmission per
Exchange.

MRP control parameters, detailed in Table 21, “Glossary of MRP parameters”, are computed outside
of the Exchange communication itself; instead, they are valid for the duration of a secure session.
The SESSION_ACTIVE_INTERVAL and SESSION_IDLE_INTERVAL, used in computation of MRP control para
meters, are determined during Operational Discovery or Section 4.3.1, “Commissionable Node Dis
covery”. Additionally, the initiator of a secure session MAY provide these parameters in the initial
CASE Sigma1 or PASE PBKDFParamRequest messages, and the responder MAY provide its parame
ters in the corresponding protocol messages CASE Sigma2 or PBKDFParamResponse.

4.12.4. Transport Considerations

When the upper layer requests a reliable message over a UDP transport, the R Flag SHALL be set on
that message indicating that MRP SHALL be used. Reliable messages sent over TCP or BTP SHALL
utilize the underlying reliability mechanisms of those transports and SHOULD NOT set the R Flag.

4.12.5. Reliable Message Processing

4.12.5.1. Reliable Message Processing of Outgoing Messages

To prepare a given Protocol Message for transmission, the message SHALL be processed as follows:

1. Proceed to Section 4.12.5.1.1, “Piggyback acknowledgment processing”.

Piggyback acknowledgment processing

1. Determine if there is a matching pending acknowledgement in the acknowledgement table for
the given message by checking all of the following conditions:

a. If the Destination Node Id and Exchange Id of the given message and pending acknowledge
ment are the same

b. AND either

i. the Session Id and underlying Session Credentials of the given message and pending
acknowledgement are the same

ii. OR both the given message and pending acknowledgement are of Unsecured Session
Type.

2. If there is a matching pending acknowledgement, the A Flag SHALL be set on the outbound mes
sage so it will serve as a piggybacked acknowledgement.

a. For such a piggybacked acknowledgement, the Acknowledgment Message Counter field
SHALL be set to the message counter of the received message for which an acknowledge
ment was pending.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 146 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

b. If the message being prepared is not a standalone acknowledgement, remove the matching
entry from the acknowledgement table.

c. If the message being prepared is a standalone acknowledgement, set the StandaloneAckSent
field of the matching entry in the acknowledgement table to true.

Message retransmission processing

1. If the outbound message is marked to be delivered reliably over a UDP transport, the R Flag
SHALL be set on the given message to request an acknowledgement from the peer upon receipt.

a. Any message flagged for reliable delivery (R Flag set) SHALL be stored in the retransmission
table to track the message until it has been successfully acknowledged by the peer.

2. Perform Section 4.7.1, “Message Transmission” processing step on the message to send the mes
sage to the peer:

a. The same Session ID, Destination Node ID, Security Flags, and transport as were used for the
initial message transmission SHALL be used.

3. If the transport interface returns an error on the send attempt, the error is assessed to deter
mine whether the message can be retried.

a. If the error is fatal, the application is notified and the message removed from the retrans
mission table.

b. If there is no error, or a non-fatal error such as no memory, the message is resent

i. Update the retransmission table to reflect the send count.

ii. Start a retransmission timer to track the maximum time to wait before attempting
another retransmission.

iii. For each retry, the retransmission table is updated to track the number of retries until
the maximum number is attempted, at which point the message is evicted from the
retransmission table.

Send flow state diagram

The MRP send flow described above is depicted in the control flow diagram Figure 12, “MRP send
flow”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 147

Figure 12. MRP send flow

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 148 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.12.5.2. Reliable Message Processing of Incoming Messages

A message received from Section 4.7.2, “Message Reception” for reliability processing SHALL be
processed as follows:

1. Verify the message has a legal combination of reliability flags:

a. If the R Flag is set:

i. If Group Session Type AND C Flag = 0, drop the message.

b. If the A Flag is set:

i. If Group Session Type AND C Flag = 0, drop the message.

2. Proceed to Section 4.10.5.1, “Exchange Message Matching”.

3. Proceed to Section 4.12.5.2.1, “Received acknowledgement processing”.

Received acknowledgement processing

1. If the A Flag is set:

a. Query the retransmission table for the Acknowledgement Message Counter contained in the
received message.

i. If there is a match:

A. Remove the entry from the retransmission table.

B. Stop the retransmission timer for that entry.

ii. If there is no match, it indicates that this is either a duplicate acknowledgment or the
Exchange context does not exist.

2. Proceed to Section 4.12.5.2.2, “Standalone acknowledgement processing”.

Standalone acknowledgement processing

1. If the R Flag is set, the received message is requesting an acknowledgement be sent back:

a. If the message is marked as a duplicate:

i. Immediately send a standalone acknowledgment.

ii. If the Exchange is marked as an ephemeral exchange the Exchange SHALL be closed.

iii. Drop the message.

b. Otherwise, instead of sending an acknowledgement immediately upon the receipt of a reli
able message from a peer, the receiver SHOULD wait for a time no longer than MRP_STAND
ALONE_ACK_TIMEOUT before sending a standalone acknowledgment:

i. Add the message counter of the received message to the acknowledgement table to signal
that an outbound acknowledgement is pending. There can be only one outstanding
acknowledgement at a time on a single Exchange. If a pending acknowledgement
already exists for the Exchange, and it has StandaloneAckSent set to false, a standalone
acknowledgment SHALL be sent immediately for that pending message counter, and the
acknowledgement table entry SHALL be replaced for the new message.

ii. Start the acknowledgement timer for the Exchange.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 149

A. If the timer triggers before being cancelled, a standalone acknowledgment SHALL be
sent to the source of the message. Sending this standalone acknowledgment SHALL
NOT remove the acknowledgement table entry and SHALL set the StandaloneAckSent
field of the entry to true.

2. The received message is then delivered to the next processing step of Section 4.7.2, “Message
Reception”.

Receive flow state diagram

The MRP receive flow described above is depicted in Figure Figure 13, “MRP receive flow”.

Figure 13. MRP receive flow

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 150 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.12.6. Reliable Message State

4.12.6.1. Retransmission Table

For retransmissions, the sender maintains a retransmission table of context records containing
information on all reliable messages sent that have acknowledgments still pending. Each such reli
able message context record includes the following fields:

• Reference to Exchange Context

• Message Counter

• Reference to fully formed, encoded and encrypted message buffer

• Send count

• Retransmission timeout counter

Each time a message that requires acknowledgment is sent, a new retransmission context record is
inserted into the retransmission table or an existing record is updated to increment its send count.
The message is sent a configurable maximum number of times (MRP_MAX_TRANSMISSIONS) and,
if still undelivered, the application is notified of the failure.

4.12.6.2. Acknowledgement Table

The receiver maintains an acknowledgement table of context records containing information on
each reliable message for which an acknowledgment SHALL be sent. Each such reliable message
context record includes the following fields:

• Reference to Exchange Context

• Message Counter

• A boolean, StandaloneAckSent, indicating whether a standalone acknowledgement has been sent
for this message counter. Initially false.

An entry SHALL remain in the table until one of the following things happens:

1. The exchange associated with the entry is closed. See Section 4.10.5.3, “Closing an Exchange”.

2. The exchange associated with the entry has switched to track a pending acknowledgement for a
new message counter value. See Section 4.12.5.2.2, “Standalone acknowledgement processing”.

3. A message that is not a standalone acknowledgement is sent which serves as an acknowledge
ment for the entry. See Section 4.12.5.1.1, “Piggyback acknowledgment processing”.

4.12.7. MRP Messages

4.12.7.1. MRP Standalone Acknowledgement

The MRP Standalone Acknowledgement message SHALL be formed as follows:

• The application payload SHALL be empty.

• The A Flag SHALL be set to 1.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 151

• The Acknowledged Message Counter SHALL be included in the header.

• The Protocol ID SHALL be set to PROTOCOL_ID_SECURE_CHANNEL.

• The Protocol Opcode SHALL be set to MRP Standalone Acknowledgement.

The rules for when to send this message are detailed in Section 4.12.5.2.2, “Standalone acknowl
edgement processing”.

4.12.8. Parameters and Constants

This is a glossary of parameters used in this chapter with a brief description for each parameter. A
Node SHALL use the provided default value for each parameter unless the message recipient Node
advertises an alternate value for the parameter via Operational Discovery.

Table 21. Glossary of MRP parameters

Parameter Name Description Default Value

MRP_MAX_TRANSMISSIONS The maximum number of transmission
attempts for a given reliable message. The
sender MAY choose this value as it sees fit.

5

MRP_BACKOFF_BASE The base number for the exponential back
off equation.

1.6

MRP_BACKOFF_JITTER The scaler for random jitter in the backoff
equation.

0.25

MRP_BACKOFF_MARGIN The scaler margin increase to backoff over
the peer idle interval.

1.1

MRP_BACKOFF_THRESHOLD The number of retransmissions before
transitioning from linear to exponential
backoff.

1

MRP_STANDALONE_ACK_TIMEOUT Amount of time to wait for an opportunity
to piggyback an acknowledgement on an
outbound message before falling back to
sending a standalone acknowledgement.

200 millisec
onds

Table 22. Glossary of Session parameters

Parameter Name Description Default Value

SESSION_IDLE_INTERVAL Minimum amount of time between sender
retries when the destination node is Idle.
This SHALL be greater than or equal to the
maximum amount of time a node may be
non-responsive to incoming messages
when Idle.

500 millisec
onds

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 152 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Parameter Name Description Default Value

SESSION_ACTIVE_INTERVAL Minimum amount of time between sender
retries when the destination node is Active.
This SHALL be greater than or equal to the
maximum amount of time a node may be
non-responsive to incoming messages
when Active.

300 millisec
onds

SESSION_ACTIVE_THRESHOLD Minimum amount of time the node
SHOULD stay active after network activity.

4000 millisec
onds

DATA_MODEL_REVISION Version of Data Model for the Session para
meters side where it appears.

See DataModel
Revision
attribute.

INTERACTION_MODEL_REVISION Version of Interaction Model for the Ses
sion parameters side where it appears.

See Section
8.1.1, “Revision
History”.

SPECIFICATION_VERSION Version of Specification for the Session
parameters side where it appears.

See Specifica
tionVersion
attribute.

MAX_PATHS_PER_INVOKE The maximum number of elements in the
InvokeRequests list that the Node is able to
process

See Max
PathsPerIn
voke attribute.

These parameters are encoded in the following TLV format when included in CASE / PASE session
establishment:

session-parameter-struct => STRUCTURE [tag-order]
{
 SESSION_IDLE_INTERVAL [1, optional] : UNSIGNED INTEGER [range 32-bits],
 SESSION_ACTIVE_INTERVAL [2, optional] : UNSIGNED INTEGER [range 32-bits],
 SESSION_ACTIVE_THRESHOLD [3, optional] : UNSIGNED INTEGER [range 16-bits],
 DATA_MODEL_REVISION [4] : UNSIGNED INTEGER [range 16-bits],
 INTERACTION_MODEL_REVISION [5] : UNSIGNED INTEGER [range 16-bits],
 SPECIFICATION_VERSION [6] : UNSIGNED INTEGER [range 32-bits],
 MAX_PATHS_PER_INVOKE [7] : UNSIGNED INTEGER [range 16-bits],
}

For backwards compatibility, if any tag after tag 2 (SESSION_ACTIVE_INTERVAL) is present, then the
SESSION_ACTIVE_INTERVAL SHALL also be present.

NOTE

That means that SESSION_ACTIVE_INTERVAL is always present if the sender of the
CASE/PASE session establishment message supports DATA_MODEL_REVISION,
INTERACTION_MODEL_REVISION, and SPECIFICATION_VERSION, but recipients
SHALL NOT assume that it is present.

For backwards compatibility, if the DATA_MODEL_REVISION field is missing, it implies a DataMod

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 153

elRevision value of either 16 or 17.

For backwards compatibility, if the INTERACTION_MODEL_REVISION field is missing, it implies a
value of either 10 or 11.

For backwards compatibility, if the SPECIFICATION_VERSION field is missing, it implies a Specifica
tionVersion value strictly smaller than 0x01030000.

For backwards compatibility, if the MAX_PATHS_PER_INVOKE field is missing, it implies a Max
PathsPerInvoke set to 1.

4.13. Unicast Communication
This section specifies the semantics of establishing a unicast session and the lifecycle of a unicast
session.

Unicast sessions exist in one of two phases:

1. Session Establishment Phase: A series of well-defined unencrypted messages that aim to estab
lish a shared key.

2. Application Data Phase: A series of ad-hoc encrypted messages exchanging interaction model
protocol actions, application data, etc.

4.13.1. Session Establishment Phase

Session establishment uses either the CASE or PASE protocol.

CASE SHALL be used as a session establishment mechanism for all sessions except:

1. Communication for the purpose of commissioning when NOC has not yet been installed

PASE SHALL only be used for session establishment mechanism during device commissioning.
PASE SHALL NOT be used as a session establishment mechanism for any other session. BTP MAY be
used as the transport for device commissioning. BTP SHALL NOT be used as a transport for opera
tional purposes.

Unless otherwise specified, the CASE, PASE, User-Directed Commissioning protocol, and Secure
Channel Status Report messages SHALL be the only allowed unencrypted messages.

This phase aims to:

1. Authenticate peers (CASE-based sessions only).

2. Derive shared secrets to encrypt subsequent session data.

3. Choose session identifiers to identify the subsequent session.

4.13.1.1. Unsecured Session Context

The following session context data SHALL be utilized to associate messages to a particular peer and
recover context during unencrypted sessions:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 154 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

1. Session Role: Records whether the node is the session initiator or responder.

2. Ephemeral Initiator Node ID: Randomly selected for each session by the initiator from the Oper
ational Node ID range and enclosed by initiator as Source Node ID and responder as Destination
Node ID.

◦ Initiators SHALL select a new random ephemeral node ID for each unsecured session, and
SHALL select an ID that does not conflict with any ephemeral node IDs for any other ongo
ing unsecured sessions opened by the initiator.

3. Message Reception State: Provides tracking for the Unencrypted Message Counter of the remote
peer.

Matching and responder creation of Unsecured Session Contexts SHALL be as follows:

1. Given an incoming unencrypted message

a. Locate any Unsecured Session Context with matching Ephemeral Initiator Node ID

i. If any is located, the incoming message SHALL be assumed to be associated with this
Unsecured Session Context

b. Else if the message carries a Source Node ID

i. Create a new Unsecured Session Context

ii. Set Session Role to responder

iii. Record the incoming message’s Source Node ID as Ephemeral Initiator Node ID

c. Else discard the message

Initiator creation of Unsecured Session Contexts SHALL be as follows:

1. Given the first outgoing message of an unencrypted exchange

a. Create a new Unsecured Session Context

b. Set Session Role to initiator

c. Randomly select a node ID from the Operational Node ID range that does not collide with
any ephemeral node IDs for any other ongoing unsecured sessions opened by the initiator
and record this as Ephemeral Initiator Node ID

4.13.1.2. Session Establishment over IP

When establishing a session over IP, the initiator MAY use TCP when both of the following are true:

1. The initiator supports TCP Client as defined in the Supported Transport Mode Values table in the
T record.

2. The responder supports TCP Server as defined in the Supported Transport Mode Values table in
the T record.

Otherwise, the initiator SHALL use MRP to establish the session.

The transport used during the session establishment phase SHALL also be used for the subsequent
transport of messages over the established session.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 155

4.13.1.3. Shared Secrets

Both CASE and PASE produce two shared keys: I2RKey and R2IKey. These keys will be saved to the
session’s context and used to encrypt and decrypt messages during the Session Data Phase.

Nodes that support the CASE session resumption SHALL also save to the session’s context the
SharedSecret computed during the CASE protocol execution.

4.13.1.4. Choosing Secure Unicast Session Identifiers

Both CASE and PASE allow each participant the ability to choose a unicast session identifier for the
subsequent encrypted session. The session identifier SHALL be used to look up the relevant encryp
tion keys and any other metadata for a particular session.

Messages using a unicast session identifier SHALL set the Session Type field to 0. Each peer SHALL
specify a Session Identifier unique in reference to their own active sessions. There SHALL NOT be
overlap between the Session ID values allocated for PASE and CASE sessions, as the Session Identi
fier space is shared across both session establishment methods.

For example, if the initiator has two active sessions with session identifiers 0x0001 and 0x0002, it
could choose any non-zero session identifier besides 0x0001 and 0x0002.

If there are no available session identifiers (i.e. the participant has 65,535 open sessions), the Node
SHALL terminate an existing session to free a session identifier.

4.13.2. Application Data Phase

When the last CASE or PASE protocol message is sent or received and successfully processed, ses
sion establishment has completed.

4.13.2.1. Secure Session Context

During the Application Data Phase, the following conceptual session context data SHALL be utilized
to securely process subsequent messages:

1. Session Type: Records whether the session was established using CASE or PASE.

2. Session Role: Records whether the node is the session initiator or responder.

3. Local Session Identifier: Individually selected by each participant in secure unicast communi
cation during session establishment and used as a unique identifier to recover encryption keys,
authenticate incoming messages and associate them to existing sessions.

◦ On a given Node, this is the identifier that SHALL be used to map from an incoming mes
sage’s Session ID field to the session context data.

4. Peer Session Identifier: Assigned by the peer during session establishment.

◦ On a given Node, this is the identifier that SHALL be used in the Session ID field of every out
going message associated with the session, so that it can be interpreted as the Local Session
Identifier by the remote peer.

5. I2RKey: Encrypts data in messages sent from the initiator of session establishment to the respon
der.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 156 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6. R2IKey: Encrypts data in messages sent from the session establishment responder to the initia
tor.

7. SharedSecret: Computed during the CASE protocol execution and re-used when CASE session
resumption is implemented.

8. Local Message Counter: Secure Session Message Counter for outbound messages.

◦ At successful session establishment, the Local Message Counter SHALL be initialized per Sec
tion 4.6.1.1, “Message Counter Initialization”.

9. Message Reception State: Provides tracking for the Secure Session Message Counter of the
remote peer.

10. Local Fabric Index: Records the local Index for the session’s Fabric, which MAY be used to look
up Fabric metadata related to the Fabric for which this session context applies.

◦ This field SHALL contain the "no Fabric" value of 0 when the SessionType is PASE and success
ful invocation of the AddNOC command has not yet occurred during commissioning.

11. Peer Node ID: Records the authenticated node ID of the remote peer, when available.

◦ This field SHALL contain the "Unspecified Node ID" value of 0 when the SessionType is PASE.

12. Resumption ID: The ID used when resuming a session between the local and remote peer.

13. SessionTimestamp: A timestamp indicating the time at which the last message was sent or
received. This timestamp SHALL be initialized with the time the session was created. See Sec
tion 4.11.1.1, “Session Establishment - Out of Resources” for more information.

14. ActiveTimestamp: A timestamp indicating the time at which the last message was received. This
timestamp SHALL be initialized with the time the session was created.

15. The following Session parameters (see Table 22, “Glossary of Session parameters”):

a. SESSION_IDLE_INTERVAL

b. SESSION_ACTIVE_INTERVAL

c. SESSION_ACTIVE_THRESHOLD

d. PeerActiveMode: A boolean that tracks whether the peer node is in Active or Idle mode. Peer
ActiveMode is set as follows:

PeerActiveMode = (now() - ActiveTimestamp) < "SESSION_ACTIVE_THRESHOLD"

Note that the Local Fabric Index and Peer Fabric Index reported in the NOC Response MAY differ in
value, while still referring to the same Fabric, since for a given complete Fabric Reference, the short
Fabric Index allocated during commissioning of the respective Nodes on the same Fabric MAY be
different. This possible difference is due to the order in which the Fabric in question was joined in
the lifecycle of the respective Nodes. See the section on AddNOC command behavior for details on
Fabric Index allocation behavior over time.

There SHALL also be reservation of storage to support CASE Authenticated Tag (CAT) fields. The CAT
fields are 32-bit values that MAY have been present in RDN case-authenticated-tag of the remote
peer’s operational certificate, during CASE.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 157

The CAT fields are used to cache Operational Certificate data so that it can be used by the ACL pro
cessing logic to support CASE Authenticated Tags.

Since these fields MAY be omitted from NOCs, they MAY be marked as absent in the context, such
that they are not taken into account when missing. When present, they SHALL be stored. Maximum
up to 3 CAT fields SHALL be supported.

Their value is unused in PASE session contexts.

4.14. Session Establishment

4.14.1. Passcode-Authenticated Session Establishment (PASE)

This section describes session establishment using a shared passcode together with an augmented
Password-Authenticated Key Exchange (PAKE), in which only one party knows the passcode before
hand, to generate shared keys. This protocol is only used when commissioning a Node (i.e. the Com
missionee).

4.14.1.1. Protocol Overview

The Passcode-Authenticated Session Establishment (PASE) protocol aims to establish the first ses
sion between a Commissioner and a Commissionee using a known passcode provided out-of-band.
The pairing is performed using Section 3.10, “Password-Authenticated Key Exchange (PAKE)” and
relies on a Password-Based Key Derivation Function (PBKDF) where the passcode is used as pass
word.

This session establishment protocol provides a means to:

1. Communicate PBKDF parameters.

2. Derive PAKE bidirectional secrets.

Figure 14. Overview of the PASE Protocol

The Commissioner is the Initiator and the Commissionee is the Responder.

It is assumed that the initiator has somehow obtained the passcode and that the responder has the
relevant Crypto_PAKEValues_Responder corresponding to the passcode before starting a PASE session

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 158 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

establishment protocol.

4.14.1.2. Protocol Details

Message format

All PASE messages SHALL be structured as specified in Section 4.4, “Message Frame Format”.

All PASE messages are sent using an Unsecured Session:

• The Session ID field SHALL be set to 0.

• The Session Type bits of the Security Flags SHALL be set to 0.

• In the PASE messages from the initiator, S Flag SHALL be set to 1 and DSIZ SHALL be set to 0.

• In the PASE messages from the responder, S Flag SHALL be set to 0 and DSIZ SHALL be set to 1.

For each PASE message, the application payload is the TLV encoding of the message structure as
defined below:

Table 23. PASE Messages

Message Name Payload TLV Encoding

PBKDFParamRequest pbkdfparamreq-struct

PBKDFParamResponse pbkdfparamresp-struct

Pake1 pake-1-struct

Pake2 pake-2-struct

Pake3 pake-3-struct

PakeFinished N/A (encoded via StatusReport)

The other fields of the Message format are not specific to the PASE messages.

For all TLV-encoded PASE messages, any context-specific tags not listed in the associated TLV
schemas SHALL be reserved for future use, and SHALL be silently ignored if seen by a recipient
which cannot understand them.

Message Exchange

The PBKDFParamRequest, PBKDFParamResponse, Pake1, Pake2, Pake3, and PakeFinished of a distinct session
establishment are part of the same message exchange. The initiator and responder SHALL NOT
send encrypted application data in the newly established session until PakeFinished is received by
the initiator within the unencrypted session used for establishment.

Each message SHALL use PROTOCOL_ID_SECURE_CHANNEL as Protocol ID and the corresponding Protocol
Opcode as defined in Table 17, “Secure Channel Protocol Opcodes”.

The flags of the Exchange Flags of the Protocol Header are defined as follows per PASE message:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 159

Message I Flag

PBKDFParamRequest 1

PBKDFParamResponse 0

Pake1 1

Pake2 0

Pake3 1

All PASE messages SHALL be sent reliably. This may be implicit (e.g. TCP) or explicit (e.g. MRP reli
able messaging) in the underlying transport.

The other fields of the Protocol Header are not specific to the PASE messages.

PBKDFParamRequest

This message serves to request the PBKDF parameters, with a payload that follows this TLV schema:

pbkdfparamreq-struct => STRUCTURE [tag-order]
{
 initiatorRandom [1] : OCTET STRING [length 32],
 initiatorSessionId [2] : UNSIGNED INTEGER [range 16-bits],
 passcodeId [3] : UNSIGNED INTEGER [length 16-bits],
 hasPBKDFParameters [4] : BOOLEAN,
 initiatorSessionParams [5, optional] : session-parameter-struct
}

1. The initiator SHALL generate a random number InitiatorRandom = Crypto_DRBG(len = 32 * 8).

2. The initiator SHALL generate a session identifier (InitiatorSessionId) for subsequent identifica
tion of this session. The InitiatorSessionId field SHALL NOT overlap with any other existing
PASE or CASE session identifier in use by the initiator. See Section 4.13.1.4, “Choosing Secure
Unicast Session Identifiers” for more details. The initiator SHALL set the Local Session Identi
fier in the Session Context to the value InitiatorSessionId.

3. The initiator SHALL choose a passcode identifier (PasscodeId) corresponding to a particular
PAKE passcode verifier installed on the responder. A value of 0 for the passcodeID SHALL corre
spond to the PAKE passcode verifier for the currently-open commissioning window, if any. Non-
zero values are reserved for future use. For example, for initial commissioning, the verifier
would be the built-in verifier matching the Onboarding Payload's passcode or, equivalently, the
multi-fabric Basic Commissioning Method passcode if that method is supported. For the multi-
fabric Enhanced Commissioning Method, the verifier would match the verifier provided
through the OpenCommissioningWindow command.

4. The initiator SHALL indicate whether the PBKDF parameters (salt and iterations) are known for
the particular passcodeId (for example from the QR code) by setting HasPBKDFParameters. If HasP
BKDFParameters is set to True, the responder SHALL NOT return the PBKDF parameters. If HasP
BKDFParameters is set to False, the responder SHALL return the PBKDF parameters.

5. The initiator SHALL send a message with the appropriate Protocol Id and Protocol Opcode from

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 160 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Table 17, “Secure Channel Protocol Opcodes” whose payload is the TLV-encoded pbkdf
paramreq-struct PBKDFParamRequest with an anonymous tag for the outermost struct.

PBKDFParamRequest =
{
 initiatorRandom (1) = InitiatorRandom,
 initiatorSessionId (2) = InitiatorSessionId,
 passcodeID (3) = PasscodeId,
 hasPBKDFParameters (4) = HasPBKDFParameters,
}

PBKDFParamResponse

pbkdfparamresp-struct => STRUCTURE [tag-order]
{
 initiatorRandom [1] : OCTET STRING [length 32],
 responderRandom [2] : OCTET STRING [length 32],
 responderSessionId [3] : UNSIGNED INTEGER [range 16-bits],
 pbkdf_parameters [4] : Crypto_PBKDFParameterSet,
 responderSessionParams [5, optional] : session-parameter-struct
}

On receipt of PBKDFParamRequest, the responder SHALL:

1. Verify passcodeID is set to 0. If verification fails, the responder SHALL send a status report: Sta
tusReport(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAME
TER) and perform no further processing.

2. Generate a random number ResponderRandom = Crypto_DRBG(len = 32 * 8).

3. Generate a session identifier (ResponderSessionId) for subsequent identification of this session.
The ResponderSessionId field SHALL NOT overlap with any other existing PASE or CASE session
identifier in use by the responder. See Section 4.13.1.4, “Choosing Secure Unicast Session Identi
fiers” for more details. The responder SHALL set the Local Session Identifier in the Session
Context to the value ResponderSessionId.

4. Set the Peer Session Identifier in the Session Context to the value PBKDFParamRequest.initia
torSessionId.

5. Construct the appropriate Crypto_PBKDFParameterSet (PBKDFParameters). If PBKDFParamRe
quest.hasPBKDFParameters is True the responder SHALL NOT include the PBKDF parameters (i.e.
salt and iteration count) in the Crypto_PBKDFParameterSet. If Msg1.hasPBKDFParameters is False the
responder SHALL include the PBKDF parameters (i.e. salt and iteration count) in the Crypto_P
BKDFParameterSet.

6. Send a message with the appropriate Protocol Id and Protocol Opcode from Table 17, “Secure
Channel Protocol Opcodes” whose payload is the TLV-encoded pbkdfparamresp-struct PBKDF
ParamResponse with an anonymous tag for the outermost struct.

PBKDFParamResponse =

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 161

{
 initiatorRandom (1) = PBKDFParamRequest.initiatorRandom,
 responderRandom (2) = ResponderRandom,
 responderSessionId (3) = ResponderSessionId,
 pbkdf_parameters (4) = PBKDFParameters
}

Pake1

pake-1-struct => STRUCTURE [tag-order]
{
 pA [1] : OCTET STRING [length CRYPTO_PUBLIC_KEY_SIZE_BYTES],
}

On receipt of PBKDFParamResponse, the initiator SHALL:

1. Set the Peer Session Identifier in the Session Context to the value PBKDFParamResponse.respon
derSessionId.

2. Generate the Crypto_PAKEValues_Initiator according to the PBKDFParamResponse.pbkdf_parameters

3. Using Crypto_PAKEValues_Initiator, generate pA := Crypto_pA(Crypto_PAKEValues_Initiator)

4. Send a message with the appropriate Protocol Id and Protocol Opcode from Table 17, “Secure
Channel Protocol Opcodes” whose payload is the TLV-encoded pake-1-struct Pake1 with an
anonymous tag for the outermost struct.

Pake1 =
{
 pA (1) = pA,
}

Pake2

pake-2-struct => STRUCTURE [tag-order]
{
 pB [1] : OCTET STRING [length CRYPTO_PUBLIC_KEY_SIZE_BYTES],
 cB [2] : OCTET STRING [length CRYPTO_HASH_LEN_BYTES],
}

On receipt of Pake1, the responder SHALL:

1. Compute pB := Crypto_pB(Crypto_PAKEValues_Responder) using the passcode verifier indicated in
PBKDFParamRequest

2. Compute TT := Crypto_Transcript(PBKDFParamRequest, PBKDFParamResponse, Pake1.pA, pB)

3. Compute (cA, cB, Ke) := Crypto_P2(TT, Pake1.pA, pB)

4. Send a message with the appropriate Protocol Id and Protocol Opcode from Table 17, “Secure

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 162 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Channel Protocol Opcodes” whose payload is the TLV-encoded pake-2-struct Pake2 with an
anonymous tag for the outermost struct.

Pake2 =
{
 pB (1) = pB,
 cB (2) = cB,
}

Pake3

pake-3-struct => STRUCTURE [tag-order]
{
 cA [1] : OCTET STRING [length CRYPTO_HASH_LEN_BYTES],
}

On receipt of Pake2, the initiator SHALL:

1. Compute TT := Crypto_Transcript(PBKDFParamRequest, PBKDFParamResponse, Pake1.pA, Pake2.pB)

2. Compute (cA, cB, Ke) := Crypto_P2(TT, Pake1.pA, Pake2.pB)

3. Verify Pake2.cB against cB. If verification fails, the initiator SHALL send a status report: Status
Report(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER)
and perform no further processing.

4. Send a message with the appropriate Protocol Id and Protocol Opcode from Table 17, “Secure
Channel Protocol Opcodes” whose payload is the TLV-encoded pake-3-struct Pake3 with an
anonymous tag for the outermost struct.

Pake3 =
{
 cA (1) = cA,
}

5. The initiator SHALL NOT send any encrypted application data until it receives PakeFinished
from the responder.

On reception of Pake3, the responder SHALL:

1. Verify Pake3.cA against cA. If verification fails, the responder SHALL send a status report: Sta
tusReport(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAME
TER) and perform no further processing.

2. The responder SHALL set SessionTimestamp to a timestamp from a clock which would allow for
the eventual determination of the last session use relative to other sessions.

3. The responder SHALL encode and send PakeFinished.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 163

PakeFinished

To indicate the successful completion of the protocol, the responder SHALL send a status report:
StatusReport(GeneralCode: SUCCESS, ProtocolId: SECURE_CHANNEL, ProtocolCode: SESSION_ESTABLISH
MENT_SUCCESS).

The initiator SHALL set SessionTimestamp to a timestamp from a clock which would allow for the
eventual determination of the last session use relative to other sessions.

Session Encryption Keys

After verification of Pake3, each party can compute their sending and receiving session keys as
described below:

byte SEKeys_Info[] = /* "SessionKeys" */
 {0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x4b,
 0x65, 0x79, 0x73}

I2RKey || R2IKey || AttestationChallenge =
 Crypto_KDF
 (
 inputKey = Ke,
 salt = [],
 info = SEKeys_Info,
 len = 3 * CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

1. Each key is exactly CRYPTO_SYMMETRIC_KEY_LENGTH_BITS bits.

2. The initiator SHALL use I2RKey to encrypt and integrity protect messages and the `R2IKey' to
decrypt and verify messages.

3. The responder SHALL use R2IKey to encrypt and integrity protect messages and the `I2RKey' to
decrypt and verify messages.

4. The AttestationChallenge SHALL only be used as a challenge during device attestation. See Sec
tion 6.2.3, “Device Attestation Procedure” for more details.

Upon initial installation of the new PASE Session Keys:

1. The Node SHALL initialize its Local Message Counter in the Session Context per Section 4.6.1.1,
“Message Counter Initialization”.

2. The Node SHALL initialize the Message Reception State in the Session Context` and set the syn
chronized max_message_counter of the peer to 0.

where || indicates message concatenation and [] a zero-length array.

4.14.2. Certificate Authenticated Session Establishment (CASE)

This section describes a certificate-authenticated session establishment (CASE) protocol using Node

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 164 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Operational credentials. This session establishment mechanism provides an authenticated key
exchange between exactly two peers while maintaining privacy of each peer. A resumption mecha
nism allows bootstrapping a new session from a previous one, dramatically reducing the computa
tion required as well as reducing the number of messages exchanged.

4.14.2.1. Protocol Overview

This session establishment protocol provides a means to:

1. Mutually authenticate both peer Nodes

2. Generate cryptographic keys to secure subsequent communication within a session

3. Exchange operational parameters for the session, such as Session Identifier and MRP parame
ters

The cryptographic protocol mirrors the [SIGMA] protocol and uses the Identity Protection Key (IPK)
to provide better identity protection. Briefly, the protocol will:

1. Exchange ephemeral elliptic curve public keys (Sigma1.initiatorEphPubKey and Sigma2.respon
derEphPubKey) to generate a shared secret

2. Exchange certificates to prove identities (Sigma2.encrypted2.responderNOC and Sigma3.encrypt
ed3.initiatorNOC)

3. Prove possession of the NOC private key by signing the ephemeral keys and NOC (sigma-2-tbs
data and sigma-3-tbsdata)

The basic protocol can be achieved within 2 round trips as shown below:

Figure 15. Basic Session Establishment

4.14.2.2. Session Resumption

The protocol also provides a means to quickly resume a session using a previously established ses
sion. Resumption does not require expensive signature creation and verification which signifi
cantly reduces the computation time. Because of this, resumption is favoured for low-powered
devices when applicable. Session resumption SHOULD be used by initiators when the necessary
state is known to the initiator.

The nomenclature Sigma1 with Resumption in the following subsections implies a Sigma1 message
with both the optional resumptionID and initiatorResumeMIC fields populated in sigma-1-struct.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 165

Figure 16. Session Resumption

In the case where a Responder is not able to resume a session as requested by a Sigma1 with Resump
tion, the information included in the Sigma1 with Resumption message SHALL be processed as a Sig
ma1 message without any resumption fields to construct a Sigma2 message and continue the stan
dard session establishment protocol without resumption.

To make the resumption succeed, both the Initiator and the Responder SHALL have remembered
the SharedSecret they have computed during the previous execution of the CASE session establish
ment. It SHALL be that SharedSecret that is used to compute the resumption ID.

Session Resumption State

To perform session resumption, the following state from the previous session context must be
known to the initiator and responder:

1. SharedSecret

2. Local Fabric Index

3. Peer Node ID

4. Peer CASE Authenticated Tags

5. ResumptionID

4.14.2.3. Protocol Details

Message format

All CASE messages SHALL be structured as specified in Section 4.4, “Message Frame Format”.

All CASE messages are sent using an Unsecured Session:

• The Session ID field SHALL be set to 0.

• The Session Type bits of the Security Flags SHALL be set to 0.

• In the CASE messages from the initiator, S Flag SHALL be set to 1 and DSIZ SHALL be set to 0.

• In the CASE messages from the responder, S Flag SHALL be set to 0 and DSIZ SHALL be set to 1.

For each CASE message, the application payload is the TLV encoding of the message structure as
defined below:

Table 24. CASE Messages

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 166 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Message Name Payload TLV Encoding

Sigma1 sigma-1-struct

Sigma2 sigma-2-struct,

Sigma3 sigma-3-struct,

Sigma2_Resume sigma-2-resume-struct,

SigmaFinished N/A (encoded via StatusReport)

The other fields of the Message format are not specific to the CASE messages.

Message Exchange

The Sigma1, Sigma2, Sigma3, and SigmaFinished of a distinct session establishment are part of the same
message exchange. The Sigma1 with resumption, Sigma2_Resume and SigmaFinished of a distinct ses
sion resumption are part of the same message exchange. The Sigma1 with resumption, Sigma2, Sigma3
and SigmaFinished of a distinct session resumption that failed to perform the resumption are part of
the same message exchange.

Each message SHALL use PROTOCOL_ID_SECURE_CHANNEL as Protocol ID and the corresponding Protocol
Opcode as defined in Table 17, “Secure Channel Protocol Opcodes”.

The Exchange Flags of the Protocol Header are defined as follows per CASE message:

Message I Flag

CASE Sigma1 1

CASE Sigma2 0

CASE Sigma3 1

CASE Sigma2_Resume 0

For the SigmaFinished message the value of the I Flag is set depending on whether the status mes
sage is sent by the Initiator or the Responder.

All CASE messages SHALL be sent reliably. This may be implicit (e.g. TCP) or explicit (e.g. MRP reli
able messaging) in the underlying transport.

The other fields of the Exchange format are not specific to the CASE messages.

Generate and Send Sigma1

The initiator encodes and sends a Sigma1 message, with a payload that follows this TLV schema:

sigma-1-struct => STRUCTURE [tag-order]
{
 initiatorRandom [1] : OCTET STRING [length 32],
 initiatorSessionId [2] : UNSIGNED INTEGER [range 16-bits],
 destinationId [3] : destination-identifier,
 initiatorEphPubKey [4] : ec-pub-key,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 167

 initiatorSessionParams [5, optional] : session-parameter-struct,
 resumptionID [6, optional] : OCTET STRING [length 16],
 initiatorResumeMIC [7, optional] : OCTET STRING [length
CRYPTO_AEAD_MIC_LENGTH_BYTES]
}

1. The initiator SHALL generate a random number InitiatorRandom = Crypto_DRBG(len = 32 * 8).

2. The initiator SHALL generate a session identifier (InitiatorSessionId) for subsequent identifica
tion of this session. The InitiatorSessionId field SHALL NOT overlap with any other existing
PASE or CASE session identifier in use by the initiator. See Section 4.13.1.4, “Choosing Secure
Unicast Session Identifiers” for more details.

3. The initiator SHALL generate a destination identifier (DestinationId) according to Destination
Identifier to enable the responder to properly select a mutual Fabric and trusted root for the
secure session.

4. The initiator SHALL generate an ephemeral key pair InitiatorEphKeyPair = Crypto_GenerateKey
pair().

5. The initiator MAY encode any relevant MRP parameters.

6. Any context-specific tags not listed in the above TLV schemas SHALL be reserved for future use,
and SHALL be silently ignored if seen by a responder which cannot understand them.

7. If the initiator is resuming a session from a previous execution of the CASE with the same peer,
the initiator SHALL:

a. Note the ResumptionID of the previous session.

b. Generate the S1RK key.

c. Generate the initiatorResumeMIC using the SharedSecret from the previous session:

byte Resume1MIC_P[] = {}
byte Resume1MIC_A[] = {}
byte Resume1MIC_Nonce[13] = /* "NCASE_SigmaS1" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x53, 0x31}

InitiatorResume1MIC = Crypto_AEAD_GenerateEncrypt(
 K = S1RK,
 P = Resume1MIC_P,
 A = Resume1MIC_A,
 N = Resume1MIC_Nonce
)

8. The initiator SHALL send a message with Secure Channel Protocol ID and Sigma1 Protocol Opcode
from Table 17, “Secure Channel Protocol Opcodes” whose payload is the TLV-encoded Sigma1
Msg1 with an anonymous tag for the outermost struct.

Msg1 =
{

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 168 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 initiatorRandom (1) = InitiatorRandom,
 initiatorSessionId (2) = InitiatorSessionId,
 destinationId (3) = DestinationId,
 initiatorEphPubKey (4) = InitiatorEphKeyPair.publicKey
 initiatorSessionParams (5) = session-parameter-struct (optional),
 resumptionID (6) = ResumptionID (optional, only present if performing
resumption),
 initiatorResumeMIC (7) = InitiatorResume1MIC (optional, only present if
performing resumption)
}

Validate Sigma1

On receipt of Msg1, the responder SHALL perform the following:

1. If Msg1 contains either a resumptionID or an initiatorResumeMIC field but not both, the responder
SHALL send a status report: StatusReport(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL,
ProtocolCode: INVALID_PARAMETER) and perform no further processing.

2. Set the Peer Session Identifier in the Session Context to the value Msg1.initiatorSessionId.

3. If Msg1 contains both the resumptionID and initiatorResumeMIC fields, the responder SHALL
search for an existing session that has a Resumption ID equal to the incoming resumptionID. If a
single such session exists, the responder SHALL follow the steps in Section 4.14.2.3.10, “Validate
Sigma1 with Resumption” rather than continue the steps outlined in Section 4.14.2.3.5, “Validate
Sigma1 Destination ID”.

4. If Msg1 does not contain a resumptionID and initiatorResumeMIC field, the responder SHALL con
tinue the steps in Section 4.14.2.3.5, “Validate Sigma1 Destination ID”.

Validate Sigma1 Destination ID

1. The responder SHALL validate the incoming destinationId:

a. The responder SHALL traverse all its installed Node Operational Certificates (NOC), gather
ing the associated trusted roots' public keys from the associated chains and SHALL generate
a candidateDestinationId based on the procedure in Section 4.14.2.4.1, “Destination Identi
fier” for that tuple of <Root Public Key, Fabric ID, Node ID>.

b. The responder SHALL verify that the incoming destinationId matches one of the candidat
eDestinationId generated above. Upon such a match, the associated trusted root, Fabric ID,
Node ID and IPK SHALL be recorded for subsequent use.

c. Note that at the initiator, only the current Epoch Key for the IPK will have been used. At the
receiver, several IPK Epoch Keys may be installed, requiring several candidateDestinationId
to be computed, one per available IPK Operational Key, per NOC.

2. If there is no candidateDestinationId matching the incoming destinationId, the responder
SHALL send a status report: StatusReport(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL,
ProtocolCode: NO_SHARED_TRUST_ROOTS) and perform no further processing.

3. Otherwise, if a match was found for the destinationId, the matched NOC, ICAC (if present), and
associated trusted root SHALL be used for selection of the responderNOC and responderICAC in the
steps for Sigma2.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 169

Generate and Send Sigma2

If validation is successful, the responder encodes and sends a Sigma2 message.

sigma-2-tbsdata => STRUCTURE [tag-order]
{
 responderNOC [1] : OCTET STRING,
 responderICAC [2, optional] : OCTET STRING,
 responderEphPubKey [3] : ec-pub-key,
 initiatorEphPubKey [4] : ec-pub-key,
}

sigma-2-tbedata => STRUCTURE [tag-order]
{
 responderNOC [1] : OCTET STRING,
 responderICAC [2, optional] : OCTET STRING,
 signature [3] : ec-signature,
 resumptionID [4] : OCTET STRING [length 16],
}

sigma-2-struct => STRUCTURE [tag-order]
{
 responderRandom [1] : OCTET STRING [length 32],
 responderSessionId [2] : UNSIGNED INTEGER [range 16-bits],
 responderEphPubKey [3] : ec-pub-key,
 encrypted2 [4] : OCTET STRING,
 responderSessionParams [5, optional] : session-parameter-struct
}

NOTE
sigma-2-tbsdata is NOT transmitted but is instead signed; the signature will be
encrypted and transmitted.

1. The responder SHALL generate a random resumption ID ResumptionID = Crypto_DRBG(len = 16 *
8).

a. The responder SHALL set the Resumption ID in the Session Context to the value ResumptionID.

2. The responder SHALL use the Node Operational Key Pair ResponderNOKeyPair, responderNOC, and
responderICAC (if present) corresponding to the NOC obtained in Section 4.14.2.3.4, “Validate Sig
ma1”.

3. The responder SHALL generate an ephemeral key pair ResponderEphKeyPair = Crypto_Gener
ateKeypair().

4. The responder SHALL generate a shared secret:

SharedSecret = Crypto_ECDH(
 privateKey = ResponderEphKeyPair.privateKey,
 publicKey = Msg1.initiatorEphPubKey,
)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 170 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5. The responder SHALL encode the following items as a sigma-2-tbsdata with an anonymous tag:

a. responderNOC as a matter-certificate

b. responderICAC (if present) as a matter-certificate

c. ResponderEphKeyPair.publicKey

d. Msg1.initiatorEphPubKey

6. The responder SHALL generate a signature:

TBSData2Signature = Crypto_Sign(
 message = sigma-2-tbsdata,
 privateKey = ResponderNOKeyPair.privateKey
)

7. The responder SHALL encode the following items as a sigma-2-tbedata, where the encoding of
responderNOC and responderICAC items SHALL be byte-for-byte identical to the encoding in sigma-
2-tbsdata:

a. responderNOC as a matter-certificate. This encoding SHALL be byte-for-byte identical to the
encoding in sigma-2-tbsdata.

b. responderICAC (if present) as a matter-certificate. This encoding SHALL be byte-for-byte iden
tical to the encoding in sigma-2-tbsdata.

c. TBSData2Signature

d. ResumptionID

8. The responder SHALL generate a random number Random = Crypto_DRBG(len = 32 * 8).

9. The responder SHALL generate the S2K key using Random as Responder Random and Respon
derEphKeyPair.publicKey as Responder Ephemeral Public Key.

10. The responder SHALL generate the encrypted and integrity protected data:

byte TBEData2_A[] = {}
byte TBEData2_Nonce[13] = /* "NCASE_Sigma2N" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x32, 0x4e}

TBEData2Encrypted = Crypto_AEAD_GenerateEncrypt(
 K = S2K,
 P = TBEData2,
 A = TBEData2_A,
 N = TBEData2_Nonce
)

11. The responder SHALL generate a session identifier (ResponderSessionId) for subsequent identifi
cation of this secured session. The ResponderSessionId field SHALL NOT overlap with any other
existing PASE or CASE session identifier in use by the responder. See Section 4.13.1.4, “Choosing
Secure Unicast Session Identifiers” for more details. The responder SHALL set the Local Session

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 171

Identifier in the Session Context to the value ResponderSessionId.

12. The responder SHALL use the Fabric IPK configured as described in Section 4.14.2.6.1, “Identity
Protection Key (IPK)”.

13. Any context-specific tags not listed in the above TLV schemas SHALL be reserved for future use,
and SHALL be silently ignored if seen by an initiator which cannot understand them.

14. The responder SHALL send a message with Secure Channel Protocol ID and Sigma2 Protocol
Opcode from Table 17, “Secure Channel Protocol Opcodes” whose payload is the TLV-encoded
Sigma2 Msg2 with an anonymous tag for the outermost struct.

Msg2 =
{
 responderRandom (1) = Random,
 responderSessionId (2) = ResponderSessionId,
 responderEphPubKey (3) = ResponderEphKeyPair.publicKey,
 encrypted2 (4) = TBEData2Encrypted,
 responderSessionParams (5) = session-parameter-struct (optional)
}

Validate Sigma2

On receipt of Msg2, the initiator SHALL perform the following:

1. The initiator SHALL generate a shared secret:

SharedSecret = Crypto_ECDH(
 privateKey = InitiatorEphKeyPair.privateKey,
 publicKey = Msg2.responderEphPubKey,
)

2. The initiator SHALL generate the S2K key using Msg2.responderRandom as Responder Random and
Msg2.responderEphPubKey as Responder Ephemeral Public Key.

3. The initiator SHALL generate the decrypted data:

byte TBEData2_A[] = {}
byte TBEData2_Nonce[13] = /* "NCASE_Sigma2N" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x32, 0x4e}

Success, TBEData2 = Crypto_AEAD_DecryptVerify(
 K = S2K,
 C = Msg2.encrypted2,
 A = TBEData2_A,
 N = TBEData2_Nonce
)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 172 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4. If the value of Success is FALSE, the initiator SHALL send a status report: StatusReport(General
Code: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER) and perform no
further processing.

5. The initiator SHALL verify that the NOC in TBEData2.responderNOC and ICAC in TBEData2.respon
derICAC (if present) fulfills the following constraints:

a. The Fabric ID and Node ID SHALL match the intended identity of the receiver Node, as
included in the computation of the Destination Identifier when generating Sigma1.

b. If an ICAC is present, and it contains a Fabric ID in its subject, then it SHALL match the Fab
ricID in the NOC leaf certificate.

c. The certificate chain SHALL chain back to the Trusted Root CA Certificate TrustedRCAC whose
public key was used in the computation of the Destination Identifier when generating Sig
ma1.

d. All the elements in the certificate chain SHALL respect the Matter Certificate DN Encoding
Rules, including range checks for identifiers such as Fabric ID and Node ID.

6. If any of the validations from the previous step fail, the initiator SHALL send a status report:
StatusReport(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARA
METER) and perform no further processing.

7. The initiator SHALL verify TBEData2.responderNOC using:

a. Success = Crypto_VerifyChain(certificates = [TBEData2.responderNOC, TBEData2.responderI
CAC, TrustedRCAC]), when TBEData2.responderICAC is present, or

b. Success = Crypto_VerifyChain(certificates = [TBEData2.responderNOC, TrustedRCAC]), when
TBEData2.responderICAC is not present.

8. If the value of Success is FALSE, the initiator SHALL send a status report: StatusReport(General
Code: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER) and perform no
further processing.

9. The initiator SHALL encode the following items as a sigma-2-tbsdata with an anonymous tag:

a. responderNOC as copied from TBEData2

b. responderICAC (if present) as copied from TBEData2

c. Msg2.responderEphPubKey

d. InitiatorEphKeyPair.publicKey

10. The initiator SHALL verify TBEData2.signature (see RFC 5280):

Success = Crypto_Verify(
 publicKey = Public key obtained from responderNOC,
 message = sigma-2-tbsdata,
 signature = TBEData2.signature
)

11. If the value of Success is FALSE, the initiator SHALL send a status report: StatusReport(General
Code: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER) and perform no
further processing.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 173

12. Set the Resumption ID in the Session Context to the value TBEData2.resumptionID.

13. Set the Peer Session Identifier in the Session Context to the value Msg2.responderSessionId.

Generate and Send Sigma3

If validation is successful, the initiator encodes and sends a Sigma3 message.

sigma-3-tbsdata => STRUCTURE [tag-order]
{
 initiatorNOC [1] : OCTET STRING,
 initiatorICAC [2, optional] : OCTET STRING,
 initiatorEphPubKey [3] : ec-pub-key,
 responderEphPubKey [4] : ec-pub-key,
}

sigma-3-tbedata => STRUCTURE [tag-order]
{
 initiatorNOC [1] : OCTET STRING,
 initiatorICAC [2, optional] : OCTET STRING,
 signature [3] : ec-signature,
}

sigma-3-struct => STRUCTURE [tag-order]
{
 encrypted3 [1] : OCTET STRING,
}

NOTE
sigma-3-tbsdata is NOT transmitted but is instead signed; the signature will be
encrypted and transmitted.

1. The initiator SHALL select its Node Operational Key Pair InitiatorNOKeyPair, Node Operational
Certificates initiatorNOC and initiatorICAC (if present), and Trusted Root CA Certificate Truste
dRCAC corresponding to the chosen Fabric as determined by the Destination Identifier from Sig
ma1.

2. The initiator SHALL encode the following items as a sigma-3-tbsdata with an anonymous tag:

a. initiatorNOC as a matter-certificate

b. initiatorICAC (if present) as a matter-certificate

c. InitiatorEphKeyPair.publicKey

d. Msg2.responderEphPubKey

3. The initiator SHALL generate a signature:

TBSData3Signature = Crypto_Sign(
 message = sigma-3-tbsdata,
 privateKey = InitiatorNOKeyPair.privateKey
)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 174 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4. The initiator SHALL encode the following items as a sigma-3-tbedata:

a. initiatorNOC as a matter-certificate. This encoding SHALL be byte-for-byte identical to the
encoding in sigma-3-tbsdata.

b. initiatorICAC (if present) as a matter-certificate. This encoding SHALL be byte-for-byte iden
tical to the encoding in sigma-3-tbsdata.

c. TBSData3Signature

5. The initiator SHALL generate the S3K key.

6. The initiator SHALL generate the encrypted and integrity protected data:

byte TBEData3_A[] = {}
byte TBEData3_Nonce[13] = /* "NCASE_Sigma3N" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x33, 0x4e}

TBEData3Encrypted = Crypto_AEAD_GenerateEncrypt(
 K = S3K,
 P = TBEData3,
 A = TBEData3_A,
 N = TBEData3_Nonce
)

7. Any context-specific tags not listed in the above TLV schemas SHALL be reserved for future use,
and SHALL be silently ignored if seen by a responder which cannot understand them.

8. The initiator SHALL send a message with Secure Channel Protocol ID and Sigma3 Protocol Opcode
from Table 17, “Secure Channel Protocol Opcodes” whose payload is the TLV-encoded Sigma3
Msg3 = { encrypted3 (1) = TBEData3Encrypted } with an anonymous tag for the outermost
struct.

9. The initiator SHALL generate the session encryption keys using the method described in Section
4.14.2.6.6, “Session Encryption Keys”.

Validate Sigma3

On receipt of Msg3, the responder SHALL perform the following:

1. The responder SHALL generate the S3K key.

2. The responder SHALL generate the decrypted data:

byte TBEData3_A[] = {}
byte TBEData3_Nonce[13] = /* "NCASE_Sigma3N" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x33, 0x4e}

Success, TBEData3 = Crypto_AEAD_DecryptVerify(
 K = S3K,
 C = Msg3.encrypted3,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 175

 A = TBEData3_A,
 N = TBEData3_Nonce
)

3. If the value of Success is FALSE, the responder SHALL send a status report: StatusReport(Gener
alCode: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER) and perform
no further processing.

4. The responder SHALL verify that the NOC in TBEData3.initiatorNOC and the ICAC in TBE
Data3.initiatorICAC fulfill the following constraints:

a. The Fabric ID SHALL match the Fabric ID matched during processing of the Destination
Identifier after receiving Sigma1.

b. If an ICAC is present, and it contains a Fabric ID in its subject, then it SHALL match the Fab
ricID in the NOC leaf certificate.

c. The certificate chain SHALL chain back to the Trusted Root CA Certificate TrustedRCAC whose
public key was matched during processing of the Destination Identifier after receiving Sig
ma1.

d. All the elements in the certificate chain SHALL respect the Matter Certificate DN Encoding
Rules, including range checks for identifiers such as Fabric ID and Node ID.

5. If any of the validations from the previous step fail, the responder SHALL send a status report:
StatusReport(GeneralCode: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARA
METER) and perform no further processing.

6. The responder SHALL verify TBEData3.initiatorNOC using:

a. Success = Crypto_VerifyChain(certificates = [TBEData3.initiatorNOC, TBEData3.initiatorI
CAC, TrustedRCAC]), when TBEData3.initiatorICAC is present, or

b. Success = Crypto_VerifyChain(certificates = [TBEData3.initiatorNOC, TrustedRCAC]), when
TBEData3.initiatorICAC is not present.

7. If the value of Success is FALSE, the responder SHALL send a status report: StatusReport(General
Code: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER_) and perform
no further processing.

8. The responder SHALL encode the following items as a sigma-3-tbsdata with an anonymous tag:

a. initiatorNOC as copied from TBEData3

b. initiatorICAC (if present) as copied from TBEData3

c. Msg1.initiatorEphPubKey

d. ResponderEphKeyPair.publicKey

9. The responder SHALL verify TBEData3.signature (see RFC 5280):

Success = Crypto_Verify(
 publicKey= public key obtained from initiatorNOC,
 message = sigma-3-tbsdata,
 signature = TBEData3.signature

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 176 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

)

10. If the value of Success is FALSE, the responder SHALL send a status report: StatusReport(General
Code: FAILURE, ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER) and perform no
further processing.

11. The responder SHALL generate the session keys as described in Section 4.14.2.6.6, “Session
Encryption Keys”.

12. The responder SHALL initialize its Local Message Counter in the Session Context per Section
4.6.1.1, “Message Counter Initialization”.

13. The responder SHALL initialize the Message Reception State in the Session Context` and set the
synchronized max_message_counter of the peer to 0.

14. The responder SHALL set SessionTimestamp to a timestamp from a clock which would allow for
the eventual determination of the last session use relative to other sessions.

15. The responder SHALL encode and send SigmaFinished.

Validate Sigma1 with Resumption

The responder SHALL continue validating the Sigma1 message Msg1 as follows:

1. Obtain the SharedSecret from the Section 4.13.2.1, “Secure Session Context” of the resumed ses
sion.

2. Generate the S1RK key.

3. Verify the Resume1MIC by decrypting the following values:

byte Resume1MIC_A[] = {}
byte Resume1MIC_Nonce[13] = /* "NCASE_SigmaR1" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x53, 0x31}

Success, Resume1MICPayload = Crypto_AEAD_DecryptVerify(
 K = S1RK,
 C = Msg1.sigma1ResumeMIC,
 A = Resume1MIC_A,
 N = Resume1MIC_Nonce
)

4. If the value of Success is FALSE, the responder SHALL continue processing Sigma1 as if it didn’t
include any resumption information by continuing the steps in Section 4.14.2.3.5, “Validate Sig
ma1 Destination ID”.

5. If the value of Success is TRUE, the responder SHALL:

a. Set the Peer Session Identifier in the in the Session Context to the value Msg1.initiatorSes
sionId.

b. Send a Sigma2_Resume message.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 177

Generate and Send Sigma2_Resume

The responder SHALL encode and send a Sigma2_Resume message in response to a valid Sigma1 with
response.

sigma-2-resume-struct => STRUCTURE [tag-order]
{
 resumptionID [1] : OCTET STRING [length 16],
 sigma2ResumeMIC [2] : OCTET STRING [length 16],
 responderSessionID [3] : UNSIGNED INTEGER [range 16-bits],
 responderSessionParams [4, optional] : session-parameter-struct
}

1. The responder SHALL generate a new resumption ID ResumptionID = Crypto_DRBG(len = 128).

2. The responder SHALL generate a session identifier (ResponderSessionId) for subsequent identifi
cation of this session. The ResponderSessionId field SHALL NOT overlap with any other existing
PASE or CASE session identifier in use by the responder. See Section 4.13.1.4, “Choosing Secure
Unicast Session Identifiers” for more details. The responder SHALL set the Local Session Iden
tifier in the Session Context to the value ResponderSessionId.

3. The responder SHALL generate the S2RK key.

4. The responder SHALL generate a resumption MIC:

byte Resume2MIC_P[] = {}
byte Resume2MIC_A[] = {}
byte Resume2MIC_Nonce[13] = /* "NCASE_SigmaS2" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x53, 0x32}

Resume2MIC = Crypto_AEAD_GenerateEncrypt(
 K = S2RK,
 P = Resume2MIC_P,
 A = Resume2MIC_A,
 N = Resume2MIC_Nonce
)

5. Any context-specific tags not listed in the above TLV schemas SHALL be reserved for future use,
and SHALL be silently ignored if seen by an initiator which cannot understand them.

6. The responder SHALL send a message with the Secure Channel Protocol ID and Sigma2Resume Pro
tocol Opcode from Table 17, “Secure Channel Protocol Opcodes” whose payload is the TLV-
encoded Sigma2_Resume ResumeMsg2 with an anonymous tag for the outermost struct.

ResumeMsg2 =
{
 resumptionID (1) = ResumptionID,
 sigma2ResumeMIC (2) = ResumeMIC2,
 responderSessionID (3) = ResponderSessionId,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 178 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 responderSessionParams (4) = session-parameter-struct (optional)
}

7. The responder SHALL generate the session keys as described in Section 4.14.2.6.7, “Resumption
Session Encryption Keys”.

Validate Sigma2_Resume

On receipt of ResumeMsg2, the initiator SHALL perform the following:

1. The initiator SHALL generate the S2RK key.

2. The initiator SHALL verify the Resume2MIC by decrypting the following values:

byte Resume2MIC_A[] = {}
byte Resume2MIC_Nonce[13] = /* "NCASE_SigmaR2" */
 {0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69,
 0x67, 0x6d, 0x61, 0x53, 0x32}

Success, Resume2MICPayload = Crypto_AEAD_DecryptVerify(
 K = S2RK,
 C = ResumeMsg2.sigma2ResumeMIC,
 A = Resume2MIC_A,
 N = Resume2MIC_Nonce
)

3. If Success is FALSE, the initiator SHALL send a status report: StatusReport(GeneralCode: FAILURE,
ProtocolId: SECURE_CHANNEL, ProtocolCode: INVALID_PARAMETER_) and perform no further pro
cessing.

4. The initiator SHALL set the Resumption ID in the Session Context to the value Resume2Msg.resump
tionID.

5. The initiator SHALL generate the session keys as described in Section 4.14.2.6.7, “Resumption
Session Encryption Keys”.

6. The initiator SHALL reset its Local Message Counter in the Session Context per Section 4.6.1.1,
“Message Counter Initialization”.

7. The initiator SHALL reset the Message Reception State of the Session Context` and set the syn
chronized max_message_counter of the peer to 0.

8. The initiator SHALL set SessionTimestamp to a timestamp from a clock which would allow for the
eventual determination of the last session use relative to other sessions.

9. The initiator SHALL set the Peer Session Identifier in the in the Session Context to the value
ResumeMsg2.responderSessionId.

10. The initiator SHALL send Section 4.14.2.3.13, “SigmaFinished”.

SigmaFinished

To indicate the successful completion of the protocol, the Node receiving Sigma3 (if a new session is

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 179

being established) or Sigma2_Resume (if a session is being resumed) SHALL send a status report:
StatusReport(GeneralCode: SUCCESS, ProtocolId: SECURE_CHANNEL, ProtocolCode: SESSION_ESTABLISH
MENT_SUCCESS).

On successful receipt of SigmaFinished:

1. The receiving node SHALL initialize the Local Message Counter according to Section 4.6.1.1,
“Message Counter Initialization” for the newly established secure session whose success is
acknowledged by this message.

2. The receiving node SHALL set SessionTimestamp to a timestamp from a clock which would allow
for the eventual determination of the last session usage relative to other sessions.

If this message is received out-of-order or unexpectedly, then it SHALL be ignored.

4.14.2.4. Field Descriptions

Destination Identifier

destination-identifier => OCTET STRING [length CRYPTO_HASH_LEN_BYTES]

The Destination Identifier field enables the initiator of the Sigma1 message to unambiguously
express the following, in a privacy-preserving manner:

• Which shared Trusted Root to select

• Which Fabric ID to use for validation of initiator and responder operational certificates

• Which Node ID is targeted in the given Fabric

This serves several purposes:

1. It requires an initiator to have knowledge of both the IPK and one of the full identities of the
responder Node before it forces the responder node to generate a costly Sigma2 message

a. Note that the replay of previously recorded initiator messages is possible, and therefore a
Node MAY choose to keep memory of some prior destination identifiers that were success
fully processed which it would later reject if seen again, for additional replay protection

2. It ensures that there is no ambiguity on the responder as to which Fabric was selected for com
munication

3. It hides which Fabric was chosen by the initiator

A destination identifier is generated by:

1. Concatenating the following octet strings for subsequent usage as a destinationMessage:

◦ initiatorRandom: The value of initiatorRandom that will be used in the same message as the
Destination Identifier

◦ rootPublicKey: The public key of the root of trust of the desired fabric, from the ec-pub-key
field of the Matter Certificate of that root, as an uncompressed elliptic curve point as defined
in section 2.3.3 of SEC 1

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 180 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

◦ fabricId: The Fabric ID of the destination, matching the matter-fabric-id field of the Matter
Certificate of the desired destination’s NOC, and encoding the 64-bit scalar as a little-endian
byte order octet string

◦ nodeId: The Node ID of the destination, matching the matter-node-id field of the Matter Cer
tificate of the desired destination’s NOC, and encoding the 64-bit scalar as a little-endian byte
order octet string

2. Obtaining the appropriate Identity Protection Key (IPK) Operational Group Key for the associ
ated Fabric under Group Key Set index 0 within the Group Key Management Cluster.

3. Computing an identifier destinationIdentifier of length CRYPTO_HASH_LEN_BYTES using Crypto_H
MAC() with the IPK as the key and destinationMessage as the message

The above steps can be summarized as:

destinationMessage = initiatorRandom || rootPublicKey || fabricId || nodeId
destinationIdentifier = Crypto_HMAC(key=IPK, message=destinationMessage)

For example, given the following:

• Root public key for the common Fabric, in uncompressed elliptical curve point form:

 RootPublicKey := // Raw uncompressed point form
 04:4a:9f:42:b1:ca:48:40:d3:72:92:bb:c7:f6:a7:e1:
 1e:22:20:0c:97:6f:c9:00:db:c9:8a:7a:38:3a:64:1c:
 b8:25:4a:2e:56:d4:e2:95:a8:47:94:3b:4e:38:97:c4:
 a7:73:e9:30:27:7b:4d:9f:be:de:8a:05:26:86:bf:ac:
 fa

• Common Fabric ID of 0x2906_C908_D115_D362 scalar (octets "62:d3:15:d1:08:c9:06:29" in little-
endian)

• Desired Destination Node ID of 0xCD55_44AA_7B13_EF14 (octets "14:ef:13:7b:aa:44:55:cd" in lit
tle-endian)

• Identity Protection Key Epoch Key value of:

 IPKEpochKey := 4a:71:cd:d7:b2:a3:ca:90:24:f9:6f:3c:96:a1:9d:ee

◦ Note that this is the octet string of a group Epoch Key as would be provided in the IPKValue
field of the AddNOC command in the Node Operational Credentials Cluster, or in one of the
EpochKey fields of the KeySetWrite command in the Group Key Management Cluster.

◦ The derived Operational Group Key to be used for computation of a destination identifier,
given the above values of root public key, Fabric ID and Identity Protection Key Epoch Key,
would be:

 IPK := 9b:c6:1c:d9:c6:2a:2d:f6:d6:4d:fc:aa:9d:c4:72:d4

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 181

• Initiator Random value of:

 7e:17:12:31:56:8d:fa:17:20:6b:3a:cc:f8:fa:ec:2f:
 4d:21:b5:80:11:31:96:f4:7c:7c:4d:eb:81:0a:73:dc

Then, using the above procedure would yield the following:

• DestinationMessage octets:

 7e:17:12:31:56:8d:fa:17:20:6b:3a:cc:f8:fa:ec:2f:
 4d:21:b5:80:11:31:96:f4:7c:7c:4d:eb:81:0a:73:dc:
 04:4a:9f:42:b1:ca:48:40:d3:72:92:bb:c7:f6:a7:e1:
 1e:22:20:0c:97:6f:c9:00:db:c9:8a:7a:38:3a:64:1c:
 b8:25:4a:2e:56:d4:e2:95:a8:47:94:3b:4e:38:97:c4:
 a7:73:e9:30:27:7b:4d:9f:be:de:8a:05:26:86:bf:ac:
 fa:62:d3:15:d1:08:c9:06:29:14:ef:13:7b:aa:44:55:
 cd

• DestinationIdentifier octets:

 dc:35:dd:5f:c9:13:4c:c5:54:45:38:c9:c3:fc:42:97:
 c1:ec:33:70:c8:39:13:6a:80:e1:07:96:45:1d:4c:53

Public Key

ec-pub-key => OCTET STRING [length CRYPTO_PUBLIC_KEY_SIZE_BYTES]

A public key ec-pub-key is the byte string representation of an uncompressed elliptic curve point as
defined in section 2.3.3 of SEC 1.

4.14.2.5. Signature

An ec-signature is the encoding of the signature as defined in Section 3.5.3, “Signature and verifica
tion”.

ec-signature => OCTET STRING [length (CRYPTO_GROUP_SIZE_BYTES * 2)]

4.14.2.6. Cryptographic Keys

Identity Protection Key (IPK)

The Identity Protection Key (IPK) SHALL be the operational group key under GroupKeySetID of 0
for the fabric associated with the originator’s chosen destination.

The IPK SHALL be exclusively used for Certificate Authenticated Session Establishment. The IPK

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 182 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

SHALL NOT be used for operational group communication.

For the generation of the Destination Identifier, the originator SHALL use the operational group key
with the second newest EpochStartTime, if one exists, otherwise it SHALL use the single operational
group key available.

The operational group key index to use to follow the "second newest EpochStartTime" rule is illus
trated below:

Number of keys in Group Key
Set

Operational key index Epoch Key

1 0 EpochKey0

2 0 EpochKey0

3 1 EpochKey1

Sigma2 Key (S2K)

1. A transcript hash SHALL be generated:

TranscriptHash = Crypto_Hash(message = Msg1)

2. The Sigma2 key SHALL be generated:

byte S2K_Info[] = /* "Sigma2" */
 {0x53, 0x69, 0x67, 0x6d, 0x61, 0x32}

S2K = Crypto_KDF(
 inputKey = SharedSecret,
 salt = IPK || Responder Random || Responder Ephemeral Public Key ||
TranscriptHash,
 info = S2K_Info,
 len = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

where || indicates message concatenation and IPK is generated according to Section 4.14.2.6.1,
“Identity Protection Key (IPK)”.

Sigma3 Key (S3K)

1. A transcript hash SHALL be generated:

TranscriptHash = Crypto_Hash(message = Msg1 || Msg2)

2. The Sigma3 key SHALL be generated:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 183

byte S3K_Info[] = /* "Sigma3" */
 {0x53, 0x69, 0x67, 0x6d, 0x61, 0x33}

S3K = Crypto_KDF(
 inputKey = SharedSecret,
 salt = IPK || TranscriptHash,
 info = S3K_Info,
 len = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

where || indicates message concatenation and IPK is generated according to Section 4.14.2.6.1,
“Identity Protection Key (IPK)”.

Sigma1 Resumption Key

The Sigma1 resumption key SHALL be generated:

byte S1RK_Info[] = /* "Sigma1_Resume" */
 {0x53, 0x69, 0x67, 0x6d, 0x61, 0x31, 0x5f,
 0x52, 0x65, 0x73, 0x75, 0x6d, 0x65}

S3K_Info
S1RK = Crypto_KDF(
 inputKey = SharedSecret,
 salt = Sigma1.initiatorRandom || ResumptionID,
 info = S1RK_Info,
 len = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

where || indicates message concatenation and ResumptionID is the identifier for the previous ses
sion.

Sigma2 Resumption Key

The Sigma2 resumption key SHALL be generated:

byte S2RK_Info[] = /* "Sigma2_Resume" */
 {0x53, 0x69, 0x67, 0x6d, 0x61, 0x32, 0x5f,
 0x52, 0x65, 0x73, 0x75, 0x6d, 0x65}

S2RK = Crypto_KDF(
 inputKey = SharedSecret,
 salt = Sigma1.initiatorRandom || ResumptionID,
 info = S2RK_Info,
 len = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

where || indicates message concatenation and ResumptionID is the new identifier for the this ses

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 184 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

sion.

Session Encryption Keys

1. A transcript hash SHALL be generated:

TranscriptHash = Crypto_Hash(message = Msg1 || Msg2 || Msg3)

2. The session encryption keys SHALL be generated:

byte SEKeys_Info[] = /* "SessionKeys" */
 {0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x4b,
 0x65, 0x79, 0x73}

I2RKey || R2IKey || AttestationChallenge = Crypto_KDF(
 inputKey = SharedSecret,
 salt = IPK || TranscriptHash,
 info = SEKeys_Info,
 len = 3 * CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

3. Each key is exactly CRYPTO_SYMMETRIC_KEY_LENGTH_BITS bits.

4. The initiator SHALL use I2RKey to encrypt and integrity protect messages and the `R2IKey' to
decrypt and verify messages.

5. The responder SHALL use R2IKey to encrypt and integrity protect messages and the `I2RKey' to
decrypt and verify messages.

6. The AttestationChallenge SHALL only be used as a challenge during device attestation. See Sec
tion 6.2.3, “Device Attestation Procedure” for more details.

where || indicates message concatenation.

Resumption Session Encryption Keys

1. The resumption session encryption keys SHALL be generated:

byte RSEKeys_Info[] = /* "SessionResumptionKeys" */
 {0x53, 0x65, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x52,
 0x65, 0x73, 0x75, 0x6d, 0x70, 0x74, 0x69, 0x6f,
 0x6e, 0x4b, 0x65, 0x79, 0x73}

I2RKey || R2IKey || AttestationChallenge = Crypto_KDF(
 inputKey = SharedSecret,
 salt = Sigma1.initiatorRandom || ResumptionID,
 info = RSEKeys_Info,
 len = 3 * CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 185

2. Each key is exactly CRYPTO_SYMMETRIC_KEY_LENGTH_BITS bits.

3. The initiator SHALL use I2RKey to encrypt and integrity protect messages and the `R2IKey' to
decrypt and verify messages.

4. The responder SHALL use R2IKey to encrypt and integrity protect messages and the `I2RKey' to
decrypt and verify messages.

5. The AttestationChallenge SHALL only be used as a challenge during device attestation. See Sec
tion 6.2.3, “Device Attestation Procedure” for more details.

where || indicates message concatenation and ResumptionID is the new identifier for the this ses
sion.

4.14.2.7. Session Context Storage

After the session is established successfully at both peers, some fields SHALL be recorded in the
secure session context for later use (see Section 4.13.2, “Application Data Phase”), in addition to the
Session Encryption Keys:

• The peer NOC's matter-node-id (1.3.6.1.4.1.37244.1.1) from the subject field

• The Section 2.5.1, “Fabric References and Fabric Identifier” for the Fabric within which this
secure session is being established

• All peer NOC's case-authenticated-tag (1.3.6.1.4.1.37244.1.6) from the subject field, if present

These fields MAY be recorded at any opportune point during the protocol, but SHALL only be com
mitted to the secure session context once the session is established successfully at both peers.

4.14.2.8. Minimal Number of CASE Sessions

A node SHALL support at least 3 CASE session contexts per fabric. Device type specifications MAY
require a larger minimum. Unless the device type specification says otherwise, a minimum number
it defines is a per-fabric minimum.

The minimal supported capabilities, subject to the minimal constraints above, are reported in the
CapabilityMinima of the Basic Information cluster.

• Example: If a device type requires at least 4 CASE session contexts, and a node supports 7 fab
rics, the node would support at least 28 CASE session contexts, and ensure that each fabric could
use at least 4 of them.

4.15. Group Communication
This section specifies the semantics of sending and receiving multicast group messages and the life
cycle of such groupcast sessions. Multicast addressing is accomplished using the 16-bit Group ID
field as the destination address. A multicast group is a collection of Nodes, all registered under the
same multicast Group ID. A multicast message is sent to a particular destination group and is
received by all members of that group.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 186 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.15.1. Groupcast Session Context

Groupcast sessions are conceptually long-running, lasting the duration of a node’s membership in a
group. Group membership is tracked in the Group Key Management Cluster. However, on ingress of
each groupcast message, the following ephemeral context SHALL be constructed to inform upper
layers of groupcast message provenance:

1. Fabric Index: Records the local Fabric Index for the Fabric to which an incoming message’s
group is scoped.

2. Group ID: Captures the Group ID to which a groupcast message was sent.

3. Source Node ID: The Source Node ID enclosed by the sender of a groupcast message.

◦ Together, Fabric Index, Group ID and Source Node ID comprise a unique identifier that
upper layers may use to understand the source and destination of groupcast messages.

4. Source IP Address: The unicast source IP address for the originator of the message.

5. Source Port: The source port for the originator of the message.

◦ The source IP address and port MAY be used for unicast responses to group communication
peers, as are required for the Message Counter Synchronization Protocol.

6. Operational Group Key: The Operational Group Key that was used to encrypt the incoming group
message.

7. Group Session ID: Records the Group Session ID derived from the Operational Group Key used to
encrypt the message.

Once a Groupcast Session Context with trust-first policy is created to track authenticated messages
from a given Source Node ID, that record SHALL NOT be deleted or recycled until the node reboots.
This is to prevent replay attacks that first exhaust the memory allocated to group session counter
tracking and then inject older messages as valid, and enforces that trust-first authentication works
as intended within the full duration of a boot cycle. Any message from a source that cannot be
tracked SHALL be dropped.

4.15.2. Sending a group message

To prepare a multicast message to a Group ID with a given GroupKeySetID and IPv6 hop count
parameter, the Node SHALL:

1. Obtain, for the given GroupKeySetID, the current Operational Group Key as the Encryption Key,
and the associated Group Session ID.

a. If no key is found for the given GroupKeySetID, security processing SHALL fail and no fur
ther security processing SHALL be done on this message.

2. Perform Section 4.7.1, “Message Transmission” processing steps on the message with the follow
ing arguments:

a. The Destination Node Id argument SHALL be the Group Node Id corresponding to the given
Group ID.

b. The Session Id argument SHALL be the Group Session ID from step 1.

c. The Security Flags SHALL have only the P Flag set.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 187

d. The transport SHALL be a site-local routable IPv6 interface.

Next, prepare the message as an IPv6 packet:

1. Set the private, secured message from step 2 above as the IPv6 payload.

2. Set the IPv6 hop count to the value given.

3. Set the IPv6 destination to the Section 2.5.6.2, “IPv6 Multicast Address” based on the provided
destination Group ID, Fabric ID, and Section 11.2.5.4.9, “GroupKeyMulticastPolicy Field” of the
group key.

4. Set the IPv6 source to an operational IPv6 Unicast Address of the sending Node.

5. Set the IPv6 UDP port number to the Matter IPv6 multicast port.

4.15.3. Receiving a group message

All Nodes supporting groups SHALL register to receive on the associated IPv6 multicast address, at
the Matter IPv6 multicast port, for each group of which they are a member.

Upon receiving an IPv6 message addressed to one of these Multicast Addresses the Node is regis
tered for, the Node SHALL:

1. Extract the message from the IPv6 payload.

2. Perform Section 4.7.2, “Message Reception” processing steps on the message.

4.16. Group Key Management
This section describes operational group keys, a mechanism for generating, disseminating and
managing shared symmetric keys across a group of Nodes in a Fabric. Operational group keys are
made available to applications for the purpose of authenticating peers, securing group communica
tions, and encrypting data. These keys allow Nodes to:

• Prove to each other that they are members of the associated group

• Exchange messages confidentially, and without fear of manipulation by non-members of the
group

• Encrypt data in such a way that it can only be decrypted by other members of the group

A central feature of operational group keys is the ability to limit access to keys to a trusted set of
Nodes. In particular, credentials required to generate operational group keys SHALL only be acces
sible to Nodes with a certain level of privilege — those deemed a member of the group. Barring soft
ware error or compromise of a privileged Node, access to shared keys SHALL be computationally
infeasible for non-trusted parties.

Operational group keys are shareable across all types and combinations of Nodes as determined by
the Administrator managing the group. Given all Nodes in possession of the current epoch keys for
the group can communicate with other Nodes in the group, it is the responsibility of the Adminis
trator managing the group to only compose groups of Nodes where communication is appropriate
for the given application and security requirements.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 188 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.16.1. Operational Groups

An operational group is a logical collection of Nodes that are running one or more common applica
tion clusters and share a common security domain in the form of a shared, symmetric group key.
For example, a set of Nodes running a lighting application can form an operational group by shar
ing a common operational group key derived from the mechanisms described here. Subgroups can
be formed within the operational group by defining distinct Group Identifiers for each set of Nodes,
while sharing a common operational group key.

Membership in the security domain of an operational group is determined by a Node’s possession
of all the epoch keys required to generate the current, valid operational group key for the group.
Individual Nodes can be members of multiple operational groups simultaneously. The set of groups
to which a Node belongs can change over time as dictated by application requirements and policies.
Groups MAY be introduced or withdrawn over time as need arises.

4.16.1.1. Operational Group Ids

Operational groups are identified uniquely within a Fabric by a Group Identifier. Administrators
SHALL assign Group Ids such that no two operational groups within a Fabric have the same Group
ID. It is assumed a given Administrator has sufficient access to centralized knowledge, so as to allo
cate unique Group Ids under a given Fabric such that there are no collisions.

Multiple operational groups MAY share the same operational group key, and thus be used to create
logical subgroups over a shared security domain. Operational groups which do not share related
functionality, such as a lighting group and a sprinkler group, SHOULD NOT share the same opera
tional key. As an example policy, a lighting application could have all lighting Nodes share a single
group key, while organizing lighting subgroups for various rooms or spaces within the structure by
assigning a different Group ID to each such subgroup.

4.16.2. Operational Group Key Derivation

An operational group key is a symmetric key used as the Encryption Key during Message Processing
for group communication. An operational group key is produced by applying a key derivation func
tion with an epoch key and salt value as inputs as follows:

OperationalGroupKey =
 Crypto_KDF
 (
 InputKey = Epoch Key,
 Salt = CompressedFabricIdentifier,
 Info = "GroupKey v1.0",
 Length = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
)

where [] denotes a zero-length array.

The Info portion of the key derivation is specified in Section 4.16.2.1, “Group Security Info”. The
Salt portion of the key derivation is specified in Section 4.3.2.2, “Compressed Fabric Identifier”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 189

For example, given:

• An Epoch Key value of: 23:5b:f7:e6:28:23:d3:58:dc:a4:ba:50:b1:53:5f:4b

• A CompressedFabricIdentifier value of: 87:e1:b0:04:e2:35:a1:30

After the above derivation following the definition of Crypto_KDF in Section 3.8, “Key Derivation
Function (KDF)”, the resulting operational group key would be:
a6:f5:30:6b:af:6d:05:0a:f2:3b:a4:bd:6b:9d:d9:60.

Group membership is enforced by limiting access to the epoch keys. Only Nodes that possess the
input epoch key can derive a given operational key. Lack of possession of a particular epoch key
restricts access, based on the distribution policy of the epoch keys.

The following diagram shows the process by which operational keys are derived from the epoch
key material:

Figure 17. Group Key Derivation

4.16.2.1. Group Security Info

A hard-coded group security info is used to diversify the set of operational group keys. This value is
hard-coded into the standard’s implementation, and thus is distributed with the associated code.
Should the standard’s security mechanisms need to evolve (e.g. to upgrade encryption from AES-
128 to AES-256), the group security info can be changed to ensure that new keys will be derived for
use in the new algorithm. The group security info SHALL be the byte stream "GroupKey v1.0", i.e.
0x47 0x72 0x6f 0x75 0x70 0x4b 0x65 0x79 0x20 0x76 0x31 0x2e 0x30.

With the exception of the group security info, all input key material SHALL be maintained on a per-
Fabric basis.

4.16.2.2. Group Key Set

A group key set limits the key derivation process to Nodes within the respective operational groups.
Access to a group key set is limited based on the functionality provided by a Node and/or the privi
lege afforded to it. For example, certain home security devices, such as a security system or door
lock, may have access to a "Physical Access" group key set, while devices such as light bulbs or win
dow coverings would not.

Operational group key lifetime is limited by assigning an expiration time to each epoch key in a
given group key set. By constraining the validity of a given epoch key to an epoch, the ability for

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 190 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

members to derive and operate with an operational group key can be constrained to particular
periods of time. Epoch keys may be rotated on a periodic basis, and denying access to updated ver
sions of these keys serves as a means to eject group members.

4.16.3. Epoch Keys

Epoch keys provide a means for limiting the lifetime of derived operational group keys. They also
provide a way for an Administrator to revoke access to Nodes that have been explicitly excluded
from an operational group (albeit after a period of time).

Epoch keys are generated, managed, and stored by an Administrator on a per-Fabric basis. Each key
SHALL be a random value of length CRYPTO_SYMMETRIC_KEY_LENGTH_BITS bits.

EpochKey = Crypto_DRBG(len = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS)

Each epoch key has associated with it a start time that denotes the time at which the key becomes
active for use by transmitting Nodes. Epoch key start times are absolute UTC time in microseconds
encoded using the epoch-us representation.

4.16.3.1. Using Epoch Keys

Nodes sending group messages SHALL use operational group keys that are derived from the current
epoch key (specifically, the epoch key with the latest start time that is not in the future). Nodes that
cannot reliably keep track of time calculate the current epoch key as described in Section 4.16.3.4,
“Epoch Key Rotation without Time Synchronization”.

Nodes receiving group messages SHALL accept the use of any key derived from one of the currently
installed epoch keys. This requirement holds regardless of whether the start time for the key is in
the future or the past. This means Nodes continue to accept communication secured under an
epoch key until that key is withdrawn by explicitly deleting the key from a Node’s group state by
the key distribution Administrator.

Note that there is no end time associated with an epoch key. An epoch key marked with the maxi
mum start time SHALL be disabled and render the corresponding epoch key slot unused.

4.16.3.2. Managing Epoch Keys

The epoch keys are managed using the Group Key Management Cluster. For every group key set
published by the key distribution Administrator, there SHALL be at least 1 and at most 3 epoch keys
in rotation. Key additions or updates are done using the KeySetWrite command.

Key updates are idempotent operations to ensure the Administrator is always the source of truth.
An epoch key update SHALL order the keys from oldest to newest.

Any epoch key update MAY deliver a partial key set but SHALL include EpochKey0 and MAY include
EpochKey1 and EpochKey2. Any update of the key set, including a partial update, SHALL remove all
previous keys in the set, however many were defined.

An Administrator MAY completely remove a group key set from a Node using the KeySetRemove

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 191

command.

4.16.3.3. Epoch Key Rotation

The key distribution Administrator generates new epoch keys on a regular basis, giving each a
unique id and adding them to the list of existing epoch keys within a group. The start time for each
new epoch key is scheduled to occur after a configurable key propagation interval. The propagation
interval is set sufficiently large such that the Administrator can synchronize all Nodes in the opera
tional group with the new epoch key list within that time.

The rotation rate for epoch keys is expected to be on the order of days to weeks for typical applica
tions, but the rate is configurable as required by the key distribution Administrator. Because of the
relatively long rotation interval, and the overlap of active epoch keys, local clock drift within Nodes
is generally not a concern.

4.16.3.4. Epoch Key Rotation without Time Synchronization

Although epoch keys are distributed with an associated start time, it is nonetheless possible for
Nodes that do not maintain a synchronized clock to participate in key rotation. Specifically, upon
receiving a new epoch key list from the key distribution Administrator, such a Node can note which
of the keys is the current epoch key by comparing their relative start times and using the current
epoch key which has the second newest time. It can then use the current key for all locally initiated
security interactions until such time as it makes contact with the distribution Administrator again.

This scheme requires the Node to receive epoch keys from the key distribution Administrator at a
rate that is at least as fast as the configured key propagation interval. The Administrator SHOULD
provide a sufficient set of epoch keys to Nodes that do not maintain synchronized time so that they
can maintain communication with other group members while a key update is in progress. The key
distribution Administrator SHOULD update all Nodes without time, such as ICDs, before the new
epoch key is activated, and then let Nodes with time all roll to the new epoch key at the synchronized
start time.

4.16.3.5. Epoch Key Rotation logic

The full life-cycle of Epoch Key rotation is shown in Figure 18, “Epoch Key Rotation”. For each epoch
key slot, the start time of the key is shown as one of the following values:

• New - a key with a start time in the future.

• Current - the active key with the newest start time.

• Previous - the active key with the second newest start time.

• Old - an active key with the third newest start time.

The diagram shows two types of state transitions:

1. Admin - an update of an old key by the Administrator. Changes made during this state transi
tion are indicated in green.

2. Epoch Activate - activation of an epoch key due to system time becoming greater than the start
time. Changes during this state transition are indicated in yellow.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 192 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 18. Epoch Key Rotation

The Admin Refresh state begins when an entire group key set is freshly written to a Node during
commissioning or administration, such as when a new group is added. The Epoch Activate state is
entered when time progresses to activate a fresh current epoch key, aging out the other epoch key
slots. The Admin Update state is entered when an Administrator updates an old epoch key with a new
epoch key. When in steady state, the Admin Refresh state MAY be entered in place of an Admin Update
state transition to update additional keys to the required ones or to completely reset the group secu
rity.

Note that in the above diagram, only an example key distribution scheme is illustrated. It is also
possible to devise key distribution algorithms that to not rely on time synchronization, or group
configurations that never rotate keys in favor or configuring new groups and removing groups and
group key sets with expired keys.

Group Key Set ID

The Group Key Set ID is a 16-bit field that uniquely identifies the set of epoch keys used for deriva
tion of an operational group key. Each Group Key Set ID is scoped to a particular Fabric and
assigned by an Administrator so as to be unique within a Fabric.

The Group Key Set ID of 0 SHALL be reserved for managing the Identity Protection Key (IPK) on a
given Fabric. It SHALL NOT be possible to remove the IPK Key Set if it exists.

4.16.3.6. Group Session ID

A Group Session ID is a special case of a 16-bit Session ID that is specifically used for group commu
nication. When Session Type is 1, denoting a group session, the Session ID SHALL be a Group Ses
sion ID as defined here. The Group Session ID identifies probable operational group keys across a
Fabric. The Group Session ID for a given operational group key is derived by treating the output of a
Crypto_KDF against the associated Operational Group Key as a big-endian representation of a 16-bit

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 193

integer, as follows:

GroupKeyHash =
 Crypto_KDF
 (
 InputKey = OperationalGroupKey,
 Salt = [],
 Info = "GroupKeyHash",
 Length = 16 // Bits
)

// GroupKeyHash is an array of 2 bytes (16 bits) per Crypto_KDF

// GroupSessionId is computed by considering the GroupKeyHash as a Big-Endian
// value. GroupSessionId is a scalar. Its use in fields within messages may cause a
// re-serialization into a different byte order than the one used for initial
generation.
GroupSessionId = (GroupKeyHash[0] << 8) | (GroupKeyHash[1] << 0)

where [] denotes a zero-length array.

For example, given:

• An Operational Group Key value of: a6:f5:30:6b:af:6d:05:0a:f2:3b:a4:bd:6b:9d:d9:60

After the above derivation following the definition of Crypto_KDF in Section 3.8, “Key Derivation
Function (KDF)”, the resulting Group Session ID data would be:

• Raw output of GroupKeyHash: b9:f7

• Group Session ID scalar value to be used for further processing: 0xB9F7 (47607 decimal)

The Group Session ID MAY help receiving nodes efficiently locate the Operational Group Key used to
encrypt an incoming groupcast message. It SHALL NOT be used as the sole means to locate the asso
ciated Operational Group Key, since it MAY collide within the fabric. Instead, the Group Session ID
provides receiving nodes a means to identify Operational Group Key candidates without the need to
first attempt to decrypt groupcast messages using all available keys.

On receipt of a message of Group Session Type, all valid, installed, operational group key candidates
referenced by the given Group Session ID SHALL be attempted until authentication is passed or
there are no more operational group keys to try. This is done because the same Group Session ID
might arise from different keys. The chance of a Group Session ID collision is 2-16 but the chance of
both a Group Session ID collision and the message MIC matching two different operational group
keys is 2-80.

Group Session Ids are sized to fit within the context of the Session Identifier field of a message.
When used in this context, the Group Session ID value allows a receiving Node to identify the
appropriate message encryption key to use from the set of active operational keys it has currently
installed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 194 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.16.4. Distribution of Key Material

The operational group keys mechanism relies on a key distribution Administrator to reliably dis
tribute select epoch key material to appropriate participants. It is assumed the key distribution
Administrator is in possession of all epoch keys, has knowledge of the set of group security domain
members which require access to those keys, and is responsible for pushing updates of these cre
dentials to all authorized Nodes in those groups it manages.

Key material is distributed to key holders using the Group Key Management Cluster. In general, the
key material of a Node is exposed via Attributes with ACL entries that only allow access by the key
distribution Administrator. The information exposed in the Section 11.2, “Group Key Management
Cluster” includes the group epoch keys and associated group session identifiers.

Figure 19. Group Key Distribution

4.16.4.1. Installing a Group onto a Newly Commissioned Node

This section provides an example of the operations required to install a group onto a newly com
missioned node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 195

Figure 20. Installing a group onto a new node

Sequence:

• Admin:

◦ Generate fabric-unique group ID GID and random key key0 for group key set ID K.

◦ Write the group key set K to the remote node, GroupMember, using KeySetWrite command.

◦ Associate group ID GID with key set K by writing an entry to the GroupKeyMap list attribute.

• GroupMember:

◦ Node subscribes to the IPv6 multicast address generated from the fabric ID and group ID.

• Admin:

◦ Associate endpoint with group ID GID by sending the Groups cluster’s AddGroup command to
endpoint.

4.17. Message Counter Synchronization Protocol
(MCSP)
This section describes the protocol used to securely synchronize the message counter used by a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 196 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

sender of messages encrypted with a symmetric group key.

Message counter synchronization is an essential part of enabling secure messaging between mem
bers of an operational group. Specifically, it protects against replay attacks, where an attacker
replays older messages, which may result in unexpected behavior if accepted and processed by the
receiver.

The recipient of a message encrypted with a group key can trust and process that message only if it
has kept the last message counter received from a given sender using that key.

Underlying MCSP is a simple request / response protocol. When a multicast message with unknown
counter is received, synchronization via MCSP begins by sending a synchronization request via uni
cast UDP to the multicast message originator’s unicast IPv6 address. That originator then sends a
synchronization response to the unsynchronized node via unicast UDP. After cryptographic verifi
cation, the formerly unsynchronized node is now synchronized with the originator’s message
counter and can trust the original and subsequent messages from the originator node.

4.17.1. Message Counter Synchronization Methods

There are two methods for synchronizing the message counter of a peer node, which are config
urable per-group-key based on the GroupKeySecurityPolicy field of a given group key set (see
GroupKeySetStruct).

4.17.1.1. Trust-first policy

The first authenticated message counter from an unsynchronized peer is trusted, and its message
counter is used to configure message-counter-based replay protection on future messages from that
node. All control messages (any message with C Flag set) use the control message counter and
SHALL use Trust-first for synchronization. Note that MCSP is not used for Trust-first synchroniza
tion.

This policy provides lower latency for less security-sensitive applications such as lighting.

WARNING
Trust-first synchronization is susceptible to accepting a replayed message after
a Node has been rebooted.

4.17.1.2. Cache-and-sync policy

The message that triggers message counter synchronization is stored, a message counter synchro
nization exchange is initiated, and only when the synchronization is completed is the original mes
sage processed. Cache-and-sync provides replay protection even in the case where a Node has been
rebooted, at the expense of higher latency.

Support for the cache-and-sync policy and MCSP is optional. A node indicates its ability to support
this feature via the Group Key Management cluster FeatureMap.

WARNING

Large groups may cause significant message synchronization burden on the
sender and message queueing pressure or latency on the receiver when mes
sage counter synchronization state is out of sync, such as after a brown-out, on

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 197

first message to a new large group, or similar large scale sets of synchroniza
tions being required at a single point in time.

4.17.2. Group Peer State

The Group Peer State Table stores information about every peer with which the node had a group
message exchange. For every peer node id the following information is available in the table:

• Peer’s Encrypted Group Data Message Counter Status:

◦ Synchronized Data Message Counter - the largest encrypted data message counter received
from the peer, if available.

◦ Flag to indicate whether this counter value is valid and synchronized.

◦ The message reception state bitmap tracking the recent window of data message counters
received from the peer.

• Peer’s Encrypted Group Control Message Counter Status:

◦ Synchronized Control Message Counter - the largest encrypted control message counter
received from the peer, if available.

◦ Flag to indicate whether this counter value is valid and synchronized.

◦ The message reception state bitmap tracking the recent window of control message counters
received from the peer.

There are three scenarios where the receiver of an encrypted message does not know the sender’s
last message counter:

• The encrypted message is the first received from a peer.

• The device rebooted without persisting the Group Peer State Table content.

NOTE It is not required to persist the Peer State Table.

• The entry for the Peer in the Group Peer State Table was expunged due to the table being full.

There SHALL be at least 10 entries per supported fabric for Peer Encrypted Group data Message
Status in the Group Peer State table. This number SHOULD NOT be less than 5 entries per fabric per
instance of Groups cluster on an endpoint. The number of entries is a compromise between the
number of peers that can send a group message to a receiver while the table is maintained, and the
associated memory usage.

There SHALL be at least 2 entries per supported fabric for Peer Encrypted Group Control Message
Status in the Group Peer State table.

The next sections describe the functional protocol used to request message counter synchronization
with a peer and form responses to such message counter synchronization requests.

4.17.3. MCSP Messages

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 198 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.17.3.1. MsgCounterSyncReq - Message Counter Synchronization Request

The Message Counter Synchronization Request (MsgCounterSyncReq) message is sent when a mes
sage was received from a peer whose current message counter is unknown.

A MsgCounterSyncReq message SHALL set the C Flag in the message header. The control message
counter SHALL be used for message protection.

A MsgCounterSyncReq message SHALL be secured with the group key for which counter synchro
nization is requested and SHALL set the Session Type to 1, indicating a group session as per the
rules outline in Section 4.17.5, “Message Counter Synchronization Exchange”.

The payload of the MsgCounterSyncReq message takes the format defined in Table 25, “Message
Counter Sync Request”:

Table 25. Message Counter Sync Request

Field
Size

Message Field Description

8 bytes Challenge The Challenge is a 64-bit random number generated using
the DRBG by the initiator of a MsgCounterSyncReq to
uniquely identify the synchronization request crypto
graphically.

4.17.3.2. MsgCounterSyncRsp - Message Counter Synchronization Response

The Message Counter Synchronization Response (MsgCounterSyncRsp) message is sent in response
to a MsgCounterSyncReq.

A MsgCounterSyncRsp message SHALL set the C Flag in the message header. The control message
counter SHALL be used for message protection.

The MsgCounterSyncRsp message has the format defined in Table 26, “Message Counter Sync
Response”:

Table 26. Message Counter Sync Response

Field
Size

Message Field Description

4 bytes Synchronized Counter The current data message counter for the node sending
the MsgCounterSyncRsp message.

8 bytes Response The Response SHALL be the same as the 64-bit value sent
in the Challenge field of the corresponding MsgCounter
SyncReq.

4.17.4. Unsynchronized Message Processing

An unsynchronized message is one that is cryptographically verified from a node whose message
counter is unknown. Upon receipt of an unsynchronized message process the message as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 199

1. The message SHALL be of Group Session Type, otherwise discard the message.

2. If C Flag is set to 1:

a. Create a Message Reception State and set its max_message_counter to the message counter of
the given message, i.e. trust-first.

b. Accept the message for further processing.

3. If C Flag is set to 0:

a. Determine the GroupKeySecurityPolicy (as set by the Section 11.2, “Group Key Management
Cluster”) of the operational group key used to authenticate the message.

b. If the key has a trust-first security policy, the receiver SHALL:

i. Set the peer’s group key data message counter to Message Counter of the message.

A. Clear the Message Reception State bitmap for the group session from the peer.

B. Mark the peer 's group key data message counter as synchronized.

ii. Process the message.

c. If the key has a cache-and-sync security policy, the receiver SHALL:

i. If MCSP is not in progress for the given peer Node ID and group key:

A. Store the message for later processing.

B. Proceed to Section 4.17.5, “Message Counter Synchronization Exchange”.

ii. Otherwise, do not process the message.

A. An implementation MAY queue the message for later processing after MCSP com
pletes if resources allow.

For each peer Node ID and group key pair there SHALL be at most one synchronization exchange
outstanding at a time.

4.17.5. Message Counter Synchronization Exchange

A message synchronization exchange starts by sending the MsgCounterSyncReq message to the
peer Node that sent the message with unknown message counter. When a synchronization request
is triggered by an incoming multicast message, the Node SHALL first wait for a uniformly random
amount of time between 0 and MSG_COUNTER_SYNC_REQ_JITTER.

The sender of the MsgCounterSyncReq message SHALL:

1. Set the Message Header fields as follows:

a. The S Flag SHALL be set to 1.

b. The DSIZ field SHALL be set to 1.

c. The P Flag SHALL be set to 1.

d. The C Flag SHALL be set to 1.

e. The Session Type field SHALL be set to 1.

f. The Session ID field SHALL be set to the Group Session Id for the operational group key

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 200 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

being synchronized.

g. The Source Node ID field SHALL be set to the Node ID of the sender Node.

h. The Destination Node ID field SHALL be set to the Source Node ID of the message that trig
gered the synchronization attempt.

2. Create a new synchronization Exchange.

a. The Exchange ID of the message SHALL be set to match the new Exchange.

b. The I Flag SHALL be set to 1.

c. The A Flag SHALL be set to 0.

d. The R Flag SHALL be set to 1.

3. Set the Challenge field to the value returned by Crypto_DRBG(len = 8 * 8) and store that value to
resolve synchronization responses from the destination peer.

4. Arm a timer to enforce that a synchronization response is received before MSG_COUNTER_
SYNC_TIMEOUT.

a. Upon firing of the timer:

i. The synchronization exchange SHALL be closed.

ii. Any message waiting on synchronization associated with the exchange SHALL be dis
carded.

b. The timer SHALL be stopped upon receipt of an authenticated MsgCounterSyncRsp message
that matches:

i. The Source Node ID field matches the Destination Node ID field of the most recent Msg
CounterSyncReq message generated for that Node.

ii. The Response field corresponds to the Challenge field of the MsgCounterSyncReq mes
sage.

5. Invoke Section 4.7.1, “Message Transmission” using parameters from step 1 to encrypt and then
send the request message over UDP to the IPv6 unicast address of the destination.

a. The request message SHALL use the same operational group key as the message which trig
gered synchronization.

b. The group key SHALL be known/derivable by both parties (sender and receiver).

The receiver of MsgCounterSyncReq SHALL:

1. Verify the Destination Node ID field SHALL match the Node ID of the receiver, otherwise discard
the message.

2. Respond with MsgCounterSyncRsp.

The sender of the MsgCounterSyncRsp response message SHALL:

1. Set the Message Header fields as follows:

a. The S Flag SHALL be set to 1.

b. The DSIZ field SHALL be set to 1.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 201

c. The P Flag SHALL be set to 1.

d. The C Flag SHALL be set to 1.

e. The Session Type field SHALL be set to 1.

f. The Session ID field SHALL be set to the Group Session Id for the operational group key
being synchronized.

g. The Source Node ID field SHALL be set to the Node ID of the sender Node.

h. The Destination Node ID field SHALL be set to the Source Node ID of the MsgCounterSyn
cReq.

2. Set the MsgCounterSyncRsp payload fields as follows:

a. The Response field SHALL be set to the value of the Challenge field from the MsgCounterSyn
cReq.

b. The Synchronized Counter field SHALL be set to the current Global Group Encrypted Data
Message Counter of the sender.

3. Use the same exchange context as the MsgCounterSyncReq being responded to.

a. The Exchange ID of the message SHALL be set to the Exchange ID of the MsgCounterSyncReq.

b. The I Flag SHALL be set to 0.

c. The A Flag SHALL be set to 1.

d. The R Flag SHALL be set to 1.

4. Invoke Section 4.7.1, “Message Transmission” using parameters from step 1 to encrypt and then
send the response message over UDP to the IPv6 unicast address of the destination.

The receiver of the MsgCounterSyncRsp message SHALL:

1. Verify the MsgCounterSyncRsp matches a previously sent MsgCounterSyncReq:

a. An active synchronization exchange SHALL exist with the source node.

b. The Exchange ID field SHALL match the Exchange ID used for the original MsgCounterSyn
cReq message.

c. The Response field SHALL match the Challenge field used for the original MsgCounterSyn
cReq message.

d. The Destination Node ID field SHALL match the Source Node ID of the original MsgCounter
SyncReq message.

e. The Source Node ID field SHALL match the Destination Node ID of the original MsgCounter
SyncReq message.

2. On verification failure:

a. Silently ignore the MsgCounterSyncRsp message.

3. On verification success:

a. Set the peer’s group key data message counter to Synchronized Counter.

b. Clear the Section 4.6.5.1, “Message Reception State” bitmap for the peer.

c. Mark the peer 's group key data message counter as synchronized.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 202 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

d. Resume processing of any queued message that triggered synchronization according to Sec
tion 4.6.7, “Counter Processing of Incoming Messages”.

i. If more than one message is queued from the synchronized peer, using the same opera
tional group key, the messages SHALL be processed in the order received.

e. Close the synchronization exchange created for the original MsgCounterSyncReq message.

4.17.6. Message Counter Synchronization Session Context

While conducting Message Counter Synchronization with a peer, nodes SHALL maintain the follow
ing session context. For nodes initiating message counter synchronization, this context SHALL be
maintained throughout the full exchange of MsgCounterSyncReq and MsgCounterSyncRsp messages.
For nodes responding to MsgCounterSyncReq messages, the context SHALL only be maintained long
enough to generate and successfully transmit the MsgCounterSyncRsp message.

1. Fabric Index: Records the Index for the Fabric within which nodes are conducting message
counter synchronization.

◦ Fabric Index is derived by identification of an Operational Group Key associated with the
fabric through successful decryption with that key and verification of the Message Integrity
Check. For nodes initiating counter synchronization, this occurs at decryption of an inbound
groupcast message. For nodes in the responder role, this occurs at decryption of an inbound
MsgCounterSyncReq message.

2. Peer Node ID: Records the node ID of the peer with which message counter synchronization is
being conducted.

◦ For nodes initiating message counter synchronization, this is the node ID of the responder.
For nodes responding to message counter synchronization, this is the node ID of the initia
tor.

3. Role: Records whether the node is the initiator of or responder to message counter synchroniza
tion.

◦ Together, Fabric Index, Peer Node ID and Role comprise a unique key that can be used to
match incoming messages to ongoing MCSP exchanges.

4. Message Reception State: Provides tracking for the Control Message Counter of the remote peer.

5. Peer IP Address: The unicast IP address of the peer.

6. Peer Port: The receiving port of the peer.

7. Operational Group Key: The Operational Group Key that is being used to encrypt messages
within the counter synchronization exchange.

8. Group Session ID: Records the Group Session ID derived from the Operational Group Key that is
being used to encrypt messages within the counter synchronization exchange.

4.17.7. Sequence Diagram

The following sequence diagram shows an example of how message counter synchronization
behaves in the most common scenario.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 203

4.17.7.1. Scenario 1 — Multicast Receiver Initiated

Assumptions:

• Sender transmits a multicast message.

• Receiver does not know Sender 's message counter.

Figure 21. Multicast Receiver Initiated Message Counter Synchronization

Sequence:

• Sender:

◦ Generates, encrypts and sends Msg1 as a multicast message. Msg1 could be:

▪ Regular message that starts encrypted group communication with receivers Receiver1
and Receiver2.

• Receivers Receiver1 and Receiver2 each:

◦ Receive, decrypt, authenticate, and cache Msg1 message for later processing.

▪ Generate, encrypt, and send MsgCounterSyncReq message.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 204 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Sender:

◦ Receives MsgCounterSyncReq message.

◦ Generates, encrypts and sends MsgCounterSyncRsp message.

• R1 and R2 each:

◦ Receive, decrypt, process, and verify MsgCounterSyncRsp message from Sender.

◦ On verification success: marks Sender 's group key message counter as synchronized.

▪ Processes cached Msg1 message.

4.18. Bluetooth Transport Protocol (BTP)
The Bluetooth Transport Protocol (BTP) provides a TCP-like layer of reliable, connection-oriented
data transfer on top of GATT. BTP splits individual Service Data Unit (SDU) messages into multiple
BTP segments, which are each transmitted via a single GATT write or indication (as shown in Figure
22, “MATTERoBLE: Matter Message / BTP layering”).

While BTP is a generic protocol, Matter specifically uses BTP to define a Matter-over-Bluetooth Low
Energy (MATTERoBLE) Interface. A MATTERoBLE Interface MUST implement BTP as a universally
compatible transport mode. A MATTERoBLE Interface SHALL only be used to transport Matter mes
sages as the BTP SDU.

Figure 22. MATTERoBLE: Matter Message / BTP layering

The BTP session handshake allows devices to check BTP protocol version compatibility and
exchange other data before a BTP session is established. Once established, this session is used to
send and receive BTP SDUs (such as Matter messages) as BTP Message Segments. A BTP session MAY
open and close with no effect on the state of the underlying Bluetooth LE connection, except in the
case where a BTP session is closed by the Peripheral Device. Either the Peripheral or the Central
MAY signal the end of a BTP session by closing the underlying BLE connection.

Due chiefly to constraints put on design by resource-limited BLE chipsets, BTP defines a receive
window for each side of a session in units of GATT PDUs. Each GATT Write Characteristic Value
(ATT_WRITE_REQ) PDU or Indication (ATT_HANDLE_VALUE_IND) PDU is sent with a sequence num
ber which the receiver uses to acknowledge receipt of each packet at the BTP layer and open its

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 205

receive window from the sender’s perspective.

4.18.1. BTP Session Interface

Conceptually, an open BTP session is exposed to the next-higher session layer as a full-duplex mes
sage stream.

4.18.2. BTP Frame Format

A BTP Frame consists of an 8-bit header followed by one or more optional fields, as detailed below.
BTP uses little endian encoding for any header fields larger than one byte in length.

Table 27, “BTP Packet PDU format” defines the BTP Packet PDU format.

Unused fields SHALL be set to '0'.

Table 27. BTP Packet PDU format

bit 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Control Flags [Management Opcode]

[Ack Number] [Sequence Number]

[Message Length]

[Segment Payload]…

…

4.18.2.1. Control Flags

Table 28. BTP Control Flags

bit 7
6 5 4 3 2 1 0

- H M - A E C B

H (Handshake) bit (position 6)

Set to '0' for normal BTP packets. When set, this bit indicates a BTP handshake packet for session
establishment and has a different packet format described below.

M (Management Message) bit (position 5)

Indicates the presence ('1') or absence ('0') of the Management Opcode field. All segments of a mes
sage MUST set this bit to the same value.

A (Acknowledgement) bit (position 3)

Indicates the presence of the Ack Number field.

E (Ending Segment) bit (position 2)

Set to '1' on the last segment of a BTP SDU and set to '0' for all other segments of the same BTP SDU.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 206 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

A segment MAY have both the Beginning and Ending bits set indicating that a full BTP SDU is
included in the message. When set, the segment payload length is equal to the total remaining unre
ceived message data. When not set, the segment payload length is equal to the maximum allowable
BTP session packet size minus header overhead.

C (Continuing Segment) bit (position 1)

Set to '0' on the first segment of a BTP SDU and set to '1' for all remaining segments of the same BTP
SDU.

B (Beginning Segment) bit (position 0)

Set to '1' on the first segment of a BTP SDU and set to '0' for all remaining segments of the same BTP
SDU. It indicates the presence of the Message Length field.

4.18.2.2. Ack Number

Optional field specified in Section 4.18.4.8, “Packet Acknowledgements”.

4.18.2.3. Sequence Number

Mandatory field for regular data messages specified in Section 4.18.4.6, “Sequence Numbers”.

4.18.2.4. Message Length

Optional field present in Beginning Segment only. Value indicates the length in bytes of the full mes
sage buffer to be transmitted. None of the BTP Packet PDU fields is included in the Message Length.

4.18.2.5. Segment Payload

Optional field containing a segment of the Service Data Unit (SDU) message in transmission to the
receiver.

4.18.3. BTP Control Frames

BTP defines different control frame formats depending on the Management Opcode that is in the
BTP Packet PDU header. Valid Management Opcodes for BTP Control Frames are defined in Table
29, “BTP Control codes”.

Table 29. BTP Control codes

Management
Opcode

Name Description

0x6C Handshake Request and response for BTP session establishment

4.18.3.1. BTP Handshake Request

Table 30. BTP Handshake Request format

bit 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Control Flags = 0x65 Management Opcode = 0x6C

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 207

bit 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ver[0] Ver[1] Ver[2] Ver[3]

Ver[4] Ver[5] Ver[6] Ver[7]

Requested ATT_MTU

Client Window Size

H (Handshake) bit

Set to '1' for connection handshake messages.

M (Management) bit

Set to '1' for connection handshake messages.

Ver[i] (Version) nibbles

Used to negotiate the highest version capability between a Device pair. Supported versions are
listed once each, newest first, in descending order. Unused version fields are filled with ‘0’.

The following values are defined:

• 0 — Unused field

• 4 — BTP as defined by Matter v1.0

Requested ATT_MTU

Requested ATT_MTU is a 16-bit unsigned integer field containing the size of the GATT PDU
(ATT_MTU) that can be received by the sender minus the size of the GATT header (3). This value is
obtained via the standard ATT MTU exchange procedure (see Bluetooth® Core Specification 4.2 Vol
3, Part F, Section 3.4.2 "MTU Exchange") and is used to validate that both sides of the BLE connec
tion are using the common minimum value. If BTP is not aware of the negotiated GATT MTU, the
value SHALL be set to '23', indicating the minimum ATT_MTU defined by GATT. If the client has no
preference, the value may be set to '0'.

NOTE
Each GATT PDU used by the BTP protocol introduces 3 byte header overhead mak
ing the maximum BTP Segment Size for the session equal to negotiated ATT_MTU-3.

Client Window Size

Value of the maximum receive window size supported by the server, specified in units of BTP pack
ets where each packet may be up to 244 bytes in length. This maximum was chosen so a single BTP
segment can fit into a single 255 byte BLE link layer PDU, including all headers from the link layer,
L2CAP, GATT, and BTP.

4.18.3.2. BTP Handshake Response

Table 31. BTP Handshake Response format

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 208 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

bit 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Control Flags = 0x65 Management Opcode = 0x6C

Reserved Final Protocol Version Selected ATT_MTU (low byte)…

…Selected ATT_MTU (high byte) Selected Window Size

H (Handshake) bit

Set to '1' for session handshake messages.

M (Management) bit

Set to '1' for session handshake messages.

Reserved

Must be set to '0'.

Final Protocol Version

Value of the BTP protocol version selected by the server.

Selected ATT_MTU

Value of the maximum ATT_MTU for the connection selected by the server as a 16-bit unsigned inte
ger.

Selected Window Size

Value of the maximum receive window size supported by the server, specified in units of BTP pack
ets where each packet may be up to the selected segment size in length.

4.18.4. BTP GATT Service

4.18.4.1. BTP Channelization

Bluetooth Transport Protocol provides a packetized stream interface over GATT but says nothing
about the actual contents of the data packets it transports. The BTP Service UUID is used to specify
the actual contents of the packets (see Table 32, “BTP Service UUID”).

Table 32. BTP Service UUID

BTP Datagram Contents BTP Service UUID

Matter Message frames MATTER_BLE_SERVICE_UUID

NOTE See Section 4.18.6, “Bluetooth SIG Considerations” for terms of use.

While a single BTP connection may exist between a BTP Client and BTP Server, multiple BTP ses
sions may be established between various peers.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 209

4.18.4.2. BTP GATT Service

The BTP GATT service is composed of a service with three characteristics—C1, C2 and C3 (see Table
33, “BTP GATT service”). The client SHALL exclusively use C1 to initiate BTP sessions by sending BTP
handshake requests and send data to the server via GATT ATT_WRITE_CMD PDUs. While a client is
subscribed to allow indications over C2, the server SHALL exclusively use C2 to respond to BTP
handshake requests and send data to the client via GATT ATT_HANDLE_VALUE_IND PDUs.

Table 33. BTP GATT service

Attribute Description

BTP Service UUID = MATTER_BLE_SERVICE_UUID

C1 Characteristic
(Client TX Buffer)

UUID = 18EE2EF5-263D-4559-959F-4F9C429F9D11
Characteristic Properties = Write
max length = 247 bytes

C2 Characteristic
(Client RX Buffer)

UUID = 18EE2EF5-263D-4559-959F-4F9C429F9D12
Characteristic Properties = Indication
max length = 247 bytes

C3 Characteristic
(Additional commissioning-
related data)

UUID = 64630238-8772-45F2-B87D-748A83218F04
Characteristic Properties = Read
max length = 512 bytes

For all messages sent from the BTP Client to BTP Server, BTP SHALL use the GATT Write Character
istic Value sub-procedure. For all messages sent from the BTP Server to BTP Client, BTP SHALL use
the GATT Indications sub-procedure.

The values of C1 and C2 SHALL both be limited to a maximum length of 247 bytes. This constraint is
imposed to align with maximum PDU size when LE Data Packet Length Extensions (DPLE) is
enabled on Bluetooth 4.2 hardware. Per Bluetooth® Core Specification 4.2 Vol 3, Part F, Section 3.2.9
"Long Attribute Values", the maximum characteristic value length is 512 bytes. The maximum
lengths of C1 and C2 may increase in a future version of the BTP specification to allow higher
throughput on BLE connections whose ATT_MTU exceeds 247 bytes.

C3 is an optional characteristic that the server MAY use to include additional data required during
the provisioning as defined in Section 5.4.2.5.7, “GATT-based Additional Data”.

BTP Clients SHALL perform certain GATT operations synchronously, including GATT discovery, sub
scribe, and unsubscribe operations. GATT discovery, subscribe, or unsubscribe SHALL NOT be initi
ated while the result of a previous operation remains outstanding. This requirement is imposed by
GATT protocol.

4.18.4.3. Session Establishment

Before a BTP session can be initiated, a central SHALL first establish a BLE connection to a periph
eral. Once a BLE connection has been formed, centrals SHALL assume the GATT client role for BTP
session establishment and data transfer, and peripherals SHALL assume the GATT server role. If
peripheral supports LE Data Packet Length Extension (DPLE) feature it SHOULD perform data
length update procedure before establishing a GATT connection.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 210 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Before establishing a BTP session, the GATT client SHOULD perform a GATT Exchange MTU proce
dure.

After that the BTP Client SHALL execute the GATT discovery procedure. The GATT discovery proce
dure starts with primary service discovery using either the GATT Discover All Primary Services sub-
procedure or the GATT Discover Primary Services by Service UUID sub-procedure.

The BTP Client SHALL perform either the GATT Discover All Characteristics of a Service sub-proce
dure or the GATT Discover Characteristics by UUID sub-procedure in order to discover the C1 and
C2 characteristics.

The BTP Client SHALL perform the GATT Discover All Characteristic Descriptors sub-procedure in
order to discover the Client Characteristic Configuration descriptor (CCCD) of C2 characteristic.

To initiate a BTP session, a BTP Client SHALL send a BTP handshake request packet to the BTP
Server via a ATT_WRITE_CMD PDU on characteristic C1 of the BTP Service. The handshake request
packet SHALL include, a list of BTP protocol versions supported by the client, the client’s GATT
ATT_MTU, and the client’s maximum receive window size. The list of supported protocol versions
SHALL be sorted in descending numerical order. If the client cannot determine the BLE connec
tion’s ATT_MTU, it SHALL specify a value of '23' (the minimum ATT_MTU supported by GATT) for
this field in the handshake request. For a detailed specification of the handshake request binary
data format, see Section 4.18.3.1, “BTP Handshake Request”.

After the BTP Client acknowledges delivery of the handshake request packet, upon receipt of a
GATT Write Response, the BTP Client SHALL enable indications over C2 characteristics by writing
value 0x01 to C2’s Client Characteristic Configuration descriptor as described in Bluetooth® Core
Specification 4.2 Vol 3, Part C, Section 10.3.1.1 "Handling GATT Indications and Notifications".

Once the GATT server has received a client’s BTP handshake request and confirmed the client’s sub
scription to C2, it SHALL send a BTP handshake response to the client via a ATT_HANDLE_VAL
UE_IND PDU on C2. This response SHALL contain the window size, maximum BTP packet size, and
BTP protocol version selected by the server. For a detailed specification of the handshake response
binary data format, see Section 4.18.3.2, “BTP Handshake Response”.

The server SHALL select a window size equal to the minimum of its and the client’s maximum win
dow sizes. Likewise, the server SHALL select a maximum BTP Segment Size for the BLE connection
by taking the minimum of 244 bytes (the maximum characteristic value length of C1 and C2),
server’s ATT_MTU-3 and ATT_MTU-3 as declared by the client.

The server SHALL select a BTP protocol version that is the newest which it and the client both sup
port, where newer protocol version numbers are strictly larger than those of older versions. The
version number returned in the handshake response SHALL determine the version of the BTP pro
tocol used by client and server for the duration of the session.

If the server determines that it and the client do not share a supported BTP protocol version, the
server SHALL close its BLE connection to the client. When a client sends a handshake request, it
SHALL start a timer with a globally-defined duration of BTP_CONN_RSP_TIMEOUT seconds. If this
timer expires before the client receives a handshake response from the server, the client SHALL
close the BTP session and report an error to the application. Likewise, a server SHALL start a timer
with the same duration when it receives a handshake request from a client. If this timer expires

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 211

before the server receives a subscription request on C2, the server SHALL close the BTP session and
report an error to the application. The state machine in Figure 23, “BTP session handshake” illus
trates the function of these timers as part of the BTP session establishment procedure.

Figure 23. BTP session handshake

4.18.4.4. Data Transmission

Once a BTP session has been established, the next-higher-layer application on both peers may use
this BLE connection to send and receive data via GATT writes or indications, according to a peer’s
GATT role. Clients SHALL exclusively use GATT Write Characteristic Value sub-procedure to send
data to servers and servers SHALL exclusively use GATT Indication sub-procedure to send data to
clients.

All BTP packets sent on an open BLE connection SHALL adhere to the BTP Packet PDU binary data
format specified in BTP Frame Formats. All BTP packets SHALL include a header flags byte and an
8-bit unsigned sequence number. All other packet fields are optional. These optional fields include
an 8-bit unsigned received packet acknowledgement number, 16-bit unsigned buffer length indica
tion, and variable-length buffer segment payload.

This section is defined entirely within the scope of a single BTP session. Concurrent BTP sessions
between the same peer and multiple remote hosts SHALL maintain separate and independent
acknowledgement timers, sequence numbers, and receive windows.

4.18.4.5. Message Segmentation and Reassembly

When the session layer (that is, MATTERoBLE) sends a Matter Message as a BTP SDU over a BTP ses
sion, that BTP SDU SHALL be split into ordered, non-overlapping BTP segments so the set of all BTP
segments may be reassembled into the original BTP SDU (see Figure 22, “MATTERoBLE: Matter Mes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 212 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

sage / BTP layering”). Each BTP segment SHALL be prepended with a BTP packet header and sent as
the payload of a single GATT PDU. If a BTP SDU is split into more than one BTP segment, the BTP
segments SHALL be sent in order of their position in the original BTP SDU, starting with the BTP
segment at the buffer’s head.

At any point in time, only one BTP SDU may be transmitted in each direction over a BTP session.
The transmission of BTP segments of any two BTP SDUs SHALL not overlap. If the application
attempts to send one BTP SDU while transmission of another BTP SDU is in progress, the new BTP
SDU SHALL be appended to a first-in, first-out queue. The next BTP SDU SHALL be dequeued from
this queue and transmitted once transmission of the current BTP SDU completes, that is, once all
BTP segments of the current BDP SDU have been transmitted and received by the peer via GATT.

The first BTP segment of a BTP SDU sent over a BTP session SHALL have its Beginning Segment
header flag set to indicate the beginning of a new BTP SDU (see Table 27, “BTP Packet PDU format”).
The presence of this flag SHALL indicate the further presence of a 16-bit unsigned integer field, the
Message Length, that provides the receiver with the total length of the BTP SDU. The last BTP seg
ment for a given BTP SDU SHALL have its Ending Segment flag set to indicate the end of the trans
mitted BTP SDU. A BTP packet that bears an unsegmented BTP SDU—that is, a BTP SDU small
enough to fit into a single BTP segment—SHALL have both its Beginning Segment and Ending Seg
ment flags set.

The size of a single BTP SDU sent via BTP is limited to 64KB, that is, the maximum size of the Mes
sage Length field in the BTP packet header. The number of segments used to send a buffer is unlim
ited and delimited by the Beginning Segment and Ending Segment bits in the BTP packet header.
The upper layer imposes more stringent requirements over the maximum SDU size, such as Section
4.4.4, “Message Size Requirements”.

The length of the data payload in each BTP segment whose Ending Segment bit is not set SHALL be
equal to the session’s maximum BTP packet size minus the size of that packet’s header. If a packet’s
Ending Segment bit is set, the length of its BTP segment data payload SHALL equal the size of the
original BTP SDU minus the total size of all previously transmitted BTP segments of that BTP SDU. In
this way, the length of a SDU’s last BTP segment is implied by its size.

Once a peer receives a complete set of BTP segments, it SHALL reassemble them in the order
received, and verify that the reassembled BTP SDU’s total length matches that specified by the
Beginning Segment’s Message Length value. If they match, the receiver SHALL pass the reassem
bled BTP SDU up to the next-higher-layer. If the reassembled buffer’s length does not match that
specified by the sender, or if received BTP segment payload size would exceed the maximum BTP
packet size, or receiver receives an Ending Segment without the presence of a previous Beginning
Segment, or a Beginning Segment when another BTP SDU’s transmission is already in progress, the
receiver BTP SHALL close the BTP session and report an error to the application.

4.18.4.6. Sequence Numbers

All BTP packets SHALL be sent with sequence numbers, regardless of whether they contain SDU
segments (for example, a packet acknowledgement with no attached segment payload). The pur
pose of sequence numbers is to facilitate the BTP receive window. A BTP sequence number SHALL
be defined as an unsigned 8-bit integer value that monotonically increments by 1 with each packet
sent by a given peer. A sequence number incremented past 255 SHALL wrap to zero.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 213

Sequence numbers SHALL be separately defined for either direction of a BTP session. The sequence
number of the first packet sent by the client after completion of the BTP session handshake SHALL
be zero. The server’s BTP handshake response bears an implied sequence number of zero because
it occupies a slot in the client’s receive window. The client acknowledges the server’s BTP hand
shake response with an acknowledgement sequence of zero. For this reason, the sequence number
of the first data packet sent by the server after completion of the BTP session handshake SHALL be
1.

Peers SHALL check to ensure that all received BTP packets properly increment the sender’s previ
ous sequence number by 1. If this check fails, the peer SHALL close the BTP session and report an
error to the application.

4.18.4.7. Receive Windows

The purpose of the receive window is to enable flow control at the GATT session layer between BTP
peers.

Flow control is required at the GATT transport layer for embedded platforms that use "minimal"
BLE chipsets. These platforms may have limited space on the host processor to receive packets from
their BLE chipsets. In the case of some dual-chip architectures, writes and indications are received
and confirmed by the BLE chip with no input from the host processor. When the BLE chip sends the
result of a received GATT PDU to the host processor, that payload and the corresponding BTP packet
will be permanently lost if the host does not have enough space to receive it. For this reason, knowl
edge of a remote host’s ability to reliably receive GATT PDUs is presented at the transport layer in
the form of the BTP receive window.

Both peers in a BTP session SHALL define a receive window, where the window’s size indicates the
number of GATT PDUs (that is, BTP segments) a peer can reliably receive and store without session-
layer acknowledgment. A maximum window size SHALL be established for both peers as part of
the BTP session handshake. To prevent sequence number wrap-around, the largest maximum win
dow size any peer may support is 255.

Both peers SHALL maintain a counter to reflect the current size of the remote peer’s receive win
dow. Each peer SHALL decrement this counter when it sends a packet via GATT write or indication
and increment this counter when a sent packet is acknowledged.

If a local peer’s counter for a remote peer’s receive window is zero, the window SHALL be consid
ered closed, and the local peer SHALL NOT send packets until the window reopens (is incremented
above zero). When a closed window reopens, a local peer SHALL immediately resume any pending
BTP packet transmission.

A local peer SHALL also not send packets if the remote peer’s receive window has one slot open and
the local peer does not have a pending packet acknowledgement. This is to avoid the situation
where the receive windows of both peers are full and neither can send an acknowledgement to
reopen its window for the other. Because the server’s handshake response bears an implicit BTP
sequence number of zero, a server SHALL initialize its counter for the client’s receive window size
at (negotiated maximum window size - 1). A client SHALL initialize its counter for the server’s
receive window at the negotiated maximum window size.

Both peers SHALL also keep a counter of their own receive window size based on the sequence

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 214 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

number difference between the last packet they received and the last packet they acknowledged.
This counter is used to proactively send early packet acknowledgements when a peer’s own receive
window is about to close. See Section 4.18.4.8, “Packet Acknowledgements” for details.

An example scenario involving BTP receive windows is depicted in Figure 24, “Example receive
window scenario”, complete with packet acknowledgements as specified in Section 4.18.4.8, “Packet
Acknowledgements”. In this scenario, the client transmits a three-segment buffer to the server once
it receives the server’s handshake request. The handshake request occupies one slot in the client’s
initial receive window. The server’s initial receive window is empty. Both client and server have a
maximum window size of 4.

Figure 24. Example receive window scenario

4.18.4.8. Packet Acknowledgements

The purpose of sequence numbers and packet receipt acknowledgements is to support the BTP
receive window and provide a keep-alive signal when a session is idle to affirm the health and con
tinued operation of a remote BTP stack.

Per BTP Frame Formats, BTP packet receipt acknowledgements SHALL be received as unsigned 8-
bit integer values in the header of a BTP packet. The value of this field SHALL indicate the sequence
number of the acknowledged packet.

Acknowledgement of a sequence number indicates acknowledgement of the previous sequence
number, if it too is unacknowledged. By induction, acknowledgement of a given packet implies
acknowledgement of all packets received on the same BTP session prior to the acknowledged
packet.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 215

An acknowledgement is invalid if the acknowledged sequence number does not correspond to an
outstanding, unacknowledged BTP packet sequence number. In contrast to TCP, BTP acks are not
"free." A stand-alone ack—that is, a BTP packet that contains a packet receipt acknowledgement
value but no buffer segment payload—consumes a slot in a remote peer’s window just like any
other packet. Stand-alone acknowledgement packets SHALL be acknowledged by a remote peer.
The implications of this are examined in Section 4.18.4.9, “Idle Connection State”.

Each peer SHALL maintain an acknowledgement-received timer. When a peer sends any BTP
packet, it SHALL start this timer if it is not already running. The timer’s duration SHALL be globally
defined as BTP_ACK_TIMEOUT seconds, referred to as the acknowledgement timeout interval.

A peer SHALL restart its acknowledgement-received timer when a valid acknowledgement is
received for any but its most recently sent unacknowledged packet. A peer SHALL stop its acknowl
edgement-received timer if it receives an acknowledgement for its most recently sent unacknowl
edged packet. If a peer’s acknowledgement-received timer expires, or if a peer receives an invalid
acknowledgement, the peer SHALL close the BTP session and report an error to the application.

Because the server’s handshake response bears an implicit BTP sequence number of zero, a server
SHALL start its acknowledgement-received timer when it sends a handshake response.

Each peer SHALL also maintain a send-acknowledgement timer. When it receives any BTP packet, a
peer SHALL record the packet’s sequence number as the corresponding BTP session’s pending
acknowledgement value and start the send-acknowledgement timer if it is not already running. The
timer’s duration timer SHALL be defined as any value less than one-half the acknowledgement
timeout interval. This ensures that on a healthy BLE connection, a peer will always receive
acknowledgements for sent packets before its acknowledgement-received timer expires.

A peer SHALL stop its send-acknowledgement timer when any pending acknowledgement is sent,
either as a stand-alone BTP packet or piggybacked onto an outgoing buffer segment. If this timer
expires and the peer has a pending acknowledgement, the peer SHALL immediately send that
acknowledgement. If the peer sends any packet before this timer expires, it SHALL piggyback any
pending acknowledgement on the transmitted packet and stop the send-acknowledgement timer.

Because the server’s handshake response bears an implicit BTP sequence number of zero, a client
SHALL set its pending acknowledgement value to zero and start its send-acknowledgement timer
when it receives the server’s a handshake response. Operation of the send-acknowledgement and
acknowledgement-received timers is illustrated in Figure 26, “BTP session lifecycle for Central act
ing as GATT Client” in Section 4.18.4.11, “Protocol State Diagrams”.

If a peer detects that its receive window has shrunk to two or fewer free slots, it SHALL immedi
ately send any pending acknowledgement as a stand-alone BTP packet. This prevents the session
from stalling in the interval between when a peer’s receive window becomes empty and when its
send-acknowledgement timer would normally fire.

4.18.4.9. Idle Connection State

When neither side of a BTP session has data to send, BTP packets will still be exchanged every send-
acknowledgement interval due to acknowledgements generated by the receipt of previous data or
stand-alone acknowledgement packets, as discussed in Section 4.18.4.8, “Packet Acknowledge
ments”. The behavior of the acknowledgement-received timer in this scenario doubles as a keep-

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 216 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

alive mechanism, as it will cause a peer to close a BLE connection automatically if the remote BTP
stack crashes or becomes unresponsive. This scenario is illustrated in Figure 25, “Idle connection
scenario”.

Figure 25. Idle connection scenario

4.18.4.10. Connection Shutdown

To close a BTP session, a GATT client SHALL unsubscribe from characteristic C2. The GATT server
SHALL take this action to indicate closure of any BTP session open to the client.

If a BTP Server needs to close the BTP session, it SHALL terminate its BLE connection to the client.

4.18.4.11. Protocol State Diagrams

Figure 26, “BTP session lifecycle for Central acting as GATT Client” shows the state machine for BTP
session management of a BTP Client Device.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 217

Figure 26. BTP session lifecycle for Central acting as GATT Client

Figure 27, “BTP session lifecycle for Peripheral acting as GATT Server” shows the state machine for
BTP session management of a BTP Server Device.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 218 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 27. BTP session lifecycle for Peripheral acting as GATT Server

Note that in Figure 27, “BTP session lifecycle for Peripheral acting as GATT Server”, the state
machine is identical for GATT clients and servers with the distinction that clients send data to
servers via confirmed writes, and servers send data to clients via indications.

Figure 28, “State diagram for BTP session post-establishment” shows the state machine for BTP ses
sion maintenance at the protocol level, including liveliness enforcement through keep alive mes
sages and automatic teardown if acknowledgements are received before the timeout.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 219

Figure 28. State diagram for BTP session post-establishment

4.18.5. Parameters and Constants

Table 34, “Glossary of constants” is a glossary of constants used in this chapter, along with a brief
description and the default for each constant.

Table 34. Glossary of constants

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 220 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Constant Name Description Default

BTP_CONN_RSP_TIMEOUT The maximum amount of time
after sending a BTP Session
Handshake request to wait for a
BTP Session Handshake
response before closing the con
nection.

5 seconds

BTP_ACK_TIMEOUT The maximum amount of time
after receipt of a segment
before a stand-alone ACK must
be sent.

15 seconds

BTP_CONN_IDLE_TIMEOUT The maximum amount of time
no unique data has been sent
over a BTP session before the
Central Device must close the
BTP session.

30 seconds

4.18.6. Bluetooth SIG Considerations

The UUID is provided by Bluetooth SIG, Inc. and may only be used by its members in compliance
with all terms and conditions of use issued by the Bluetooth SIG, Inc. For more information, visit
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-sdos.

Use of the Bluetooth extensions feature of this specification and specifically the MATTER_BLE_SER
VICE_UUID is strictly prohibited unless the product is certified by both the Bluetooth SIG and the
Connectivity Standards Alliance by a member of good standing of both organizations.

Table 35. SIG UUID assignment

Constant Name Description Value

MATTER_BLE_SERVICE_UUID The UUID for the Matter-over-
BLE service as assigned by the
Bluetooth SIG.

0xFFF6

4.19. Check-In Protocol
The goal of the Check-In Protocol is to provide a way for a server to notify a client of an event or
state outside of a secure session in a private and secure fashion.

Some of the events or states to be shared with a client are defined by different Check-in Protocol
Use Cases. The current list includes:

• An ICD is available for communication.

The Check-In Protocol is a set of requirements and processes that can be re-used by multiple Check-
In Protocol use cases. Multiple Check-In Protocol use cases can coexist on a single device. The
Check-In Protocol sends a sessionless message (Check-In message) that relies on a key that has been

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 221

https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-sdos

given to the server during the registration of the client.

4.19.1. Requirements

4.19.1.1. Server Requirements

A Server use case of the Check-In Protocol SHALL implement these requirements.

• A persistent data store for Keys.

• An implementation of the Check-In Counter.

Persistent Data Store

For the Check-In Protocol to be effective, the use case of the protocol SHALL provide a means to
store and persist client registration information. The minimum information that SHALL be stored
and persisted is the key to use during the encryption process of the Check-In message.

4.19.1.2. Client Requirements

The server does not store the starting value of the Check-In Counter for a given key. Therefore it is
the client’s responsibility to do so. A Client use case of the Check-In Protocol SHALL implement a
means to store sets containing a key, the starting value of Check-In Counter and the last known
valid offset from the starting value of the Check-In Counter. A Key that has been used to register for
Check-In messages SHALL always be associated with a starting Check-In Counter value and the last
known valid offset from the starting Check-In Counter value.

During the decryption process, the client uses the key, its associated starting Check-In Counter value
and offset to decrypt and authenticate a received Check-In message.

4.19.2. Message Content

Table 36. Check-In Payload

Field Type Description

nonce byte[CRYPTO_AEAD_NON
CE_LENGTH_BYTES]

First plaintext field

Check-In Counter uint32 Encrypted field - Counter used
to generate the nonce

Application Data byte[] Encrypted field - Application
Data that can be added to the
Check-In message

MIC byte[CRYPTO_AEAD
_MIC_LENGTH_BYTES]

Message integrity Check

4.19.2.1. Nonce

The nonce used to encrypt the encrypted fields of the payload SHALL be the first CRYPTO_AEAD
_NONCE_LENGTH_BYTES bytes of the message payload. The nonce is included in plaintext.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 222 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

4.19.2.2. Encrypted Section

The encrypted section SHALL be a concatenation of the following, in order:

1. The Check-In Counter value used in the encryption process, represented as a 4-byte little-endian
value.

2. The Application Data, if used by the use case.

Check-In Counter

The Check-In Counter value SHALL be used to generate the nonce. This value SHALL be provided
by the Check-In Protocol use case.

Application Data

The application data is defined and provided by the Check-In Protocol use case. The Check-In Proto
col use case is not required to use application data. If application data is not used for a specific use-
case, creation of a Check-In message SHALL use a zero-length byte array for the application data.

4.19.2.3. MIC

Message integrity check generated by the AEAD is appended after the encrypted section. It SHALL
be the last CRYPTO_AEAD_MIC_LENGTH_BYTES bytes.

4.19.3. Algorithms

The Check-In message is a sessionless message, since one of the goals of the protocol is to provide a
means to recover a secure session that was lost. Since no session keys are available to encrypt the
entire message, the encryption of the Check-In message is limited to part of the payload.

The inputs provided to the encryption process by the Check-In protocol use case are:

1. The value of Check-In Counter represented as 4-byte little-endian value. In the following steps,
we assume the counter value is in the correct format.

2. The application data bytes represented as a byte array. In the following steps, we assume the
application data is in the correct format.

3. A symmetric encryption key represented as a CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES-byte
array. In the following steps, we assume the key is in the correct format.

4.19.3.1. Nonce Generation

To generate the nonce, the Check-In message SHALL use the Keyed-Hash Message Authentication
Code algorithm. The inputs of the algorithm SHALL be the key and the Check-In Counter value. Both
will be provided by the Check-In Protocol use case. From the generated hash, the nonce SHALL be
the first CRYPTO_AEAD_NONCE_LENGTH_BYTES bytes to match the AEAD requirements.

nonce = Crypto_HMAC(key = key, message = counter)[0..(CRYPTO_AEAD_NONCE_LENGTH_BYTES-
1)]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 223

4.19.3.2. Authenticated encryption

The payload of the Check-In message SHALL be encrypted using the AEAD function. The inputs of
the algorithm SHALL be the generated nonce, the key and the plaintext to encrypt. The additional
data field SHALL not be used.

Ciphertext = Crypto_AEAD_GenerateEncrypt(
 K = key
 P = plaintext,
 A = "",
 N = nonce)

4.19.3.3. Client Counter Validation

When receiving a Check-In message, the client SHALL verify the received counter by executing the
following steps.

1. Subtract the stored starting value of the counter from the value provided in the Check-In mes
sage. The subtraction SHALL be done as unsigned integers mod 232.

2. If the stored offset from the starting value is smaller than the value from step 1, the verification
SHALL return TRUE.

3. Otherwise the verification SHALL return FALSE.

4.19.3.4. Key Refreshing

A given key is only valid for one set of values of the Check-In Counter. A key becomes invalid once
all the Check-In Counter values for that key have been used.

To avoid reuse of a nonce value with a given key, the key (shared secret) needs to be refreshed
before all the valid Check-In Counter values for that key have been used. If a Check-In Counter
value is reused with the same key, the Check-In messages reusing the counter will be discarded. To
avoid the situation where the relationship is broken because of a rollover, we are prescribing when
a client should refresh its entry.

When a client receives a Check-In message with a Check-In Counter value indicating that 231

counter values have been used, the client SHALL refresh its entry with a new key.

4.19.4. Protocol Operation

4.19.4.1. Encryption Procedure

When sending a Check-In message, the server SHALL encrypt the application payload (ie. Check-In
Counter and application data provided) following these steps. If the encryption procedure fails to
generate the Check-In message, the server SHALL NOT send the associated Check-In message.

1. The server SHALL generate the nonce as described in Section 4.19.3.1, “Nonce Generation”.

a. If the generation failed, the encryption procedure SHALL return FAILURE.

b. If the generation succeeded, the server SHALL continue from step 2.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 224 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

2. The server SHALL encrypt the plaintext as described in Section 4.19.3.2, “Authenticated encryp
tion”.

a. The plaintext SHALL be a concatenation of the following, in order :

i. The Check-In Counter value used in the encryption process and

ii. the Application Data, if used by the use case.

b. If the encryption fails, the encryption procedure SHALL return FAILURE.

c. If the encryption succeeds, the server SHALL continue from step 3.

3. The server SHALL create the payload string by concatenating the nonce and the output of the
AEAD function.

payload = nonce || Ciphertext

Check-In Protocol Encryption Diagram

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 225

Figure 29. Check-In Protocol Encryption Legend

4.19.4.2. Decryption Procedure

When a client receives a Check-In message, the client SHALL decrypt and process the message fol
lowing these steps:

1. The client SHALL break down the message into the nonce and the ciphertext/MIC.

nonce = payload[0:CRYPTO_AEAD_NONCE_LENGTH_BYTES]
ciphertext/MIC = payload[CRYPTO_AEAD_NONCE_LENGTH_BYTES:]

2. The client SHALL try to decrypt the message with the key associated to the server being tested.

Success, Plaintext = Crypto_AEAD_DecryptVerify(
 K = Key,
 C = ciphertext/MIC,
 A = "",
 N = nonce)

a. If the decryption succeeds, the device associated with the key is identified as the server
checking in. The client SHALL continue from step 3.

b. If the decryption fails, the client SHALL discard the message.

3. From the plaintext, the client SHALL retrieve the Check-In Counter and the application data if
present.

4. The client SHALL verify that the received nonce is valid by calculating it as described in Section
4.19.3.1, “Nonce Generation” from the received Check-In Counter and the key. The counter value
retrieved in the previous step is already in the correct encoding.

a. If the calculated nonce matches the received nonce, the client SHALL continue from step 5.

b. If the calculated nonce doesn’t match the received nonce, the client SHALL discard the mes
sage.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 226 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5. The client SHALL verify that the received Check-In Counter is valid as described in Section
4.19.3.3, “Client Counter Validation”. The Check-In Counter is converted into a unsigned 32-bit
integer.

a. If the received counter value is valid, the client SHALL continue from step 6.

b. If the received counter value is invalid, the client SHALL discard the message.

6. The client SHALL store the offset between the received Check-In Counter value and the stored
starting value of the Check-In Counter. The subtraction SHALL be done as unsigned integers
mod 232.

a. If the result of the subtraction is greater than 231, the client SHALL trigger a key refresh.

7. The client SHALL notify the application that the server has checked-in. What this behavior
implies is application specific.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 227

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 228 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 5. Commissioning

5.1. Onboarding Payload
The purpose of this section is to define the contents of the Onboarding Payload needed to allow
onboarding a device into a Matter network. It also specifies the representation and encoding of said
payload as a QR Code, as a manually entered code, and as content in an NFC tag.

5.1.1. Onboarding Payload Contents

The Onboarding Payload is composed of required and optional information which will be used by
the Commissioner to ensure interoperability between commissioners and devices and provide a
consistent user experience. Some or all of this content will be encoded into different formats, some
human-readable (such as numeric string) and machine-readable (such as QR code and NFC) for
mats for printing or display on or integration into the device. The following are the elements that
may be used in an Onboarding Payload for a Matter device.

5.1.1.1. Version

A version indication provides versioning of the payload and SHALL be included. Version for
machine-readable formats is 3 bits with an initial version of 0b000. Version for Manual Pairing Code
is 1 bit with an initial version of 0b0.
Rationale: This allows a way to introduce changes to the payload as needed going into the future.

5.1.1.2. Vendor ID and Product ID

Vendor ID and Product ID, each a 16-bit value, SHALL be included in machine-readable formats and
MAY be included in the Manual Pairing Code.
Rationale: This allows a way to identify the make and model of the device, which is used further
during the commissioning flow, such as during the Device Attestation procedure. These unique
identifiers also help to retrieve device model metadata like product name, product description, and
firmware update URL from the Distributed Compliance Ledger, as well as information relevant to
the commissioning flow (see Section 5.7, “Device Commissioning Flows”).

5.1.1.3. Custom Flow

A 2-bit unsigned enumeration specifying the Device Commissioning Flow SHALL be included in
machine-readable formats. For the encoding of Custom Flow in the Manual Pairing Code, see Sec
tion 5.1.4.1.2, “Custom Flow for Manual Pairing Code”.
Rationale: This guides the Commissioner as to whether steps are needed before commissioning can
take place.

• A value of 0 indicates that no steps are needed (apart from powering the device).

• A value of 1 indicates that user interaction with the device (pressing a button, for example) is
required before commissioning can take place. The specific steps required can be found in the
CommissioningModeInitialStepsHint field of the Distributed Compliance Ledger for the given
Vendor ID and Product ID.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 229

• A value of 2 indicates that an interaction with a service provided by the manufacturer is
required for initial device setup before it is available for commissioning by any Commissioner.
The URL for this service can be found in the CommissioningCustomFlowUrl field of the Distrib
uted Compliance Ledger for the given Vendor ID and Product ID.

5.1.1.4. Discovery Capabilities Bitmask

An 8-bit capabilities bitmask SHALL be included in machine-readable formats.
Rationale: The Discovery Capabilities Bitmask contains information about the device’s available
technologies for device discovery (see Section 5.4, “Device Discovery”).

5.1.1.5. Discriminator value

A Discriminator SHALL be included as a 12-bit unsigned integer, which SHALL match the value
which a device advertises during commissioning. To easily distinguish between advertising devices,
this value SHOULD be different for each individual device.
For machine-readable formats, the full 12-bit Discriminator is used. For the Manual Pairing Code,
only the upper 4 bits out of the 12-bit Discriminator are used.
Rationale: The Discriminator value helps to further identify potential devices during the setup
process and helps to improve the speed and robustness of the setup experience for the user.

5.1.1.6. Passcode

A Passcode SHALL be included as a 27-bit unsigned integer, which serves as proof of possession dur
ing commissioning. The 27-bit unsigned integer encodes an 8-digit decimal numeric value, and
therefore SHALL be restricted to the values 0x0000001 to 0x5F5E0FE (00000001 to 99999998 in decimal),
excluding the invalid Passcode values.

Rationale: The Passcode establishes proof of possession and is also used as the shared secret in set
ting up the initial secure channel over which further onboarding steps take place.

5.1.1.7. TLV Data

Variable-length TLV data using the TLV format MAY be included in machine-readable formats pro
viding optional information. More details about the TLV can be found in Section 5.1.5, “TLV Con
tent”.

5.1.2. Onboarding Material Representation

In order for the users of Matter products to recognize the onboarding material, and be able to use it
easily, it is important to keep the representations of the onboarding material unified and of certain
minimum size. To support this the Matter Brand Guidelines specify the characteristics like composi
tion, colors, font, font size, QR Code size and digit-grouping of the Manual Pairing code.

When the onboarding material is printed on product or packaging material it SHALL follow the
Matter Brand Guidelines.

Other representations (product display, app, etc) of the onboarding material SHOULD follow the
Matter Brand Guidelines.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 230 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.1.3. QR Code

The Onboarding Payload MAY be included on (or with) a device in the form of a QR code. The fol
lowing sections detail the content, encoding, and formatting of the QR code.

5.1.3.1. Payload

The content of the QR code consists of the concatenation of a prefix string and a Base-38-encoded
string containing the required and optional TLV content:

QR code string := <prefix><base-38-content>

Prefix String

The prefix string consists of the three-character string:

MT:

Base-38 Content

The required content of the QR code is composed of a Packed Binary Data Structure containing ele
ments of the Onboarding Payload as detailed below. The resulting data is Base-38 encoded (with a
specific alphabet) to form a string compatible with alphanumeric QR encoding.

Packed Binary Data Structure

Individual data elements SHALL be placed into the structure in the order detailed in the table
below. Elements being packed are not necessarily byte- or word-aligned. The resulting packed struc
ture is presented to the encoder as a multi-byte array (see Encoding section below), which SHALL
be padded with '0' bits at the end of the structure to the nearest byte boundary.

The bits of each fixed-size value are placed in the packed binary data structure in order from least
significant to most significant. If TLV Data is included, it is appended to the end of the packed
binary data.

For example, the first elements in the table below SHALL be packed into the first bytes of the data
array as pictured:

Table 37. Packing of the onboarding payload

lsb Byte 0 msb Byte 1 Byte 2 Byte 3 …

0 7 0 7 0 7 0 7 0

version Vendor ID Product ID

0 2 0 15 0 15

Table 38. Packed Binary Data Structure for Onboarding Payload

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 231

Onboarding
Payload Ele
ment

Size
(bits)

Require
d

Notes

Version 3 Yes 3-bit value specifying the QR code payload version.
SHALL be 000.

Vendor ID 16 Yes

Product ID 16 Yes

Custom Flow 2 Yes Device Commissioning Flow
 0: Standard commissioning flow: such a device, when uncom
missioned, always enters commissioning mode upon power-up,
subject to the rules in Section 5.4.2.2, “Announcement Com
mencement”.
 1: User-intent commissioning flow: user action required to
enter commissioning mode.
 2: Custom commissioning flow: interaction with a vendor-
specified means is needed before commissioning.
 3: Reserved

Discovery
Capabilities
Bitmask

8 Yes Defined in table below.

Discriminator 12 Yes 12-bit as defined in Discriminator

Passcode 27 Yes See Section 5.1.7, “Generation of the Passcode”

Padding 4 Yes Bit-padding of '0’s to expand to the nearest byte boundary, thus
byte-aligning any TLV Data that follows.

TLV Data Variable No Variable length TLV data. Zero length if TLV is not included.
This data is byte-aligned.
See TLV Data sections below for detail.

Table 39. Discovery Capabilities Bitmask

Bit Size
(bits)

Description

0
(lsb
)

1 Reserved (SHALL be 0)

1 1 BLE:
 0: Device does not support BLE for discovery or is currently commissioned into one
or more fabrics.
 1: Device supports BLE for discovery when not commissioned.

2 1 On IP network:
 1: Device is already on the IP network

3..7 5 Reserved (SHALL be 0)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 232 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

TLV Data

The TLV data is an optional, variable-length payload. The payload is composed of one or more TLV-
encoded elements as defined in detail below in the TLV Content section.

Encoding

The Packed Binary Data Structure is Base-38 encoded (with a specific alphabet) to produce an
alphanumeric string suitable for use as a QR code payload.

Alphabet

The Base-38 alphabet to be employed is composed of a subset of the 45 available characters (A-Z0-
9$%*+./ :-) in the QR code for alphanumeric encoding as defined by ISO/IEC 18004:2015, with char
acters $, %, *, +, /, <space>, and : removed.

Table 40. Alphabet for Onboard Payload Encoding

Code Charac
ter

Code Charac
ter

Code Charac
ter

Code Charac
ter

Code Charac
ter

00 0 09 9 18 I 27 R 36 -

01 1 10 A 19 J 28 S 37 .

02 2 11 B 20 K 29 T

03 3 12 C 21 L 30 U

04 4 13 D 22 M 31 V

05 5 14 E 23 N 32 W

06 6 15 F 24 O 33 X

07 7 16 G 25 P 34 Y

08 8 17 H 26 Q 35 Z

Method

Base-38 encoding is achieved by employing a simplified strategy where every 3 bytes (24 bits) of
binary source data are encoded to 5 characters of the Base-38 alphabet.

Data from the Packed Binary Data Structure are encoded starting with the first byte of the struc
ture. Three-byte chunks are formed into a 24-bit unsigned integer for encoding as follows:

UINT24 = (BYTEN+2 << 16) | (BYTEN+1 << 8) | (BYTEN << 0)

The 24-bit value is subsequently converted to Base-38 radix using the alphabet above to produce a
5-character substring, with the least-significant character appearing first (little-endian).

If a single byte of binary source data remains, it SHALL be converted to Base-38 radix using the
alphabet above to produce a 2-character substring, with the least-significant character appearing
first.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 233

If two bytes of binary source data remains, they SHALL be formed into a 16-bit unsigned integer for
encoding as follows:

UINT16 = (BYTEN+1 << 8) | (BYTEN << 0)

This 16-bit value is subsequently converted to Base-38 radix using the alphabet above to produce a
4-character substring, with the least-significant character appearing first.

The final encoded string is a result of concatenation of all substrings, with the first-encoded sub
string appearing at the beginning of the concatenated string.

5.1.3.2. QR Code Format

The format selection, which includes the QR code Version and ECC levels as well as size and color,
MAY be tailored to the requirements of the manufacturer and their respective product, provided it
meets the following requirements:

QR code Version and Encoding

The QR code generated, as defined in ISO/IEC 18004:2015, SHALL be of Version 1 or higher, using
alphanumeric encoding. The size of the payload implies a minimum Version, though a higher Ver
sion may be needed to allow a higher ECC level. For example, a minimum payload of 22 alphanu
meric characters (19 base-38-encoded characters from the packed binary structure plus 3 prefix
characters) can be fit into a Version 1 with ECC=L, but for ECC=M, Q or H, the same payload
requires a Version 2 QR code. This allows the Manufacturer to balance between ECC, pixel size and
overall size.

Example QR Code Sizes and Payloads

QR Code
Version

Module
Size

ECC Level Alphanumeric
capacity (chars)

Total available
payload, exclud
ing prefix (bits)

Available pay
load for TLV data

(bits)

1 21x21 L 25 104 16

2 25x25 L 47 208 120

M 38 168 80

Q 29 120 32

3 29x29 L 77 352 264

M 61 272 184

Q 47 208 120

H 35 152 64

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 234 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

QR Code
Version

Module
Size

ECC Level Alphanumeric
capacity (chars)

Total available
payload, exclud
ing prefix (bits)

Available pay
load for TLV data

(bits)

4 33x33 L 114 528 440

M 90 416 328

Q 67 304 216

H 50 224 136

5 37x37 L 154 720 632

M 122 568 480

Q 87 400 312

H 64 288 200

NOTE
Version 1 codes with ECC levels M, Q, and H and version 2 codes with ECC level H
have insufficient capacity

NOTE

Total available payload, excluding prefix = (trunc((N-3) / 5) * 24) where N is the
number of alphanumeric characters which fit in the QR code. This formula uses N-3
to account for the prefix characters, and then determines how many groups of 5
base-38-encoded characters can fit; each such group carrying 24 bits of payload.
This formula fills groups of 5 characters after the MT: prefix. If there are 2,3 or 4
characters left after these groups, an additional 8 bits (for 2,3 characters) or 16 bits
(for 4 characters) of TLV data can be accommodated. So the entries in the table take
this into account.
Available payload for TLV data = (Total available payload, excluding prefix - 88)
since the minimum payload for the Packed Binary Data Structure is 84 bits before
padding, or 88 bits with padding.

Payload Limits

The number of alphanumeric characters in the QR code SHALL NOT exceed 255 characters. Using
this maximum size would yield a total available payload of 1208 bits, and hence 1120 bits of TLV
payload.

ECC Level

The QR code SHOULD employ level M or higher ECC.

NOTE

A higher level ECC does not help against typical 'reading' issues like shiny surfaces,
bad contrast or issues with camera resolution/focus, and lack of camera-app pro
cessing dedicated for QR codes. Therefore, in certain situations ECC=L MAY be used
as well (e.g. to prevent having to move to a higher Version to fit the payload).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 235

5.1.4. Manual Pairing Code

This section describes the content and format of the Manual Pairing Code, which can be used in cer
tain situations next to or instead of the QR code described above.

5.1.4.1. Content

Payload

The payload of the Manual Pairing Code consists of the following required and optional data ele
ments.

Table 41. Manual Pairing Code Elements

Element Size
(bits)

Require
d

Notes

VERSION 1 Yes Shall be 0
Version is encoded as part of first digit of the Manual Pair
ing Code. A value of 1 is reserved for future extension of
the specification.

VID_PID_PRESENT 1 Yes 0: no Vendor ID and Product ID present in Manual Pairing
Code
1: Vendor ID and Product ID data included

DISCRIMINATOR 4 Yes 4 Most-significant bits of the 12-bits Discriminator
described above

PASSCODE 27 Yes Same as 27-bit Passcode described above

VENDOR_ID 16 No Needed only to support devices that need a user-intent or
vendor specific flow before commissioning (i.e. a non-zero
Custom Flow value).
If an accompanying QR code is present on the device with
the Custom Flow field set to a non-zero value, or if the
device requires Custom commissioning flow, this element
SHALL be included.

PRODUCT_ID 16 No* * This element SHALL be included if and only if the VEN
DOR_ID element is present.

The Vendor ID and Product ID elements are optional. Including these may provide additional infor
mation for the setup flow at the expense of a substantially longer Manual Pairing Code.

Custom Flow for Manual Pairing Code

The encoding for Manual Pairing Code does not have a dedicated field for Custom Flow, as exists in
the Packed Binary Data Structure. Instead, this information is encoded in the following way:

• For Standard commissioning flow, the variant of Manual Pairing Code without Vendor ID and
Product ID SHALL be used. A commissioner encountering such Manual Pairing Code SHALL
assume it is a "standard flow" device.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 236 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• For User-intent commissioning flow and Custom Commissioning flow, the variant of Manual
Pairing Code with Vendor ID and Product ID SHALL be used. For this case, a commissioner
SHOULD use Vendor ID and Product ID to lookup the CommissioningCustomFlow field in the
Distributed Compliance Ledger to determine which of these values applies for this Vendor ID
and Product ID combination.

Encoding

The required and optional elements, along with a check digit, are encoded into either an 11-digit or
21-digit decimal numeric string, depending on whether the optional Vendor and Product ID infor
mation is included.

Method

Each group of digits in the Pairing Code SHALL be encoded as described in the table below. The left-
most digit of the entire string SHALL be represented by DIGIT[1]. Groups of multiple digits SHALL
be encoded such that the most-significant digit appears first (left-most).

Table 42. Encoding Method without Vendor and Product ID’s (VID_PID_Present == 0)

Digit Contents Encoding Notes

1
(left-
most)

- Version 0
- VID_PID present flag
- 2 ms-bits of discrimina
tor

DIGIT[1] :=
 (VID_PID_PRESENT << 2) |
 (DISCRIMINATOR >> 10)

Allows first digit typed/spo
ken to determine version
and VID/PID present.
Yields a decimal number
from 0..7 (0..3 if VID,PID not
present).
First digit of '8' or '9' would
be invalid for v1 and would
indicate new format (e.g.
version 2)

2..6 - 3rd and 4th ms-bits of
Discriminator
- 14 ls-bits of PASSCODE

DIGIT[2..6] :=
 ((DISCRIMINATOR & 0x300)
<< 6) |
 (PASSCODE & 0x3FFF)

Yields a 5-digit decimal num
ber from 00000 to 65535
(0xFFFF/16 bits)

7..10 - 13 ms-bits of PASSCODE DIGIT[7..10] :=
 (PASSCODE >> 14)

Yields a 4-digit decimal num
ber from 0000 to 8191
(0x1FFF/13 bits)

11 - Check Digit DIGIT[11] :=
 (CHECK_DIGIT)

See Check Digit section for
encoding

Table 43. Encoding Method with Vendor and Product ID’s included (VID_PID_Present == 1)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 237

Digit Contents Encoding Notes

1
(left-
most)

- Version 0
- VID_PID present flag
- 2 ms-bits of Discrimina
tor

DIGIT[1] :=
 (VID_PID_PRESENT << 2) |
 (DISCRIMINATOR >> 10)

Allows first digit typed/spo
ken to determine version
and VID/PID present.
Yields a decimal number
from 0..7 (4..7 if VID,PID
present).
First digit of '8' or '9' would
be invalid for v1 and would
indicate new format (e.g.
version 2)

2..6 - 3rd and 4th ms-bits of
Discriminator
- 14 ls-bits of PASSCODE

DIGIT[2..6] :=
 ((DISCRIMINATOR & 0x300)
<< 6) |
 (PASSCODE & 0x3FFF)

Yields a 5-digit decimal num
ber from 00000 to 65535
(0xFFFF/16 bits)

7..10 - 13 ms-bits of PASSCODE DIGIT[7..10] :=
 (PASSCODE >> 14)

Yields a 4-digit decimal num
ber from 0000 to 8191
(0x1FFF/13 bits)

11..15 - Vendor ID DIGIT[11..15] :=
 (VENDOR_ID)

Yields a 5-digit decimal num
ber from 00000 to 65535
(0xFFFF/16 bits)

16..20 - Product ID DIGIT[16..20] :=
 (PRODUCT_ID)

Yields a 5-digit decimal num
ber from 00000 to 65535
(0xFFFF/16 bits)

21 - Check Digit DIGIT[21] :=
 (CHECK_DIGIT)

See Check Digit section for
encoding

Check Digit

The CHECK_DIGIT element is a single decimal digit computed across all of the preceding digits of
the Pairing Code using the Verhoeff algorithm.

5.1.4.2. Copying between applications

When the Manual Pairing Code is presented in an application within a multi-function device, such
as an application on a smartphone, it SHOULD provide a mechanism such as a copy button to allow
easy conveyance of the information to other commissioners on the same device.

When a Commissioner is implemented as an application within a multi-function device, such as an
application on a smartphone, it SHOULD provide a mechanism such as a paste button to allow easy
conveyance of the information from an administrator on the same device.

The receiving application SHALL be robust against characters like dashes and spaces that may be
included in the string, such as those added for readability by the user, when passed between the
applications. For example, a receiving application seeing the code "1234-567-8910" would need to
interpret it as "12345678910".

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 238 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.1.5. TLV Content

A variable-length TLV Data section MAY be encoded into the Packed Binary Data Structure. The TLV
section MAY consist of manufacturer-specific information elements and/or elements common to
Matter, encoded using TLV. All elements SHALL be housed within an anonymous top-level structure
container.

5.1.5.1. Manufacturer-specific Elements

Manufacturer-specific elements SHALL be tagged with context-specific tags that have semantics
which are defined by the vendor for use in the products using their Vendor ID, and SHALL use tag
numbers 0x80 to 0xFF.
Tag numbers 0x00 to 0x7F are reserved to indicate Matter-common elements.

Manufacturer-specific elements inherit the context of the Vendor ID and Product ID provided in the
Packed Binary Data Structure described above. All elements SHALL follow the constraints outlined
in Appendix A, Tag-length-value (TLV) Encoding Format.

5.1.5.2. Matter-common Elements

All elements common to Matter SHALL use tag numbers in the range 0x00 to 0x7F, as defined in the
following section.

Vendors are encouraged to use Matter-common elements where applicable.

Table 44. Matter-common Reserved Tags

Tag Valu
e

Description Type(s)

kTag_Serial
Number

0x00 Device Serial # UTF-8 String (length = 1..32 bytes)

Unsigned Integer, up to 8-byte value (has
room to represent a 19-digit decimal num
ber)

PBKDFItera
tions *

0x01 PBKDFParameterSet Iterations Unsigned Integer (range = CRYPTO_PBKD
F_ITERATIONS_MIN.. CRYPTO_PBKDF_ITER
ATIONS_MAX)

PBKDFSalt * 0x02 PBKDFParameterSet Salt Octet String (length = 16..32 bytes)

kTag_Num
berOfDevices

0x03 Number of devices that are
expected to be onboarded
using this payload when using
the Enhanced Commissioning
Method

Unsigned Integer, range 1 to 255

kTag_Commis
sioningTime
out

0x04 Time, in seconds, during which
the device(s) are expected to
be commissionable using the
Enhanced Commissioning
Method

Unsigned Integer, see Announcement Dura
tion

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 239

Tag Valu
e

Description Type(s)

reserved 0x05.
.0x7F

reserved for future use

* If the PBKDF parameters are to be included in the TLV section, both the PBKDFSalt and PBKDFItera
tions SHALL be encoded.

5.1.5.3. TLV Examples

Manufacturer-specific and Matter-common elements

 {
 vendorTag01 (0x81) = "Vendor",
 kTag_SerialNumber(0) = "1234567890"
 }

The above notation encodes to the following bytes:

0x15 0x2C 0x81 0x06 0x56 0x65 0x6E 0x64 0x6F 0x72 0x2C 0x00 0x0A 0x31 0x32 0x33
0x34 0x35 0x36 0x37 0x38 0x39 0x30 0x18

Data Comments
=========== ===
0x15 Control Byte for outermost container (structure)
 - Tag control 000xxxxxb: Anonymous tag
 - Elem type xxx10101b: Structure

0x2C Control Byte for next TLV
 - Tag control 001xxxxxb: Context-specific tag
 - Elem type xxx01100b: UTF-8 String, 1-byte length
0x81 Context-specific vendor tag
 - Matter-common versus vendor tag 1xxxxxxxb: Vendor tag
 - Tag number x0000001b: Vendor tag #1

 10000001b = 0x81
0x06 Length of vendor string (e.g. 6 bytes)
0x56 0x65 0x6E 0x64 0x6F 0x72
 UTF-8 encoded vendor string "Vendor"

0x2C Control byte for next TLV
 - Tag control 001xxxxxb: Context-specific tag
 - Elem type xxx01100b: UTF-8 String, 1-byte length

 00101100b = 0x2C
0x00 Context-specific Matter-common Serial Number tag
 - Matter-common versus vendor tag 0xxxxxxxb: Matter-common tag

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 240 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 - Tag number x0000000b: kTag_SerialNumber

 00000000b = 0x00
0x0A Length of Serial Number string (10 bytes)
0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x30
 UTF-8 encoded Serial Number string "1234567890"

0x18 End of container

Matter-common elements only

 {
 kTag_SerialNumber (0) = "1234567890"
 }

The above notation encodes to the following bytes:

0x15 0x2C 0x00 0x0A 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x30 0x18

Data Comments
=========== ===
0x15 Control Byte for outermost container (structure)
 - Tag control 000xxxxxb: Anonymous tag
 - Elem type xxx10101b: Structure

0x2C Control Byte for next TLV
 - Tag control 001xxxxxb: Context-specific tag
 - Elem type xxx01100b: UTF-8 String, 1-byte length

 00101100b = 0x2C
0x00 Context-specific Matter-common Serial Number tag
 - Matter-common versus vendor tag 0xxxxxxxb: Matter-common tag
 - Tag number x0000000b: kTag_SerialNumber

 00000000b = 0x00
0x0A Length of Serial Number string (10 bytes)
0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x30
 UTF-8 encoded Serial Number string "1234567890"

0x18 End of container

5.1.6. Concatenation

The Onboarding Payload MAY be concatenated with additional Onboarding Payloads to be placed in
a single QR Code:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 241

 QR code string := MT:<onboarding-base-38-content>*<onboarding-base-38-content2>

Where * is used as the delimiter.

Concatenation of multiple Matter Onboarding Payloads allows a single QR code to provide the
onboarding payload for a number of devices. Example use case for this concatenation:

• Easy onboarding for multi-device packaging, e.g. for a package of light bulbs containing four
separate bulbs. Each bulb will have its own Onboarding Payload code(s) printed on the bulb
itself. The Manufacturer MAY include a leaflet in the box with a larger QR code containing the
concatenation of the four individual Onboarding Payloads. The user can then scan this com
bined QR code (one step for the user) which would give the Commissioner the Onboarding Pay
load for all four bulbs in one operation, and it can proceed to commission the four bulbs.

All Commissioners SHALL recognize the * separator from the QR code as indication concatenation
is used.
A Commissioner which does not support such concatenated Matter Onboarding Payloads SHOULD
indicate to the user the need to commission devices one by one by scanning their individual QR
codes.
The Commissioner SHOULD commission the devices in the order as they are provided in the con
catenated code. (This ordering is particularly relevant in case of combi-packs where one of the
devices needs to be commissioned first, e.g. a Thread Router first, then one or more Thread-con
nected bulbs).

Example of concatenated Onboarding Payloads:

MT:<onboarding-base-38-content_bulb1>*<onboarding-base-38-content_bulb2>*<onboarding-
base-38-content_bulb3>*<onboarding-base-38-content_bulb4>

5.1.7. Generation of the Passcode

A device can support either dynamic or static passcodes for purposes of establishing the shared
secret for the initial secure channel over which further onboarding steps take place.

All devices SHALL conform to the following rules for passcodes:

• Passcodes SHALL NOT be derived from public information, such as a serial number, manufac
turer date, MAC address, region of origin, etc.

• The Passcode generation process SHALL use a cryptographically secure random number gener
ator.

If a device generates a dynamic Passcode, then it SHALL conform to the following additional rule:

• Passcodes SHALL be accessible to commissioner only during the commissioning process.

If a device cannot generate a dynamic Passcode, then the static Passcode SHALL conform to the fol
lowing additional rules:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 242 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• A random passcode with 27 bits of entropy SHALL be generated and used for each individual
device. Because of the disallowed numbers, the entropy remaining in the actual setup code will
be somewhere between 26 bits and 27 bits but the initial value before rejecting disallowed num
bers SHALL have 27 bits of entropy.

• The device SHALL be supplied with the PAKE verifier in its internal storage.

• If the static passcode is also supplied to the device, the static passcode SHALL NOT be accessible
during operational mode using any data model attributes or commands.

• If the static passcode is supplied to the device, its storage location SHALL be physically isolated
from the location where the PAKE verifier is stored and SHALL only be accessible through local
interfaces and SHALL NOT be accessible to the executing unit handling the PAKE verifier. For
example, a device equipped with a NFC connected tag may contain the QR code containing the
static passcode in the NFC connected tag private memory and the NDEF record containing the
NFC tag onboarding payload is only presented to the commissioner during the commissioning
window through the NFC interface.

5.1.7.1. Invalid Passcodes

The following Passcodes SHALL NOT be used for the PASE protocol due to their trivial, insecure
nature:

• 00000000

• 11111111

• 22222222

• 33333333

• 44444444

• 55555555

• 66666666

• 77777777

• 88888888

• 99999999

• 12345678

• 87654321

5.1.8. NFC Tag

A Commissioner MAY use, in addition to the QR Code Format and Manual Pairing Code as described
above, an NFC tag associated with a Commissionee to retrieve the Onboarding Payload. When an
NFC tag is used the following requirements are applicable.

• The data contained in the NFC tag SHALL be the same as specified in QR Code Format.

• The NFC tag SHALL be one of the types as defined by NFC Forum.

• The NFC tag SHALL use the NFC Data Exchange Format (NDEF) as defined by NFC NDEF 1.0.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 243

• The NFC tag SHALL use NDEF messages as defined by NFC RTD 1.0.

• The Onboarding Payload for the NFC tag SHALL use NDEF URI Record Type Definition as
defined by NFC RTD URI 1.0 and as specified in the following table.

Table 45. NFC NDEF Representation

Offset Content Description

0 0xD1 TNF=0x01, SR=1, MB=1, ME=1

1 0x01 Length of Record Type

2 URI payload size in bytes Length of payload

3 0x55 Record Name ("U")

4 0x00 URI Identifier Code: No URI
abbreviation

5 URI data MT:<base-38-content>

5.2. Initiating Commissioning

5.2.1. Purpose and Scope

The process of Matter commissioning can be initiated by the User in a number of ways. This section
describes different user journeys supported by Matter. For each, a rationale is provided along with
a high-level flow description, up until the point where a commissioning secure session is estab
lished. References to sections describing dependent functionality in more detail are provided.

The purpose of this section is to connect features provided in other sections to the user journeys for
which they are designed.

WARNING
The list of user journeys provided here is not meant to be exhaustive; there
may be other journeys not listed here which can be realized using Matter.

This section provides rationales for Matter functionality and does NOT contain normative require
ments for Matter.

The following User Journeys are described in this section:

• Section 5.2.2.1, “Commissioner Setup Code Entry, Not Yet Commissioned Device”. "Launch Com
missioner, Enter Code"

• Section 5.2.2.2, “User-Initiated Beacon Detection, Not Yet Commissioned Device”. "Launch Com
missioner, Discover New Devices"

• Section 5.2.2.3, “User-Initiated Beacon Detection, Already Commissioned Device”. "Launch Com
missioner, Discover My devices"

• Section 5.2.2.4, “Commissioner Discovery, from an On-Network Device”. "Launch Device User
Interface, Discover Commissioners"

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 244 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.2.2. User Journey Details

5.2.2.1. Commissioner Setup Code Entry, Not Yet Commissioned Device

"Launch Commissioner, Enter Code"

In the Setup Code Entry for a Not Yet Commissioned Device use case, the User first initiates an inter
action with a Commissioner, and then provides the necessary setup code from the Commissionee,
by scanning an Onboarding Payload (e.g. QR Code) or otherwise inputting the manual setup code
through an input method supported by the commissioner.

5.2.2.1.1. Rationale

In this use case, the user will often have the device in-hand, have immediate access to the onboard
ing payload, and have immediate access to the desired Commissioner.

5.2.2.1.2. High Level Flow

1. User initiates an interaction with a Commissioner.

2. User inputs the onboarding payload from the Commissionee.

3. Commissioner determines which technologies to use for Device Discovery. When attempting to
locate the device on IP-bearing networks, the Commissionable Node Discovery method is used
and typically the DNS-SD service subtypes for long or short discriminator, and commissioning
mode (see Commissioning Subtypes) are specified to filter the results to Commissionees that
match the discriminator in the onboarding payload and that are in Commissioning Mode. When
attempting to locate the device via BLE advertisements, the discriminator will typically be used
to filter the results.

4. Commissioner begins the Commissioning process (see Section 5.5, “Commissioning Flows”). If
more than one Commissionee is discovered, the Commissioner may further refine the results
using any additional information such as a Vendor ID or Product ID that may be available in the
onboarding payload. If there is still more than one discovered Commissionee, the Commissioner
will typically attempt to establish a PASE secure commissioning session with each.

5.2.2.1.3. Misuse Considerations

When a device has a static onboarding payload, and the value is physically affixed to the product, it
is possible for an attacker with one-time physical access to the device to obtain the onboarding pay
load and use it to compromise the security of the device in the future. For example, if the device is
commissioned again using the same onboarding payload (for example, after a reset), then the
attacker may be able to perform a person-in-the-middle attack which could result in a compromise
of sensitive user data such as network credentials if passed to the device.

When a device includes device-specific information such as Vendor ID and Product ID in advertise
ments, then a malicious actor within advertisement range can detect this information and poten
tially associate it with the location of the device (and potentially, additional information about the
location, such as its residents) in ways that the user did not intend.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 245

5.2.2.2. User-Initiated Beacon Detection, Not Yet Commissioned Device

"Launch Commissioner, Discover New Devices"

In the User-Initiated Beacon Detection for a Not Yet Commissioned Device use case, the User first
initiates an interaction with a Commissioner, and then indicates an intention to commission
devices without providing additional information about them (no onboarding payload, etc).

5.2.2.2.1. Rationale

In this use case, the user has immediate access to a Commissioner. However, the user may not
know how to locate the onboarding payload (it may be hidden behind a panel, pin-protected in a
settings menu, or inaccessible on a device already physically installed).

Example User interactions with the Commissioner include pushing a "Discover New Devices" but
ton, or speaking to a voice agent "Agent, discover new devices".

5.2.2.2.2. High Level Flow

1. User initiates an interaction with a Commissioner.

2. User indicates an intention to commission devices without providing additional information
about them.

3. Commissioner determines which technologies to use for Device Discovery. When attempting to
locate the device on IP-bearing networks, the Commissionable Node Discovery method is used
and typically the subtype for commissioning mode (see Commissioning Subtypes) is specified
with value 1 in order to filter the results to Commissionees that are in Commissioning Mode.

4. Commissioner constructs a list of Commissionees discovered, using as much information as pos
sible from the Commissionee advertisement. When a Vendor ID and Product ID is provided in
the advertisement, the Commissioner may obtain human readable descriptions of the Vendor
and Product in order to assist the user with selection by using fields such as ProductName and
ProductLabel from the Distributed Compliance Ledger or any other data set available to it. The
ledger entry may also include additional URLs which the Commissioner can offer to the user to
help in locating the Setup Code or otherwise assist in setting up the device such as the UserManu
alUrl, SupportUrl, and ProductUrl. The Commissioner may have additional data sets available for
assisting the user.

5. User selects Commissionee from list.

6. Commissioner instructs the user to locate and input the onboarding payload.

7. Commissioner begins the Commissioning process (see Section 5.5, “Commissioning Flows”).

5.2.2.2.3. Variation - Filter by Device Type

The user may indicate the type of device to the Commissioner when initiating this flow. For exam
ple, the user might speak the following to a voice agent: "Agent, Discover TVs".

When discovering TVs or any other specific device type on the IP network, this flow will be the
same except that a subtype which specifies the device type identifier (see Descriptor Cluster on root
node endpoint) is passed to the Commissionable Node Discovery method (see Commissioning Sub
types).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 246 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.2.2.2.4. Misuse Considerations

In addition to the Misuse Considerations for the Section 5.2.2.2, “User-Initiated Beacon Detection,
Not Yet Commissioned Device”, a Commissioner which performs Device Discovery without knowl
edge of the Onboarding Payload may discover advertisements from devices that the user did not
intend to onboard with the given Commissioner. This additional information collected by the Com
missioner can be associated with the user in ways that the user did not intend.

5.2.2.3. User-Initiated Beacon Detection, Already Commissioned Device

"Launch Commissioner, Discover My Devices"

In the User-Initiated Beacon Detection for an Already Commissioned Device use case, the User first
initiates an interaction with a Commissioner, and then indicates an intention to commission
devices already on the IP network without providing additional information about them.

5.2.2.3.1. Rationale

A Device may choose to be discoverable by entities on the local IP network, even when not in Com
missioning Mode, in order to satisfy specific user journeys. For example, a TV or Bridge device may
choose to be discoverable in order to facilitate connectivity with other Smart Home systems.

Example User interactions with the Commissioner include pushing a "Discover My Devices" button,
or speaking to a voice agent "Agent, discover my devices".

5.2.2.3.2. High Level Flow

1. User initiates an interaction with a Commissioner.

2. User indicates an intention to commission existing devices on the IP network without providing
additional information about them.

3. Commissioner sends the Commissionable Node Discovery broadcast message.

4. Commissioner constructs a list of Commissionees discovered, using as much information as pos
sible from the Commissionee advertisement. When a Vendor ID and Product ID is provided (see
Commissioning VID/PID), the Commissioner may obtain human readable descriptions of the
Vendor and Product in order to assist the user with selection by using fields such as ProductName
and ProductLabel from the Distributed Compliance Ledger or any other data set available to it.
The ledger entry may also include additional URLs which the Commissioner can offer to the
user to help in locating the Setup Code or otherwise assist in setting up the device such as the
UserManualUrl, SupportUrl, and ProductUrl. The Commissioner may have additional data sets
available for assisting the user. When the Device Type (see Commissioning Device Type) and/or
the Device Name (see Commissioning Device Name) values are provided, then the Commis
sioner may provide this information to the user in order to assist with Commissionee selection.

5. User selects Commissionee from list.

6. The Commissionable Node Discovery DNS-SD TXT record for the selected Commissionee
includes key/value pairs that can help the Commissioner to guide the user through the next
steps of the commissioning process. If the Commissioning Mode value (see Commissioning
Mode) is set to 0, then the Commissionee is not yet in Commissioning Mode and the Commis
sioner can guide the user through the steps needed to put the Commissionee into Commission

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 247

ing Mode. The Pairing Hint (see: Commissioning Pairing Hint) and the Pairing Instruction (see:
Commissioning Pairing Instruction) fields would then indicate the steps that can be followed by
the user to put the device into Commissioning Mode.

7. If not already in Commissioning Mode, Commissioner instructs the user to put the Commis
sionee into Commissioning Mode, and verifies the new state using Commissionable Node Dis
covery.

8. Commissioner instructs the user to locate and input the onboarding payload. When a Vendor ID
and Product ID is available to the Commissioner, the Distributed Compliance Ledger may also
provide a URL for the Device User Guide which can contain additional information to help in
locating the onboarding payload. The Commissioner may have additional data sets available for
assisting the user.

9. Commissioner begins the Commissioning process (see Section 5.5, “Commissioning Flows”).

5.2.2.3.3. Variation - Filter by Device Type

The user may indicate the type of device to the Commissioner when initiating this flow. For exam
ple, the user might speak the following to a voice agent: "Agent, Discover TVs".

When discovering TVs or any other specific device type on the IP network, this flow will be the
same except that a subtype which specifies the device type identifier is passed to the Commission
able Node Discovery method (see Commissioning Subtypes).

5.2.2.3.4. Misuse Considerations

When a Device implements Commissionable Node Discovery while not in Commissioning Mode, the
time period during which it may unintentionally provide information to a malicious actor on the
network is longer than it otherwise would be. This additional information could potentially be asso
ciated with the user in ways that the user did not intend. See Commissionable Node Discovery Pri
vacy Considerations for device requirements relating to this risk.

When a device includes device-specific information such as Vendor ID, Product ID and Device Type,
or user-generated data such as Device Name, in the DNS-SD TXT record, then a malicious actor on
the network can detect this information and potentially associate it with the user in ways that the
user did not intend.

A Commissioner which performs Device Discovery without knowledge of the Onboarding Payload
may discover devices on the network that the user did not intend to onboard with the given Com
missioner. This additional information collected by the Commissioner can be associated with the
user in ways that the user did not intend.

5.2.2.4. Commissioner Discovery, from an On-Network Device

"Launch Device User Interface, Discover Commissioners"

In the Commissioner Discovery use case for a Device already on the IP network, the User first initi
ates an interaction with the Device via a display or other user interface, and indicates the intention
to have this device commissioned by a Commissioner on the network. The Device might already
have been commissioned into one or many Fabrics or it might not yet have been commissioned.
Upon this user interaction, the Device discovers candidate Commissioners and allows the user to

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 248 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

select one. The Device then requests from that Commissioner to be commissioned.

5.2.2.4.1. Rationale

In this use case, a Device (Commissionee) with a user interface, such as a TV or Thermostat, initiates
the commissioning process. For example, this might be done from within a settings menu for Smart
Home control. The Device discovers Commissioners on the IP-bearing network, presents the result
ing list to the User for selection. Once selected, the Device indicates to the selected Commissioner
that it has been selected by the User, the Device enters Commissioning Mode and provides the
onboarding payload to the User.

Another example for this use case is a Device or Node (Commissionee) with a user interface, such as
a Content Provider Device or Application, that initiates the commissioning process. This might be
done from a program guide or while watching a video when the user indicates a desire to play the
selected content on a nearby device. The Device discovers Commissioners on the IP-bearing net
work, presents the resulting list to the User for selection. Once selected, the Commissionee indicates
to the selected Commissioner that it has been selected by the User (see User Directed Commission
ing), the Commissionee enters Commissioning Mode and provides the onboarding payload to the
User.

5.2.2.4.2. High Level Flow

1. User initiates an interaction with the Device.

2. User indicates a desire to connect this Device with a Commissioner on the network.

3. Device uses Commissioner Discovery over DNS-SD on the IP bearing network.

4. Device collects candidates from DNS-SD service records found.

5. Device displays list of Commissioners discovered, including as much information as possible
from the DNS-SD TXT record. When a Vendor ID and Product ID is provided (see Commissioning
VID/PID), the Device may obtain human readable descriptions of the Vendor and Product in
order to assist the user with selection by using fields such as ProductName and ProductLabel from
the Distributed Compliance Ledger or any other data set available to it. The Device may have
additional data sets available for assisting the user. When the Device Type (see Commissioning
Device Type) and/or the Device Name (see Commissioning Device Name) values are provided in
the DNS-SD TXT record, then the Device may provide this information to the user in order to
assist with Commissioner selection.

6. User selects an entry from the list.

7. Device enters Commissioning Mode.

8. Device displays onboarding payload to the user.

9. Device initiates a User Directed Commissioning session with the selected Commissioner, which
includes in the DNS-SD service name of the Device.

10. Commissioner prompts user to confirm intention to commission this device and asks for
onboarding payload.

11. User enters onboarding payload into Commissioner UX.

12. Commissioner begins the commissioning process (see Section 5.5, “Commissioning Flows”).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 249

For additional variations relating to the display and input of the onboarding payload, see User
Directed Commissioning.

5.2.2.4.3. Misuse Considerations

In addition to the Misuse Considerations for the Section 5.2.2.3, “User-Initiated Beacon Detection,
Already Commissioned Device”, a Commissionee which performs Commissioner Discovery may dis
cover Commissioners on the network that the user did not intend to be discovered by the given
Commissionee. This additional information collected by the Commissionee can be associated with
the user in ways that the user did not intend. See Commissioner Discovery Privacy Considerations
for Commissioner requirements relating to this risk.

Since there are no trust mechanisms employed for Commissioners advertising themselves, Commis
sionees may provide Commissioner selection choices to the User that are from malicious entities
masquerading as commissioners.

When a Commissioner includes device-specific information such as Vendor ID, Product ID and
Device Type, or user-generated data such as Device Name, in the DNS-SD TXT record, then a mali
cious actor on the network can detect this information and potentially associate it with the user in
ways that the user did not intend.

5.3. User Directed Commissioning

5.3.1. Overview

In User Directed Commissioning (UDC), the Commissionee sends a message to the Commissioner in
order to initiate the commissioning process (see Section 5.5, “Commissioning Flows”). In addition,
the Commissionee can specify its UX preferences for the commissioning session using optional
parameters in the message. Similarly, the Commissioner can send a message to the Commissionee
to indicate its pre-commissioning state in order to help the Commissionee simplify the experience
for the user.

The availability of the UDC protocol is advertised through Commissioner Discovery service records
of DNS-SD service type _matterd._udp (see Section 4.3.3, “Commissioner Discovery”).

Overall, the UDC protocol is a lightweight "door bell" message sent by a Commissionee. There is no
state or session associated with UDC protocol messages, allowing the recipient to choose to support
messages received from different sources at the same time, or choose to ignore messages received
while the processing of an earlier message has not completed. The UDC protocol consists of an Iden
tification Declaration which provides the Commissionee’s _matterc._udp DNS‑SD service instance
name. In addition, Identification Declaration MAY include optional information relating to the
requested commissioning session.

Upon receiving this message, the Commissioner MAY query the DNS-SD service instance indicated
in the Identification Declaration, including TXT records, in order to obtain additional information
about the Commissionee, MAY obtain the corresponding Onboarding Payload or Passcode from the
user for this Commissionee, and MAY initiate the commissioning process with it.

The Commissioner MAY send a CommissionerDeclaration to the Identification Declaration message

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 250 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

sender’s source IP and Port. The CommissionerDeclaration provides information to a Commissionee
indicating the Commissioner’s pre-commissioning state, which MAY be used by the Commissionee
to simplify the Passcode entry user experience.

Upon receiving this message, the Commissionee MAY provide instructions to the user about how to
proceed to the next steps in the commissioning process, for example, by displaying a Passcode to
the user, and instructing them to provide it to the Commissioner.

While a sequence of these messages between Commissionee and Commissioner can be used to
achieve a specific user experience, as the examples below illustrate, the processing of each message
is expected to stand alone and not be dependent upon other messages in the sequence. For this rea
son there is no use of session or exchange identifiers, and no encryption of the messages. Conse
quently, there are no guarantees of behavior or acknowledgements, information contained in mes
sages SHOULD be assumed to be visible to the network, and messages SHALL NOT contain private
or sensitive information.

The Commissionee and Commissioner SHALL enforce rate limiting of these messages and provide
the option for the user to disable handling of them (either temporarily or until manually re-
enabled). For example, a rate limiting algorithm of accepting no more than 20 messages (not includ
ing retries) in a 10 minute period is recommended.

One possible user journey for this feature is described in Commissioner Discovery from an Existing
Device.

Figure 30. Overview of the UDC Protocol Identification Declaration message

The Commissionee is the Initiator and the Commissioner is the Recipient of the IdentificationDecla
ration message.

Figure 31. Overview of the UDC Protocol Commissioner Declaration message

The Commissioner is the Initiator and the Commissionee is the Recipient of the CommissionerDec
laration message.

It is assumed that the user has directed the Initiator to send the IdentificationDeclaration message
to the Recipient. Upon receipt and before starting a PASE session with the Initiator, it is assumed
that the Recipient will obtain DNS-SD record information (including TXT records) for the Initiator,
which was either provided in the IdentificationDeclaration message or can be obtained by querying
the DNS-SD records, and then prompt the user for approval and to enter its Onboarding Payload or
Passcode.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 251

5.3.2. UDC Protocol Messages

Table 46. User Directed Commissioning Protocol

Protocol
Opcode

Protocol Command
Name

Description

Protocol ID = PROTOCOL_ID_USER_DIRECTED_COMMISSIONING

0x00 IdentificationDeclaration The Identification Declaration message provides the DNS-
SD Instance Name of the commissionee requesting com
missioning to the commissioner selected by the user. It can
also include information relating to the requested commis
sioning session.

0x01 CommissionerDeclaration The Commissioner Declaration message provides informa
tion to a commissionee from the commissioner indicating
its pre-commissioning state. This information can be used
by the commissionee to simplify the Passcode entry flow
for the user.

5.3.3. Message format

All UDC messages SHALL be structured as specified in Section 4.4, “Message Frame Format”.

All UDC messages are unsecured at the message layer:

• The Session ID field SHALL be set to 0.

• The Session Type bits of the Security Flags SHALL be set to 0.

• The S Flag and DSIZ fields of the Message Flags SHALL be set to 0.

The R Flag of the Exchange Flags for the UDC messages SHALL be set to 0.

For each UDC message, the application payload is the TLV encoding of the message structure as
defined below:

Table 47. UDC Messages

Message Name Payload TLV Encoding

IdentificationDeclaration IdentificationDeclaration-struct

CommissionerDeclaration CommissionerDeclaration-struct

The other fields of the Message format are not specific to the UDC messages.

5.3.4. Message Exchanges

The flags of the Exchange Flags of the Protocol Header are defined as follows per UDC message:

Message I Flag

IdentificationDeclaration 1

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 252 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Message I Flag

CommissionerDeclaration 1

All UDC IdentificationDeclaration messages SHALL be sent without acknowledgement (e.g., unreli
ably) using UDP, to an IP address found in a A or AAAA record associated with the Commissioner
Discovery (_matterd._udp) service, using UDP with a destination port as found in the _matterd._udp
SRV record.

All UDC CommissionerDeclaration messages SHALL be sent without acknowledgement (e.g., unreli
ably) using UDP, to the source IP address of the sender of IdentificationDeclaration message, and
the port specified in the IdentificationDeclaration message payload.

The Initiator MAY send up to 4 retries. Each retransmission SHALL be delayed by at least 100 ms
from the previous transmission.

The other fields of the Protocol Header are not specific to the UDC messages.

5.3.5. IdentificationDeclaration Message

This message serves to identify the Commissionee. It can also specify information relating to the
requested commissioning session, such as whether to display a Passcode entry dialog. It is sent by
the Commissionee to the Commissioner.

In addition to a mandatory instanceName field, which can be used by the Commissioner to perform
Commissionable Node Discovery in order to determine the service IP and Port used to establish a
PASE session with the Commissionee, there are a number of optional fields in the IdentificationDec
laration which can be used by the Commissionee to improve performance and usability of the user
experience.

The payload for the IdentificationDeclaration message begins with 17 bytes which consist of the
DNS-SD instance name defined in Commissionable Node Discovery encoded as 16 characters of
ascii text, followed by a null termination character.

Following the 17 bytes is the encoded IdentificationDeclaration-struct TLV.

instanceName : OCTET STRING [length 17]
IdentificationDeclaration-struct => STRUCTURE [tag-order]
{
 VendorId [1, optional] : UNSIGNED INTEGER [range 16-bits],
 ProductId [2, optional] : UNSIGNED INTEGER [range 16-bits],
 DeviceName [3, optional] : STRING [length 0..32],
 DeviceType [4, optional] : UNSIGNED INTEGER [range 32-bits],
 PairingInstruction [5, optional] : STRING [length 0..32],
 PairingHint [6, optional] : UNSIGNED INTEGER [range 32-bits],
 RotatingDeviceId [7, optional] : STRING [length 0..100].
 Port [8, optional] : UNSIGNED INTEGER [range 16-bits],
 TargetAppList [9, optional] : ARRAY OF
 {
 TargetApp [10, optional] : STRUCTURE [tag-order]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 253

 {
 AppVendorId [11, optional] : UNSIGNED INTEGER [range 16-bits],
 AppProductId [12, optional] : UNSIGNED INTEGER [range 16-bits],
 },
 },
 NoPasscode [13, optional] : BOOLEAN,
 CdUponPasscodeDialog [14, optional] : BOOLEAN,
 CommissionerPasscode [15, optional] : BOOLEAN,
 CommissionerPasscodeReady [16, optional] : BOOLEAN,
 CancelPasscode [17, optional] : BOOLEAN
}

5.3.5.1. Features

5.3.5.1.1. Bypass Commissionable Node Discovery

In practice, the Commissionable Node Discovery step performed by the Commissioner in response
to receiving an IdentificationDeclaration can incur 1 second or more of latency. A Commissionee
can provide the same information that a Commissioner would obtain through Commissionable
Node Discovery by providing this data in the IdentificationDeclaration message.

The Commissioner MAY bypass the Commissionable Node Discovery step of the Commissioner Dis
covery from an Existing Device process when it receives the information it needs in the Identifica
tionDeclaration message, namely, the Port field. The Commissionee MAY also include VendorId, Pro
ductId, DeviceName, DeviceType, PairingInstruction, PairingHint, and RotatingDeviceId fields in the
IdentificationDeclaration message, similar to the existence of these fields in the DNS-SD Commis
sionable Node Discovery response.

See UDC With Commissionable Node Discovery Bypass.

5.3.5.1.2. Target Content Application

In some cases, the Commissionee prefers to determine in advance of commissioning if their Content
Application is present on the Commissioner (see Device Library, section 10 Media Device Types).
This allows the Commissionee to warn the user when an experience with reduced functionality will
result from commissioning, and may cause the Commissionee or the user to choose not to proceed
with the user-directed-commissioning flow.

Some Commissionees will choose not to proceed with the user-directed-commissioning flow if their
app is not present for cases where the user experience requires their app, such as when a casting
video client app is designed for communication with a specific content app on a casting video
player.

The NoPasscode field allows the Commissionee to determine if their app is present but has a differ
ent account active in it. Some Commissionees do not support guest mode, or multiple simultaneous
accounts in their app. In this scenario, the Commissionee might ask the user to switch accounts on
the Commissioner in order to proceed.

When the Commissionee provides the VidList, the Commissioner SHALL apply this list as a further
restriction upon the set of Content Application Vendor IDs that can be used for authentication (see

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 254 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

AccountLogin cluster).

See UDC With Targeted App Selection.

5.3.5.1.3. Coordinate Passcode Dialogs

In some cases, the Passcode needed for commissioning is obtained from a Content App running on
the Commissioner by way of the AccountLogin cluster. When the Passcode is obtained in this fash
ion, no Passcode display on the Commissionee is required, and displaying a Passcode can be confus
ing for the user.

To address this, the Commissionee can request to be told by the Commissioner when it is requesting
a Passcode from the user (so that the Commissionee can display the Passcode) by using the CdUpon
PasscodeDialog field in the IdentificationDeclaration message. The Commissioner would then send a
CommissionerDeclaration message to indicate that a Passcode is needed.

The Commissionee can also inform the Commissioner that the user has declined or exited the com
missioning process by using the CancelPasscode field in the IdentificationDeclaration message.

See UDC With Coordinated Passcode.

5.3.5.1.4. Commissioner-Generated Passcode

In some scenarios, it is simpler for the user to enter a Passcode into the Commissionee UX than it is
to enter a Passcode into a Commissioner UX. For example, when the Commissionee is a mobile
phone app and the Commissioner is a TV, it can be easier to enter a Passcode on a mobile phone
than a TV remote control (which might not have number buttons).

In this scenario, the Commissioner generates a Passcode and displays it for the user. The user
enters the Passcode into the Commissionee UX. The Commissionee UX generates a PASE verifier
based upon this Passcode and enters commissioning mode using this PASE verifier. The Commis
sionee then notifies the Commissioner that it is in commissioning mode (using the new PASE veri
fier) by sending a IdentificationDeclaration with the CommissionerPasscodeReady field set to true.

If, in addition to dynamic passcodes, the Commissioner provides a fixed passcode option, it SHALL
be user-updatable and the Commissioner SHALL provide an option to the user to reset the fixed
passcode frequently, and SHALL provide an option to disable the fixed passcode feature.

A Commissioner indicates that it supports this feature via the CP txt record in Commissionable Node
Discovery.

A Commissionee can utilize this feature via the CommissionerPasscode and CommissionerPasscodeReady
fields.

The Commissionee can also inform the Commissioner that the user has declined or exited the com
missioning process by using the CancelPasscode field in the IdentificationDeclaration message.

See UDC With Commissioner Passcode.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 255

5.3.5.2. Parameters

This following table lists the parameters used in IdentificationDeclaration with a brief description
for each parameter and the feature that uses it.

Table 48. List of IdentificationDeclaration parameters

Parameter
Name

Feature Description

instanceName Always Required The DNS-SD instance name defined in
Commissionable Node Discovery.

VendorId Bypass Commissionable Node Discov
ery

The Vendor ID provided as input to the
mdns TXT records (see TXT key for Vendor
ID and Product ID).

ProductId Bypass Commissionable Node Discov
ery

The Product ID provided as input to the
mdns TXT records (see TXT key for Vendor
ID and Product ID).

DeviceName Bypass Commissionable Node Discov
ery

The device name as described in the mdns
TXT records (see TXT key for device name).

DeviceType Bypass Commissionable Node Discov
ery

The device type as described in the mdns
TXT records (see TXT key for device type).

PairingInstruc
tion

Bypass Commissionable Node Discov
ery

The pairing instruction as described in the
mdns TXT records (see TXT key for pairing
instruction).

PairingHint Bypass Commissionable Node Discov
ery

The pairing hint as described in the mdns
TXT records (see TXT key for pairing hint).

RotatingDevi
ceId

Bypass Commissionable Node Discov
ery

The Rotating Device Identifier as described
in the mdns txt records (see TXT key for
rotating device identifier).

Port Bypass Commissionable Node Discov
ery

The service port for PASE as found in the
SRV record of the DNS-SD Commissionable
Node Discovery response.

TargetAppList Target Content Application The set of content app Vendor IDs (and
optionally, Product IDs) that can be used
for authentication.

TargetApp Target Content Application An entry in the TargetAppList which con
tains a TargetVendorId and an optional
TargetProductId.

AppVendorId Target Content Application The content app Vendor IDs that can be
used for authentication.

AppProductId Target Content Application The content app Product ID associated
with the specified Vendor ID that can be
used for authentication.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 256 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Parameter
Name

Feature Description

NoPasscode Target Content Application Flag to instruct the Commissioner not to
display a Passcode input dialog, and
instead send a CommissionerDeclaration
message if a commissioning Passcode is
needed.

CdUponPass
codeDialog

Coordinate Passcode Dialogs Flag to instruct the Commissioner to send a
CommissionerDeclaration message when
the Passcode input dialog on the Commis
sioner has been shown to the user.

Commissioner
Passcode

Commissioner-Generated Passcode Flag to instruct the Commissioner to use
the Commissioner-generated Passcode for
commissioning.

Commissioner
PasscodeReady

Commissioner-Generated Passcode Flag to indicate whether or not the Com
missionee has obtained the Commissioner
Passcode from the user and is therefore
ready for commissioning.

CancelPass
code

Coordinate Passcode Dialogs Flag to indicate when the Commissionee
user has decided to exit the commissioning
process.

To send a IdentificationDeclaration message, the Commissionee SHALL:

1. Construct the instanceName based upon the DNS-SD instance name defined in Commissionable
Node Discovery.

2. To optionally allow the Commissioner to bypass the Commissionable Node Discovery request:

a. Construct the Port from the service port for PASE as found in the SRV record of the DNS-SD
Commissionable Node Discovery response.

b. Optionally, construct the VendorId value as described as input to the TXT key for Vendor ID
and Product ID.

c. Optionally, construct the ProductId value as described as input to the TXT key for Vendor ID
and Product ID.

d. Optionally, construct the DeviceName value as described in TXT key for device name.

e. Optionally, construct the DeviceType value as described in TXT key for device type.

f. Optionally, construct the PairingInstruction value as described in TXT key for pairing
instruction.

g. Optionally, construct the PairingHint value as described in TXT key for pairing hint.

h. Optionally, construct the RotatingDeviceId value as described in TXT key for rotating device
identifier.

3. Optionally, construct the TargetAppList based upon the set of content app vid/pids that can be
used for authentication. This is a subset of vid/pid selected by the Commissioner based upon the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 257

vid/pid of the client.

4. To optionally prevent the Commissioner from automatically showing a Passcode dialog:

a. Construct NoPasscode and set to true to indicate that this message SHOULD only trigger a
commissioning session if it can be done without asking the user to input a Passcode (eg. the
Passcode was provided by external means). When this field is set to true in the Identifica
tionDeclaration message, the Commissioner SHALL NOT show a Passcode dialog to the user.
Instead, the Commissioner SHOULD send a CommissionerDeclaration message with the
NeedsPasscodeDialog field set to true (and potentially NoAppsFound to indicate the reason).
The Commissionee can then choose whether to prompt a Passcode dialog (by re-sending the
IdentificationDeclaration message without this field) or to abandon this commissioning
attempt.

5. To optionally request that the Commissioner send a CommissionerDeclaration message to serve
as an indication that the Commissioner has presented a Passcode dialog to the user:

a. Construct the CdUponPasscodeDialog and set to true. When this field is set to true in the Identi
ficationDeclaration message, the Commissioner SHOULD send a CommissionerDeclaration
message with the PasscodeDialogDisplayed set to true upon showing the Passcode input dia
log to the user. This field SHALL NOT be set when the CommissionerPasscode field is set
since these two functionalities are mutually exclusive.

6. To optionally request a Commissioner-generated Passcode from a Commissioner which indi
cates support for this feature via the CP TXT record in Commissionable Node Discovery:

a. Construct the CommissionerPasscode and set to true. When this field is set to true in the Identi
ficationDeclaration message, the Commissioner SHOULD display the commissioning Pass
code to the user, and wait to initiate commissioning until an IdentificationDeclaration mes
sage is received with the CommissionerPasscodeReady field set to true.

b. Construct the CommissionerPasscodeReady and set to true to indicate the Commissionee has
obtained the Commissioner Passcode from the user and is ready for commissioning, or false
to indicate that the user has not entered the Passcode yet, and therefore, the Commissioner
SHOULD NOT commence commissioning.

7. To optionally indicate that the Commissionee user has cancelled the commissioning process:

a. Construct the CancelPasscode and set to true. This indicates that the Commissioner can dis
miss any dialogs corresponding to commissioning, such as a Passcode input dialog or a Pass
code display dialog.

8. Construct and send IdentificationDeclaration.

5.3.6. CommissionerDeclaration Message

This message is sent by a Commissioner to a Commissionee in response to a IdentificationDeclara
tion message. The CommissionerDeclaration provides information indicating the Commissioner’s
pre-commissioning state.

CommissionerDeclaration-struct => STRUCTURE [tag-order]
{
 ErrorCode [1, optional] : UNSIGNED INTEGER [range 16-bits],
 NeedsPasscode [2, optional] : BOOLEAN,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 258 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 NoAppsFound [3, optional] : BOOLEAN,
 PasscodeDialogDisplayed [4, optional] : BOOLEAN,
 CommissionerPasscode [5, optional] : BOOLEAN,
 QRCodeDisplayed [6, optional] : BOOLEAN
}

5.3.6.1. Parameters

This following table lists the parameters used in IdentificationDeclaration with a brief description
for each parameter and the feature that uses it.

Table 49. List of IdentificationDeclaration parameters

Parameter
Name

Feature Description

ErrorCode All Indicates errors incurred during commis
sioning.

NeedsPasscode Coordinate PIN Dialogs When NoPasscode field set to true, and the
Commissioner determines that a Passcode
code will be needed for commissioning.

NoAppsFound Target Content Application No apps with AccountLogin cluster imple
mentation were found for the last Identifi
cationDeclaration request. Only apps
which provide access to the vendor id of
the Commissionee will be considered.

PasscodeDi
alogDisplayed

Coordinate PIN Dialogs A Passcode input dialog is now displayed
for the user on the Commissioner.

Commissioner
Passcode

Commissioner-Generated Passcode A Passcode is now displayed for the user
by the Commissioner.

QRCodeDis
played

Commissioner-Generated Passcode The user experience conveying a Passcode
to the user also displays a QR code.

The allowed values for the ErrorCode field are the following

Code Description

0 No error

1 Commissionable Node discovery failed

2 PASE connection failed

3 PASE authentication failed (bad Passcode)

4 DAC validation failed

5 Already on fabric

6 Operational Node discovery failed

7 CASE connection failed

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 259

Code Description

8 CASE authentication failed

9 Configuration failed

10 Binding Configuration failed

11 Commissioner Passcode not supported

12 Invalid UDC parameters

13 App Install Consent Pending

14 App Installing

15 App Install Failed

16 App Installed Retry Needed

To send a CommissionerDeclaration message, the Commissioner SHALL:

1. Construct the ErrorCode field if an error condition has been encountered during commissioning
by the Commissioner.

2. When the IdentificationDeclaration message includes the NoPasscode field set to true, and the
Commissioner determines that a Passcode code will be needed for commissioning:

a. Construct the NeedsPasscode and set to true.

3. Optionally, construct the NoAppsFound and set to true to indicate that no apps with AccountLogin
cluster implementation were found for the last IdentificationDeclaration request. Only apps
which provide access to the vendor id of the Commissionee will be considered.

4. When the IdentificationDeclaration message includes the CdcForPasscode field set to true:

a. Construct the PasscodeDialogDisplayed and set to true to indicates that a Passcode input dia
log is now displayed for the user on the Commissioner. Upon receipt, the Commissionee
SHOULD display its Passcode to the user. This field SHALL NOT be set when the Commission
erPasscode field is set because these fields are mutually exclusive.

5. When the IdentificationDeclaration message includes the CommissionerPasscode field set to
true:

a. Construct the CommissionerPasscode and set to true to indicates that a Passcode is now dis
played for the user by the Commissioner. Upon receipt, the Commissionee SHOULD ask the
user to input this Passcode into the Commissionee, the Commissionee SHOULD then update
its PAKE Verifier so that it uses this Passcode, and then SHOULD send an IdentificationDecla
ration message with the CommissionerPasscodeReady field set to true.

b. Optionally, construct QRCodeDisplayed and set to true to indicates that the Passcode displayed
on the Commissioner includes a QR code option. Clients have the option of letting the user
scan via the phone camera.

6. Construct and send CommissionerDeclaration.

5.3.7. Example Message Exchanges

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 260 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.3.7.1. Regular UDC

For reference.

1. UDC with IdentificationDeclaration sent to Commissioner

2. Commissioner reads instanceName, performs Commissionable Node Discovery to determine
vid, pid, rotating ID, Device name, PASE IP, PASE Port

3. Commissioner prompts user for permission to commission Device name

4. User approves

5. Commissioner checks for apps granting access to the vid of the Commissionee, applies a filter on
this list if the VidList in the IdentificationDeclaration is populated, and attempts to use Account
Login on any resulting apps in order to obtain Passcode using rotatingID

6. If no Passcode is obtained, Commissioner prompts user to input Passcode from Commissionee

7. Commissioner attempts to commission Commissionee

5.3.7.2. UDC with Commissionable Node Discovery bypass

This saves about 1 second of latency in practice due to skipping second step (Commissionable Node
Discovery) in Regular UDC.

1. UDC with IdentificationDeclaration containing VendorId, ProductId, RotatingDeviceId and Port
sent to Commissioner

2. Commissioner prompts user for permission to commission Device name

3. User approves

4. Commissioner checks for apps granting access to the vid of the Commissionee, applies a filter on
this list if the VidList in the IdentificationDeclaration is populated, and attempts to use Account
Login on any resulting apps in order to obtain Passcode using rotatingID

5. If no Passcode is obtained, Commissioner prompts user to input Passcode from Commissionee

6. Commissioner attempts to commission Commissionee

5.3.7.3. UDC with coordinated Passcode prompt

This allows the Commissionee to wait to display the Passcode until it receives a signal from the
Commissioner that a Passcode is needed. When the same user account is active on both the Com
missionee (often, in a phone app) and the Commissioner (often, in a TV app), then the commission
ing process can often complete without requiring the Commissionee to display a Passcode. When no
Passcode is required, it can be confusing for the user if the Commissionee shows a Passcode. To
address this, the Commissionee can request to be told by the Commissioner when it’s Passcode
input dialog is displayed to the user by sending the IdentificationDeclaration message with the
CdUponPasscodeDialog set to true. Then, when a Passcode is needed, the Commissioner sends a
CommissionerDeclaration with the NeedsPasscode set to true.

5.3.7.3.1. UDC with coordinated Passcode prompt, no Passcode needed

1. UDC with IdentificationDeclaration sent to Commissioner containing CdUponPasscodeDialog set

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 261

to true

2. If Port not provided, then Commissioner reads instanceName, performs Commissionable Node
Discovery to determine vid, pid, rotating ID, Device name, PASE IP, PASE Port

3. Commissioner prompts user for permission to commission Device name

4. User approves

5. Commissioner checks for apps granting access to the vid of the Commissionee, applies a filter on
this list if the VidList in the IdentificationDeclaration is populated, and attempts to use Account
Login on any resulting apps in order to obtain Passcode using rotatingID

6. Passcode is obtained, no need for Commissioner to prompt user to input Passcode from Com
missionee

7. Commissioner attempts to commission Commissionee

5.3.7.3.2. UDC with coordinated Passcode prompt, Passcode is needed

1. UDC with IdentificationDeclaration sent to Commissioner containing CdUponPasscodeDialog set
to true

2. If Port not provided, then Commissioner reads instanceName, performs Commissionable Node
Discovery to determine vid, pid, rotating ID, Device name, PASE IP, PASE Port

3. Commissioner prompts user for permission to commission Device name

4. User approves

5. Commissioner checks for apps granting access to the vid of the Commissionee, applies a filter on
this list if the VidList in the IdentificationDeclaration is populated, and attempts to use Account
Login on any resulting apps in order to obtain Passcode using rotatingID

6. No Passcode is obtained, Commissioner prompts user to input Passcode from Commissionee

7. Commissioner sends CommissionerDeclaration with the PasscodeDialogDisplayed set to true

8. Commissionee displays Passcode code for user

9. User enters Passcode code into Commissioner

10. Commissioner attempts to commission Commissionee

5.3.7.4. UDC with no Passcode prompt (targeted app selection)

This allows the Commissionee to determine if their app is present on the Commissioner. Some Com
missionees will choose not to proceed with commissioning if their app is not present for cases
where the user experience requires their app.

This also allows the Commissionee to determine if their app is present but has a different account
active in it. Some Commissionees do not support guest mode, or multiple simultaneous accounts in
their app. In this scenario, the Commissionee might ask the user to switch accounts on the Commis
sioner in order to proceed.

5.3.7.4.1. UDC with no app present

1. UDC with IdentificationDeclaration sent to Commissioner containing NoPasscode set to true

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 262 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

2. If Port not provided, then Commissioner reads instanceName, performs Commissionable Node
Discovery to determine vid, pid, rotating ID, Device name, PASE IP, PASE Port

3. Commissioner prompts user for permission to commission Device name

4. User approves

5. Commissioner checks for apps granting access to the vid of the Commissionee, applies a filter on
this list if the VidList in the IdentificationDeclaration is populated, and attempts to use Account
Login on any resulting apps in order to obtain Passcode using rotatingID

6. No app is found

7. Commissioner sends CommissionerDeclaration with the NoAppsFound and NeedsPasscode
fields set to true

8. Commissionee informs user that given Commissioner does not support its app. Provides addi
tional instructions as needed.

5.3.7.4.2. UDC with mismatched account

1. UDC with IdentificationDeclaration sent to Commissioner containing NoPasscode set to true

2. If Port not provided, then Commissioner reads instanceName, performs Commissionable Node
Discovery to determine vid, pid, rotating ID, Device name, PASE IP, PASE Port

3. Commissioner prompts user for permission to commission Device name

4. User approves

5. Commissioner checks for apps granting access to the vid of the Commissionee, applies a filter on
this list if the VidList in the IdentificationDeclaration is populated, and attempts to use Account
Login on any resulting apps in order to obtain Passcode using rotatingID

6. App is found but does not return Passcode

7. Commissioner sends CommissionerDeclaration with the NeedsPasscode field set to true

8. Commissionee informs user that its app has a different active account. Provides additional
instructions as needed.

5.3.7.5. UDC with Commissioner-generated Passcode

This allows the Commissionee to utilize a Passcode code generated and displayed on the Commis
sioner, and input by the user into the Commissionee, rather than the Regular UDC flow where the
Passcode code is generated and displayed on the Commissionee, and input by the user into the Com
missioner. This flow can simplify the user experience when the Commissionee is a mobile phone
app and the Commissioner is a TV since it can be easier to enter a Passcode on a mobile phone than
a TV.

1. Commissionee performs Commissioner Discovery, prompts user to select a Commissioner.

2. Selected Commissioner indicates support for Commissioner Passcode feature (CP=1) in its DNS-
SD TXT record.

3. UDC with IdentificationDeclaration sent to Commissioner containing CommissionerPasscode set
to true

4. If Port not provided, then Commissioner reads instanceName, performs Commissionable Node

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 263

Discovery to determine vid, pid, rotating ID, Device name, PASE IP, PASE Port

5. Commissioner prompts user for permission to commission Device name

6. User approves

7. Commissioner checks for apps granting access to the vid of the client, applies a filter on this list
if the VidList in the IdentificationDeclaration is populated, and attempts to use Account Login
on any resulting apps in order to obtain Passcode using rotatingID

8. If no Passcode is obtained, Commissioner displays a Passcode

9. Commissioner sends CommissionerDeclaration with PasscodeDialogDisplayed and Commission
erPasscode set to true. If a QR code is also displayed, then QRCodeDisplayed is also set to true.

10. Commissionee prompts user to input Passcode from Commissioner

11. Commissionee generates a PAKE verifier using input Passcode, enters commissioning mode
using this PAKE verifier

12. Commissionee sends IdentificationDeclaration to Commissioner containing CommissionerPass
code and CommissionerPasscodeReady set to true

13. Commissioner attempts to commission Commissionee using Passcode

5.4. Device Discovery

5.4.1. Purpose and Scope

The purpose of this section is to describe the process by which a device is discovered in order to
commission it onto an operational Fabric.

Depending on the networking technologies supported by a device, discovery and commissioning
are possible using Bluetooth Low Energy (BLE), Wi-Fi (IEEE 802.11-2020) technologies, or over IP if
a device is already on an IP network.

Devices that utilize Thread (IEEE 802.15.4) networking technology must also support BLE for the
purpose of discovery and commissioning. Directly utilizing Thread-based commissioning for device
discovery and commissioning is neither specified nor supported.

BLE commissioning utilizes the Generic Access Profile (GAP) for discovery and for connection
establishment, and the Generic Attribute Profile (GATT) for credential conveyance.

If a device already has network connectivity (over Wi-Fi, Ethernet, or otherwise) a Commissioner
may discover such a device using DNS-based Service Discovery (DNS-SD), conveying credentials to
the device over IP.

5.4.2. Announcement by Device

This section describes how devices announce their commissionable status to allow a Commissioner
to discover the device to be commissioned.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 264 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.4.2.1. Technology Priority

A device SHALL announce in any order of priority on all of the networking technologies it supports
as indicated in the Discovery Capability Bitmask (see Table 39, “Discovery Capabilities Bitmask”). A
Commissioner that is aware of the device’s Discovery Capability Bitmask SHALL initiate Device Dis
covery in any order of priority on all of the networking technologies that are supported by both the
Commissioner and the device. A Commissioner that is unaware of the device’s Discovery Capability
Bitmask SHALL initiate Device Discovery in any order on all of the networking technologies it sup
ports out of BLE, and on IP network discovery.

Commissioners SHALL always support discovering a device using DNS-based Service Discovery
(DNS-SD) for commissioning, irrespective of the Discovery Capabilities Bitmask specified in the Sec
tion 5.1.1, “Onboarding Payload Contents”.

5.4.2.2. Announcement Commencement

A device which is not yet commissioned into a Matter fabric SHALL commence announcing its abil
ity to be commissioned depending on its primary device function and manufacturer-chosen Device
Commissioning Flow, per the following table. Nodes already commissioned into one or more Matter
fabrics and wishing to announce SHALL ONLY do so using DNS-SD over their operational network
(see Section 4.3, “Discovery”). In the interest of privacy, an already-commissioned Node SHALL NOT
commence announcement using Bluetooth LE.

Primary Device Function Announcement

Most control originates from a Fabric
(excluding Locks and Barrier Access
Devices)

SHALL start announcing automatically upon application
of power when using Standard commissioning flow. When
using User-intent commissioning flow or Custom Commis
sioning flow, it SHALL NOT start announcing automati
cally upon application of power.

Most control does not originate from a
Fabric (e.g., dishwasher, coffee maker,
refrigerator)

SHALL NOT start announcing automatically upon applica
tion of power. User-intent commissioning flow or Custom
Commissioning flow is required.

Locks and Barrier Access Devices SHALL NOT start announcing automatically upon applica
tion of power. User-intent commissioning flow or Custom
Commissioning flow is required.

Note that the above guidelines are in place to avoid unnecessary pollution of the 2.4 GHz spectrum
and as a mitigation of the privacy threat created due to unnecessary transmissions by a commis
sionable device.

If announcement has ceased (see Section 5.4.2.3, “Announcement Duration”), it may be re-initiated
via a device-specific user interaction such as a button press or other action defined by the manufac
turer and indicated by the methods specified in Section 5.7, “Device Commissioning Flows”.

5.4.2.3. Announcement Duration

In order to minimize unnecessary pollution of the crowded 2.4 GHz wireless spectrum, especially
with BLE discovery, a commissionable device SHALL NOT announce with a rapid interval for a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 265

duration longer than 15 minutes after announcement commences. This duration was chosen to cap
ture the primary case of a user setting up immediately after powering on for a range of devices,
including time to download, install and launch applications, transit rooms within a home, etc.

Note that devices MAY choose to announce for less time in order to conserve battery life or for
other device-specific reasons. Note that an announcement duration that is too short may result in a
poor setup experience for users. Shorter announcement intervals SHOULD only be employed to
meet otherwise unattainable device functionality/requirements. To help strike a balance between a
good setup experience and conserving battery life, a device SHALL NOT announce for a duration of
less than 3 minutes after announcement commences.

A failed attempt to commission does not restart or delay the timeout. Moreover, this timeout applies
only to cessation of announcements and not to abortion of connections, i.e., a connection SHOULD
NOT abort prematurely upon expiration of the announcement duration.

5.4.2.3.1. Extended Announcement

An uncommissioned device MAY announce for a longer period, up to 48 hours in total, known as
Extended Announcement. This enhances setup success likelihood for cases where a user needs
more than 15 minutes after first powering an uncommissioned device (e.g. physical setup takes >15
minutes, user must leave and return later).

If a device opts to use Extended Announcement, it SHALL set both the PID and VID to 0 in the
announcement and SHALL elide any Extended Data. This is to preserve user privacy for scenarios
where a device may remain uncommissioned for extended periods.

5.4.2.4. Discovery Information

This section details the information advertised by a commissionable Node.

Field Length Is Required?

Discriminator 12-bit Yes

Vendor ID 16-bit No

Product ID 16-bit No

Extended Data Variable No

5.4.2.4.1. Discriminator

A 12-bit value matching the field of the same name in the Setup Code.

5.4.2.4.2. Vendor ID

A 16-bit value identifying the device manufacturer (see Section 2.5.2, “Vendor Identifier (Vendor ID,
VID)”).

5.4.2.4.3. Product ID

A 16-bit value identifying the product (see Product ID).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 266 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.4.2.4.4. Extended Data

Extended Data MAY be made available by commissionable Nodes. This data SHALL be encoded
using a standard TLV encoding defined in this section. The location of this data varies based on the
Node’s commissioning networking technology.

This extended data SHALL be encoded as a TLV structure tagged with an anonymous tag.

The members of this structure SHALL use context-specific tags with the values and meanings
shown in the table below.

Tag Value Member type Member Description

RotatingIdTag 0x00 octet string Rotating Device Identifier

5.4.2.4.5. Rotating Device Identifier

Some device makers need a way to uniquely identify a device before it has been commissioned for
vendor-specific customer support purposes. For example, the device maker may need this to iden
tify factory software version and related features, manufacturing date, or to assist in recovery
when a setup code has been lost or damaged. In order to avoid privacy issues associated with a
fixed unique identifier, devices MAY utilize a Rotating Device Identifier for identification purposes.
A Rotating Device Identifier is similar to a serial number but rotates at pre-defined moments.

The Rotating Device Identifier provides a non-trackable identifier which is unique per-device and
that can be used in one or more of the following ways:

• Provided to the vendor’s customer support for help in pairing or establishing Node provenance;

• Used programmatically to obtain a Node’s Passcode or other information in order to provide a
simplified setup flow. Note that the mechanism(s) by which the Passcode may be obtained is
outside of this specification. If the Rotating Device Identifier is to be used for this purpose, the
system implementing this feature SHALL require proof of possession by the user at least once
before providing the Passcode. The mechanism for this proof of possession, and validation of it,
is outside of this specification.

The Rotating Device Identifier is an optional feature for a Node to implement and an optional fea
ture for a Commissioner to utilize. The algorithm used for generating a Rotating Device Identifier
SHALL meet the following security and privacy requirements:

1. It SHALL be irreversible in such a way that:

a. It SHALL prevent recovery of a unique identifier for the device by entities that do not
already have access to the set of possible unique identifiers.

b. Leaking of a common key or equivalent could not be used to recover a unique identifier for
all devices sharing the common key.

2. It SHALL protect against long-term tracking by rotating upon each commencement of advertis
ing.

3. It SHALL have a total of at least 64 bits of entropy and SHOULD preferably have more, up to 256
bits.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 267

4. It SHALL NOT contain a fixed identifier such as a serial number.

The Rotating Device Identifier Algorithm below meets these requirements. A Node that implements
the Rotating Device Identifier SHALL use either the Rotating Device Identifier Algorithm or a differ
ent algorithm which has been approved and verified by the Connectivity Standards Alliance for this
purpose and which meets the same set of security and privacy requirements listed above.

The Rotating Device Identifier Algorithm employs a key derivation algorithm that combines a
monotonically increasing lifetime counter with a unique per-device identifier.

The unique identifier SHALL consist of a randomly-generated 128-bit or longer octet string which
SHALL be programmed during factory provisioning or delivered to the device by the vendor using
secure means after a software update.

The unique identifier SHALL be protected against reading or writing over the air after initial intro
duction into the device, and stay fixed during the lifetime of the device.

The lifetime counter SHALL be an integer at least 16 bits in size, incremented upon each com
mencement of advertising, and wrapping when the maximum value is reached.

The Rotating Device Identifier Algorithm is defined as follows:

Rotating Device ID = Rotation Counter || Crypto_KDF(
 inputKey := Unique ID,
 salt:= Rotation Counter,
 info := "RotatingDeviceID",
 len := 128)

(where || is the concatenation operation)

The rotation counter is encoded as 2 bytes using little-endian encoding in the above algorithm,
everywhere it appears.

The Rotating Device ID is the concatenation of the current rotation counter and the 16 bytes of the
Crypto_KDF result.

5.4.2.4.6. TLV Example

Extended data containing just a Rotating Device Identifier would be encoded as the following bytes:

Offset Data Comments

0x00 0x15 Control byte for structure with anonymous tag

0x01 0x30 Control byte for octet string with 1-byte length and a context-specific tag

0x02 0x00 Context-specific tag for Rotating Device Identifier

0x03 0x12 Length of Rotating Device Identifier (e.g. 18 bytes)

0x04 0xXX..0x
XX

Rotating Device Identifier

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 268 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

0x16 0x18 End of container

5.4.2.5. Using BLE

This section provides details of how a device announces its commissionable status using BLE tech
nology. Nodes currently commissioned into one or more fabrics SHALL NOT employ this method.

NOTE Need to add link(s) to BLE specification.

5.4.2.5.1. Device Role

Commissionable devices SHALL implement the role of a Generic Access Profile (GAP) Peripheral.

5.4.2.5.2. Channels

There are three advertising channels used by BLE. All three channels SHOULD be used by commis
sionable devices for BLE advertising.

5.4.2.5.3. Interval

Commissionable devices SHOULD use an Advertising Interval between 20 ms and 60 ms for the first
30 seconds and a value between 150 ms to 1285 ms for the rest of the Announcement duration.
Shorter intervals typically result in shorter discovery times.

If a device opts to use Extended Announcement, it SHALL switch to using an Advertising Interval
larger or equal to 1200 ms and SHOULD use a nominal Advertising Interval of 1285 ms. When using
Extended Announcement, the device SHALL set the Extended Announcement Flag in the Matter
Service Data in the BLE Advertisement (see Table 50, “Matter BLE Service Data payload format”).

5.4.2.5.4. Advertising Mode

Commissionable devices SHALL use the GAP General Discoverable mode, sending connectable
undirected advertising events.

5.4.2.5.5. Advertising Address

To ensure privacy, commissionable devices SHALL use LE Random Device Address (see Bluetooth®
Core Specification 4.2 Vol 6, Part B, Section 1.3.2.1 "Static device address") for BLE Advertising and
SHALL change it at least on every boot.

5.4.2.5.6. Advertising Data

In order to reduce 2.4 GHz spectrum congestion due to active BLE scanning, and to extend battery
life in battery-powered devices, all critical data used for device discovery is contained in the Adver
tising Data rather than the Scan Response Data. This allows a BLE Commissioner to passively scan
(i.e., not issue Scan Requests upon receiving scannable advertisements) and still be able to receive
all information needed to commission a device.

Note that if additional vendor-specific information is to be conveyed and does not fit within the
Advertising Data, it may be included in the Scan Response Data. See Section 5.4.2.7, “Manufacturer-
specific data” for details on including vendor-specific information.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 269

Advertising data for Matter discovery uses "Service Data - 16 bit UUID" advertisement data type (see
Bluetooth® Core Specification Supplement 11 Section 1.11 "Service Data"), with 16-bit UUID value of
0xFFF6 (see Table 35, “SIG UUID assignment”).

The following fields are defined within the Matter service data:

Table 50. Matter BLE Service Data payload format

Bytes Type Description

0 uint8 Matter BLE OpCode.
Value == 0x00 (Commissionable)
Values 0x01 - 0xFF are reserved

1-2 uint16 Bits[15:12] == 0x0 (Advertisement version)
Bits[11:0] == 12-bit Discriminator (see Section 5.4.2.4.1, “Discriminator”)

3-4 uint16 16-bit Vendor ID (see Section 5.4.2.4.2, “Vendor ID”)
Set to 0, if elided

5-6 uint16 16-bit Product ID (see Section 5.4.2.4.3, “Product ID”)
Set to 0, if elided

7 uint8 Bit[0] == Additional Data Flag (see Section 5.4.2.5.7, “GATT-based Additional
Data”)
Bit[1] == Using Extended Announcement Flag (see Section 5.4.2.3.1, “Extended
Announcement”)
Bits[7:2] are reserved for future use and SHALL be clear (set to 0)

All multi-byte values are encoded in little-endian byte order within the service data payload.

Devices MAY choose not to advertise either the VID and PID, or only the PID due to privacy or other
considerations. When choosing not to advertise both VID and PID, the device SHALL set both VID
and PID fields to 0. When choosing not to advertise only the PID, the device SHALL set the PID field
to 0. A device SHALL NOT set the VID to 0 when providing a non-zero PID.

The Using Extended Announcement flag SHALL be set while the device is in the Extended
Announcement period and SHALL NOT be set during the initial Announcement Duration.

The following table details the contents of an exemplary Advertising PDU payload for Vendor ID
0xFFF1, Product ID 0x8000, Discriminator 0x3AB and with GATT-based Additional Data marked as
present:

Table 51. Exemplary Matter BLE commissionable advertisement

Byte Value Description

0 0x02 AD[0] Length == 2 bytes

1 0x01 AD[0] Type == 1 (Flags)

2 0x06 Bit 0 (LE Limited Discoverable Mode) set to 0
Bit 1 (LE General Discoverable Mode) set to 1
Bit 2 (BR/EDR Not supported) set to 1

3 0x0B AD[1] Length == 11 bytes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 270 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Byte Value Description

4 0x16 AD[1] Type == 0x16 (Service Data - 16-bit UUID)

5-6 0xF6, 0xFF 16-bit Matter UUID assigned by Bluetooth SIG = 0xFFF6

7 0x00 Matter BLE OpCode == 0x00 (Commissionable)

8-9 0xAB, 0x03 Bits[15:12] == 0x0 (Advertisement version)
Bits[11:0] == 12-bit Discriminator == 0x3AB

10-11 0xF1, 0xFF 16-bit Vendor ID == 0xFFF1

12-13 0x00, 0x80 16-bit Product ID == 0x8000

14 0x01 Bit[0] == 1: (GATT-based Additional Data present)
Bits[7:1] clear (reserved for future use)

Note that the position of the fields within the Advertising PDU (e.g. Flags, 16-bit UUID Service Data,
etc.) within a conformant advertisement MAY differ from the example above, since there are no
ordering constraints for advertisement fields in the Length-Type-Value format used in BLE adver
tisements.

5.4.2.5.7. GATT-based Additional Data

When the Additional Data Flag is set in the Matter Service Data in the BLE Advertisement, the com
missioner MAY access additional commissioning-related data via an unencrypted read-only GATT
characteristic C3 (see Table 33, “BTP GATT service”).

The value of the C3 characteristic SHALL be set to the Extended Data payload of the Discovery
Information (see Section 5.4.2.4.4, “Extended Data”).

5.4.2.6. Using Existing IP-bearing Network

This section details how a device that is already connected to an IP-bearing network advertises its
commissionable state. The discovery protocols leverage IETF Standard DNS-based Service Discov
ery [RFC 6763]. A device SHALL use multicast DNS [RFC 6762] on Wi-Fi and Ethernet networks to
make itself discoverable. On Thread networks, a device SHALL use the Service Registration Protocol
[SRP] and an Advertising Proxy [AdProx] running on a Thread Border Router to make itself discov
erable. Additional details on application of the above protocols in Matter is found in Section 4.3,
“Discovery”. The encoding of the information required for discovery during the commissioning
process is covered in Section 4.3.1, “Commissionable Node Discovery”.

5.4.2.7. Manufacturer-specific data

If needed, manufacturer-specific data MAY be advertised by a commissionable device using one of
the following mechanisms, based on the supported commissioning technology. Commissioners
receiving this data SHOULD treat it as opaque unless they have the need to and possess the ability
to correctly interpret the information conveyed.

5.4.2.7.1. Using BLE

Any manufacturer-specific data may be included as a Manufacturer Specific Data AD type in the
Advertising Data or in the Scan Response data.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 271

Note that to receive Scan Response data information the Commissioner has to perform BLE active
scanning that, in addition to creating additional traffic in the shared 2.4 GHz unlicensed band, can
delay device discovery and connection, increasing the overall time required to commission a
device.

5.4.3. Discovery by Commissioner

How a Commissioner discovers a commissionable device depends on the networking technologies
that device and the Commissioner supports (see Section 5.4.2.1, “Technology Priority”). Though not
all networking technologies must be supported by every device (see Table 39, “Discovery Capabili
ties Bitmask”), a Commissioner SHALL support Commissioning (see Section 5.5, “Commissioning
Flows”) using existing IP network and over BLE (if having such interface).

The following sections detail Commissioner behavior for each of these networking technologies.
Though a QR or Manual Pairing code may be scanned or entered prior to discovery, it is not
required to do so. However, after scan/entry of the code, the Discriminator, VID and PID elements
are available to ensure that the intended device is discovered before proceeding to the connection
phase of commissioning.

5.4.3.1. Using BLE

Commissioners SHALL implement the role of a GAP Central. To discover a commissionable device
advertising over BLE, a Commissioner SHALL perform a BLE scan across all three advertising chan
nels with a sufficient dwell time, interval, and overall duration of scan. In order to promote quick
discovery it is recommended that a Commissioner scan as aggressively as possible within the Com
missioner device functionality/UX constraints. In addition, if manufacturer-specific data is not
needed, a passive scan (i.e., one that only listens for Advertisement PDUs and does not issue Scan
Request PDUs).

If discovery procedure is user initiated the scan interval SHOULD be set between 30 ms and 60 ms,
and the scan window SHOULD be set to 30 ms. If discovery procedure is not user initiated (i.e., the
Commissioner is scanning in the background), the device may use more relaxed scan, for example,
the scan interval set to 1.28 seconds and scan window set to 11.25 ms.

NOTE
Recommended values are defined in Appendix A: Timers and Constants of Blue
tooth® Core Specification 4.2, Vol 3, Part C.

5.4.3.2. Using Existing IP-bearing Network

To discover a commissionable device over an existing IP-bearing network connection, the Commis
sioner SHALL perform service discovery using DNS-SD as detailed in Section 4.3, “Discovery”, and
more specifically in Section 4.3.1, “Commissionable Node Discovery”.

5.5. Commissioning Flows
There are two commissioning flows depending upon the networking capability of the Commis
sioner and Commissionee, namely concurrent connection commissioning flow and non-concurrent
connection commissioning flow.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 272 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

For additional security requirements related to commissioning flows, refer to Section 13.6, “Secu
rity Best Practices” .

A Commissioner and Commissionee with concurrent connection have the ability to maintain two
network connections simultaneously. One connection is between the Commissioner (or Commis
sionee) and the operational network (e.g., home Wi-Fi network or Thread network) that the Com
missionee is being programmed to join. The second connection is between the Commissioner and
Commissionee for commissioning as is referred to as commissioning channel. A Commissioner and
Commissionee with non-concurrent connection capability cannot be simultaneously connected to
both the operational network that the Commissionee is being configured to join, and the commis
sioning channel.

The two connections MAY either be on the same or on different networking interfaces. For exam
ple, a Commissioner uses its Wi-Fi interface to connect to the operational network, but use its Blue
tooth Low Energy interface for commissioning.

To determine whether a Commissionee has concurrent or non-concurrent connection capability,
the Commissioner can use the SupportsConcurrentConnection attribute of the General Commission
ing Cluster.

Commissioning SHALL be a time-bound process that completes before expiration of a fail-safe
timer. The fail-safe timer SHALL be set at the beginning of commissioning. If the fail-safe timer
expires prior to commissioning completion, the Commissioner and Commissionee SHALL terminate
commissioning. Successful completion of commissioning SHALL disarm the fail-safe timer.

A Commissionee that is ready to be commissioned SHALL accept the request to establish a PASE ses
sion with the first Commissioner that initiates the request. When a Commissioner is either in the
process of establishing a PASE session with the Commissionee or has successfully established a ses
sion, the Commissionee SHALL NOT accept any more requests for new PASE sessions until session
establishment fails or the successfully established PASE session is terminated on the commissioning
channel (see CloseSession in Secure Channel Status Report Messages). In the event a CloseSession
status message is sent or received:

1. If the fail-safe timer is armed, the fail-safe timer SHALL be considered expired and the cleanup
steps detailed in Section 11.10.6.2, “ArmFailSafe Command” SHALL be executed.

2. If the commissioning window is still open, the Commissionee SHALL continue listening for com
missioning requests.

In order to avoid locking out the Commissionee from accepting new PASE session requests indefi
nitely, a Commissionee SHALL expect a PASE session to be established within 60 seconds of receiv
ing the initial request. This means the Commissionee SHALL expect to receive the PAKE3 message
within 60 seconds after sending a PBKDFParamResponse in response to a PBKDFParamRequest
message from the Commissioner to establish a PASE session. If the PASE session is not established
within the expected time window the Commissionee SHALL terminate the current session estab
lishment using the INVALID_PARAMETER status code as described in Section 4.11.1.3, “Secure Channel
Status Report Messages”.

The commissioning commands and attributes are defined in Clusters (see Section 11.9, “Network
Commissioning Cluster”, Section 11.10, “General Commissioning Cluster”, Section 11.14, “Thread

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 273

Network Diagnostics Cluster”, and Section 11.15, “Wi-Fi Network Diagnostics Cluster”) and are sent,
written, or read using the Interaction Model (see Interaction Model).

Figure 32, “Concurrent connection commissioning flow” and Figure 33, “Non-concurrent connec
tion commissioning flow” depict the commissioning flow between the Commissioner and Commis
sionee with concurrent connection ability and non-concurrent connection ability, respectively. The
specific steps are described below. Unless indicated otherwise, a commissioner SHALL complete a
step, including waiting for any responses to commands it sends in that step, before moving on to
the next step.

1. The Commissioner initiating the commissioning SHALL have regulatory and fabric information
available, and SHOULD have accurate date, time and timezone.

2. Commissioner and Commissionee SHALL find each other over networking interfaces such as
Bluetooth, Wi-Fi, or Ethernet using the process of discovery and establish a commissioning
channel between each other (see Section 5.4, “Device Discovery”).

3. Commissioner and Commissionee SHALL establish encryption keys with PASE (see Section
4.14.1, “Passcode-Authenticated Session Establishment (PASE)”) on the commissioning channel.
All subsequent messages on the commissioning channel are encrypted using PASE-derived
encryption keys. Upon completion of PASE session establishment, the Commissionee SHALL
autonomously arm the Fail-safe timer for a timeout of 60 seconds. This is to guard against the
Commissioner aborting the Commissioning process without arming the fail-safe, which may
leave the device unable to accept additional connections.

4. Commissioner SHALL re-arm the Fail-safe timer on the Commissionee to the desired commis
sioning timeout within 60 seconds of the completion of PASE session establishment, using the
ArmFailSafe command (see Section 11.10.6.2, “ArmFailSafe Command”). A Commissioner MAY
obtain device information including guidance on the fail-safe value from the Commissionee by
reading BasicCommissioningInfo attribute (see Section 11.10.5.2, “BasicCommissioningInfo
Attribute”) prior to invoking the ArmFailSafe command.

5. The commissioner configures the regulatory information and time cluster as described below.
The order of the operations in this commissioning step is not critical.

◦ If the Commissionee has at least one instance of the Network Commissioning cluster on any
endpoint with either the WI (i.e. Wi-Fi) or TH (i.e. Thread) feature flags set in its FeatureMap,
Commissioner SHALL configure regulatory information in the Commissionee using the
SetRegulatoryConfig command.

◦ If the Commissionee supports the Time Synchronization Cluster server:

▪ The Commissioner SHOULD configure UTC time using the SetUTCTime command.

▪ The Commissioner SHOULD set the time zone using the SetTimeZone command, if the
TimeZone Feature is supported.

▪ The Commissioner SHOULD set the DST offsets using the SetDSTOffset command if the
TimeZone Feature is supported, and the SetTimeZoneResponse from the Commissionee
had the DSTOffsetsRequired field set to True.

▪ The Commissioner SHOULD set a Default NTP server using the SetDefaultNTP command
if the NTPClient Feature is supported and the DefaultNTP attribute is null. If the current
value is non-null, Commissioners MAY opt to overwrite the current value.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 274 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6. Commissioner SHALL establish the authenticity of the Commissionee as a certified Matter
device (see Section 6.2.3, “Device Attestation Procedure”).

◦ If the Commissionee fails the Device Attestation Procedure, for any reason, the Commis
sioner MAY choose to either continue to the Commissioning, or terminate it, depending on
implementation-dependent policies.

◦ Upon failure of the procedure, the Commissioner SHOULD warn the user that the Commis
sionee is not a fully trusted device, and MAY give the user the choice to authorize or deny
the commissioning. Such a warning enables user choice in Commissionee trust on their Fab
ric, for development workflows, as well as homebrew device development. Such a warning
SHOULD contain as much information as the commissioner can provide about the Commis
sionee, and SHOULD be adapted to the reason of the failure, for example by being different
between the case of an expired certificate versus a revoked PAI certificate.

◦ Reasons for failing the Device Attestation procedure MAY include, but are not limited to, the
following:

▪ The Commissionee being of a device type currently in development or not yet certified
(see certification_type in the Certification Declaration).

▪ The Commissionee’s PAA not being in the Commissioner’s trusted set.

▪ The Commissioner having obtained knowledge that a PAA or PAI certificate presented
has been revoked, or that the particular Device Attestation Certificate has been revoked
(see Section 6.2.4, “Device attestation revocation”).

▪ The Commissioner cannot obtain a revocation set or cannot obtain updated revocation
information from the CA (see Section 6.2.4.2, “Determining Revocation Status of an
Entity”).

▪ The Commissionee failing to prove possession of the Device Attestation private key,
either by programming error, malicious intent or other reasons.

▪ One of the elements of the Commissionee’s Device Attestation Certificate chain not meet
ing the policy validation steps of the Device Attestation Procedure, including errors on
validity period.

◦ If a Commissioner denies commissioning for any reason, it SHOULD notify the user of the
reason with sufficient details for the user to understand the reason, so that they could deter
mine if it would be possible to commission the device using a different Commissioner.

7. Following the Device Attestation Procedure yielding a decision to proceed with commissioning,
the Commissioner SHALL request operational CSR from Commissionee using the CSRRequest
command (see CSRRequest). The CSRRequest command will cause the generation of a new oper
ational key pair at the Commissionee.

8. Commissioner SHALL generate or otherwise obtain an Operational Certificate containing Oper
ational ID after receiving the CSRResponse command from the Commissionee (see CSRRequest),
using implementation-specific means.

9. Commissioner SHALL install operational credentials (see Figure 40, “Node Operational Creden
tials flow”) on the Commissionee using the AddTrustedRootCertificate and AddNOC commands,
and SHALL use the UpdateFabricLabel command to set a string that the user can recognize and
relate to this Commissioner/Administrator.
The AdminVendorId field of the AddNOC command SHALL be set to a value for which the Ven

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 275

dor Schema in DCL contains the name and other information of the Commissioner’s manufac
turer.

10. If the Commissionee supports the Time Synchronization Cluster server, the Commissioner
SHOULD set a trusted time source using the SetTrustedTimeSource command if the TimeSync
Client Feature is supported, the TrustedTimeSource attribute is null and there is an available
trusted time source on the fabric. The Commissioner SHOULD ensure the ACL on the Trusted
TimeSource is set to grant the Commissionee View privilege to the Time Synchronization clus
ter. If the TrustedTimeSource is non-null, the Commissioner MAY opt to overwrite the current
value with a node from its own fabric by sending the SetTrustedTimeSource command. This
step MAY be performed at any point after installing operational credentials, including after
sending the CommissioningComplete command.

11. Commissioner MAY configure the Access Control List (see Access Control Cluster) on the Com
missionee in any way it sees fit, if the singular entry added by the AddNOC command in the previ
ous step granting Administer privilege over CASE authentication type for the Node ID provided
with the command is not sufficient to express its desired access control policies.

12. If the Commissionee both supports it and requires it, the Commissioner SHALL configure the
operational network at the Commissionee using commands such as AddOrUpdateWiFiNetwork
(see Section 11.9.7.3, “AddOrUpdateWiFiNetwork Command”) and AddOrUpdateThreadNetwork
(see AddOrUpdateThreadNetwork). A Commissionee requires network commissioning if it is not
already on the desired operational network. A Commissionee supports network commissioning
if it has any NetworkCommissioning cluster instances. A Commissioner MAY learn about the
networks visible to the Commissionee using ScanNetworks command (see Section 11.9.7.1,
“ScanNetworks Command”).

13. The Commissioner SHALL trigger the Commissionee to connect to the operational network
using ConnectNetwork command (see Section 11.9.7.8, “ConnectNetwork Command”) unless the
Commissionee is already on the desired operational network.

14. Finalization of the Commissioning process begins. An Administrator configured in the ACL of
the Commissionee by the Commissioner SHALL use Operational Discovery to discover the Com
missionee. This Administrator MAY be the Commissioner itself, or another Node to which the
Commissioner has delegated the task.

15. The Administrator SHALL open a CASE (see Section 4.14.2, “Certificate Authenticated Session
Establishment (CASE)”) session with the Commissionee over the operational network.

16. The Administrator having established a CASE session with the Commissionee over the opera
tional network in the previous steps SHALL invoke the CommissioningComplete command (see
Section 11.10.6.6, “CommissioningComplete Command”). A success response after invocation of
the CommissioningComplete command ends the commissioning process.

While the Administrator of steps 14-16 will, in many situations, be the Commissioner Node itself, it
MAY be a different Node that was configured by the Commissioner to have Administer privilege
against the Commissionee’s General Commissioning Cluster. This is to support flexibility in finaliz
ing the Commissioning. From a Commissionee’s perspective, all Nodes with Administer privilege in
the Commissionee’s ACL are equivalent once the Node has a Node Operational Certificate and asso
ciated Node Operational Identifier on the Fabric into which it was just commissioned.

A Commissioner MAY configure UTC time, Operational ID, and Operational certificates, etc., infor

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 276 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

mation over an arbitrary number of interactions at the Commissionee, over the operational net
work after the commissioning is complete, or over the commissioning channel after PASE-derived
encryption keys are established during commissioning.

In concurrent connection commissioning flow the commissioning channel SHALL terminate after
successful step 16 (CommissioningComplete command invocation). In non-concurrent connection
commissioning flow the commissioning channel SHALL terminate after successful step 13 (trigger
joining of operational network at Commissionee). The PASE-derived encryption keys SHALL be
deleted when commissioning channel terminates. The PASE session SHALL be terminated by both
Commissioner and Commissionee once the CommissioningComplete command is received by the
Commissionee.

In both concurrent connection commissioning flow and non-concurrent connection commissioning
flow, the Commissioner MAY choose to continue commissioning and override the failure in step 6
(Commissionee attestation).

5.5.1. Commissioning Flows Error Handling

Overall, all Commissioning operations employ actions using cluster attributes and commands that
are also, in certain cases, available during normal steady-state operation once commissioned.

Whenever the Fail-Safe timer is armed, Commissioners and Administrators SHALL NOT consider
any cluster operation to have timed-out before waiting at least 30 seconds for a valid response from
the cluster server. Some commands and attributes with complex side-effects MAY require longer
and have specific timing requirements stated in their respective cluster specification.

Some request commands used for Commissioning and administration have a 'Breadcrumb' argu
ment. When set, this argument SHALL be used to update the value of the Breadcrumb Attribute as a
side-effect of successful execution of those commands. On command failures, the Breadcrumb
Attribute SHALL remain unchanged.

In concurrent connection commissioning flow, the failure of any of the steps 2 through 11 SHALL
result in the Commissioner and Commissionee returning to step 2 (device discovery and commis
sioning channel establishment) and repeating each step. The failure of any of the steps 12 through
16 in concurrent connection commissioning flow SHALL result in the Commissioner and Commis
sionee returning to step 12 (configuration of operational network information). In the case of fail
ure of any of the steps 12 through 16 in concurrent connection commissioning flow, the Commis
sioner and Commissionee SHALL reuse the existing PASE-derived encryption keys over the commis
sioning channel and all steps up to and including step 11 are considered to have been successfully
completed.

In non-concurrent connection commissioning flow, the failure of any of the steps 2 through 16
SHALL result in the Commissioner and Commissionee returning to step 2 (device discovery and
commissioning channel establishment) and repeating each step.

Commissioners that need to restart from step 2 MAY immediately expire the fail-safe by invoking
the ArmFailSafe command with an ExpiryLengthSeconds field set to 0. Otherwise, Commissioners
will need to wait until the current fail-safe timer has expired for the Commissionee to begin accept
ing PASE again.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 277

In both concurrent connection commissioning flow and non-concurrent connection commissioning
flow, the Commissionee SHALL exit Commissioning Mode after 20 failed attempts.

Once a Commissionee has been successfully commissioned by a Commissioner into its fabric, the
commissioned Node SHALL NOT accept any more PASE requests until any one of the following con
ditions is met:

• Device is factory-reset.

• Device enters commissioning mode.

Ongoing administration of Nodes by Administrators employs many of the same clusters and con
straints related to Fail-Safe timer and cluster operation time-outs used for initial or subsequent
Commissioning into new Fabrics. The respective cluster specifications for the Node Operational
Credentials Cluster and the Network Commissioning Cluster reflect the necessary usage of the Arm
FailSafe and CommissioningComplete commands of the General Commissioning Cluster to achieve
consistent state during administrative operations.

5.5.2. Commissioning Flow Diagrams

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 278 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 32. Concurrent connection commissioning flow

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 279

Figure 33. Non-concurrent connection commissioning flow

5.6. Administrator Assisted Commissioning Flows

5.6.1. Introduction

In this method, a current Administrator of a Node first sends the Open Commissioning Window
command to the Node over a CASE session. The new Administrator MUST already have network
connectivity and complete commissioning based on the two flows described below.

The commands for these flows are defined in Section 11.19, “Administrator Commissioning Clus
ter”.

5.6.2. Basic Commissioning Method (BCM)

This method is OPTIONAL for Nodes and Administrators/Commissioners to implement. In this

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 280 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

method, the current Administrator MUST send the Open Basic Commissioning Window command
to the Node over a CASE session. The Node SHALL advertise its presence over DNS-SD (see Section
5.4.2.6, “Using Existing IP-bearing Network” and Commissionable Node Discovery) after receiving
the Open Basic Commissioning Window command.

The new Administrator’s Commissioner then completes commissioning with the Node using similar
Commissioning flow as it would do for a factory-new device (although note that IP channel is used
for discovery). It can either scan the QR code format or use the Manual Pairing Code format of the
Section 5.1, “Onboarding Payload” of the Node.

The following steps describe a possible sequence of events for BCM commissioning:

1. Current Administrator puts the Node in Open Basic Commissioning Window for a specified time
window, and receives success response from the Node on the Open Basic Commissioning Win
dow command.

a. When the targeted Node is a ICD, the current Administrator can guide the user to perform
some action to 'wake' the device from its sleep cycle.

2. New Administrator completes commissioning within the prescribed window using steps out
lined in Figure 32, “Concurrent connection commissioning flow”.

5.6.3. Enhanced Commissioning Method (ECM)

This method is MANDATORY for Nodes and Commissioners/Administrators to implement. When
using ECM, the Node’s current Administrator instructs the Node over a CASE session, to go into
Open Commissioning Window. It SHALL choose a new RANDOM passcode and SHALL compute and
send the corresponding PAKE passcode verifier to the Node. Actual value of the passcode SHALL
NOT be sent to the Node. The current Administrator then presents the new passcode and discrimi
nator as described below. The Node SHALL advertise its presence over DNS-SD (see Section 5.4.2.6,
“Using Existing IP-bearing Network” and Commissionable Node Discovery) after receiving the Open
Commissioning Window command. Sleepy Nodes SHOULD include the optional SII key in their TXT
advertisement.

5.6.3.1. Presentation of Onboarding Payload for ECM

Presentation of the passcode and other relevant information SHALL be done at least with one or
more of the methods below, depending on the capabilities of the first Administrator opening the
OCW:

1. If a user interface display is supported, the temporary Onboarding Payload SHALL be displayed
using a textual representation of the Manual Pairing Code, using the 11-digit variant: it SHALL
NOT contain the VENDOR_ID or PRODUCT_ID as the onboarding of the node(s) using the ECM cannot
be subject to User-Intent or Custom Flows.

2. If a user interface display is supported, the temporary Onboarding Payload SHOULD also be dis
played using the definitions included in Section 5.1.3, “QR Code” subject to the following con
straints:

a. If only a single Node is being subjected to the ECM, the Vendor ID and Product ID in the
onboarding payload SHALL be the same as those of that Node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 281

b. If multiple Nodes are being subjected to the ECM using the same onboarding payload, the
Vendor ID SHALL be set to 0x0000 (Matter Standard) and the Product ID SHALL be set to
0x0000 (consistent with the value used for not advertising a Product ID in Device Announce
ment) .

c. The Custom Flow element SHALL be set to 0 to indicate standard flow.

d. The Discovery Capabilities Mask SHALL have ONLY bit 2 set to indicate the Node is only dis
coverable on the IP network.

e. The Passcode element SHALL be set by the existing Administrator to the same value as the
passcode chosen for this ECM operation.

f. The Discriminator element SHALL be set by the existing Administrator to the same value as
the Discriminator parameter in Section 11.19.8.1, “OpenCommissioningWindow (OCW) Com
mand”.

g. If multiple Nodes are subjected to ECM, the Section 5.1.5, “TLV Content” SHALL contain an
entry with kTag_NumberOfDevices containing the number of devices that are expected to par
ticipate in the onboarding with this ECM operation.

h. When the Commissioning Timeout parameter of the OCW command is set to less than the
allowed maximum (15 minutes), the Section 5.1.5, “TLV Content” SHALL contain an entry
with kTag_CommissioningTimeout containing the value of the Commissioning Timeout parame
ter used for this ECM operation.

3. If only audio output is supported, the temporary Onboarding Payload SHALL be delivered using
a voice prompt of the Manual Pairing Code format. A method SHOULD be available for the user
to have the pairing code repeated.

Remote UIs, both visual and audio — such as a manufacturer-specific mobile app or a web UI — are
expressly permitted in the set of acceptable mechanisms for conveyance of the onboarding infor
mation.

This method allows a current Administrator to set multiple Nodes for commissioning with a new
administrator with an appropriate Commissioning Window, by turning on Open Commissioning Win
dow and sending the PAKE passcode verifier to a series of Nodes. The new Administrator uses the
information in Manual Pairing Code to discover the Nodes that are in Commissioning mode and
commission them using the new passcode.

The following steps describe a possible sequence of events for ECM commissioning:

1. Current Administrator puts the Node(s) in commissioning mode for a specified time window
with a new setup passcode, and receives success responses from the involved Node(s) on the
Open Commissioning Window command.

a. When one or more ICD are among the targeted Nodes, the current Administrator can guide
the user to perform some action to 'wake' these devices from their sleep cycle.

2. Current Administrator presents Onboarding Payload as described above.

3. New Administrator completes commissioning within the prescribed window using steps out
lined in Figure 32, “Concurrent connection commissioning flow”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 282 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5.6.4. Open Commissioning Window

The following sequence diagram shows steps current Administrator takes to enable Open Commis
sioning Window.

Figure 34. Open Commissioning Window (Administrator A)

5.7. Device Commissioning Flows
This section describes the three different flows for out-of-box commissioning that a Matter device
manufacturer may select for a given product. For each flow, a description is provided which
includes actions required to place the device into commissioning mode, fields in the Onboarding
Payload which identify the flow selected by the device manufacturer, fields in the Distributed Com
pliance Ledger that provide information used for commissioning and help the Commissioner pro
vide the user with appropriate instructions, and requirements for device packaging relating to the
Onboarding Payload. The three flows are the following:

• Standard Commissioning Flow

• User-Intent Commissioning Flow

• Custom Commissioning Flow

Matter device manufacturers SHALL use the Distributed Compliance Ledger to provide commis
sioners with information and instructions for both initial and secondary commissioning, and
SHOULD use this Ledger to provide links to the user guide, a link to a manufacturer app, and other
pre-setup information, to enable an optimal commissioning flow without requiring bilateral
arrangements between each commissioner manufacturer and each device manufacturer.
Some fields in the Ledger SHALL or SHOULD be populated, depending on the type of commission
ing flow, as detailed in the text below and in the Distributed Compliance Ledger section.

5.7.1. Standard Commissioning Flow

• A Standard Commissioning Flow device SHALL be available for initial commissioning by any
Matter commissioner.

• A Standard Commissioning Flow device, when in factory-new state, SHALL start advertising
automatically upon power on (see Commencement).

• A Standard Commissioning Flow device SHALL set Custom Flow bits in the Onboarding Payload
to indicate '0 - Standard Flow'.

• A Standard Commissioning Flow device SHALL follow the rules for Manual Pairing Code and QR
Code Inclusion.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 283

• For the case where the device has stopped advertising (e.g. user has powered on the device
longer ago than the advertisement period), the manufacturer SHOULD provide guidance about
how to bring the device back into advertising mode using the CommissioningModeInitial
StepsHint field from the Distributed Compliance Ledger. Commissioners SHOULD use this infor
mation to guide the user for this case.

• When commissioning fails, the commissioner MAY also reference Distributed Compliance
Ledger fields such as UserManualUrl, SupportUrl and ProductUrl to assist the user in further
steps to resolve the issue(s).

• The Distributed Compliance Ledger entries for Standard Commissioning Flow devices SHALL
include the CommissioningCustomFlow field set to '0 - Standard' and the CommissioningMod
eInitialStepsHint field set to a non-zero integer value, with bit 0 (Power Cycle) being set to 1. The
CommissioningModeInitialStepsInstruction field SHALL be set when CommissioningModeIni
tialStepsHint has a Pairing Instruction dependency.

Table 52. Values of Ledger fields to represent Standard Commissioning Flow

Field Name Value(s)

CommissioningCustomFlow 0 - Standard (Mandatory)

CommissioningModeInitialStepsHint This field SHALL be set to a non-zero integer
value. See Pairing Hint Table for a complete list
of pairing instructions.

Example value: 33 - The following bits are set: 0
(Power Cycle - Mandatory), 5 (Device Manual -
Optional). Bit 1 (Device Manufacturer URL) MAY
be set.

CommissioningModeInitialStepsInstruction The field SHALL be set when Commissioning
ModeInitialStepsHint has a Pairing Instruction
dependency. See PI Dependency column of Pair
ing Hint Table to determine which pairing hints
have Pairing Instruction dependency and there
fore require this field to be populated.

5.7.2. User-Intent Commissioning Flow

• A User-Intent Commissioning Flow device SHALL be available for initial commissioning by any
Matter commissioner.

• A User-Intent Commissioning Flow device, when in factory-new state, SHALL NOT start adver
tising automatically upon application of power (see Commencement).

• To place a User-Intent Commissioning Flow device into advertising mode, some form of user
interaction with the device beyond application of power is required (see Pairing Hint Table). If a
Device Manufacturer setup artifact is required for this, beyond documentation, then the device
is a Custom Commissioning Flow device and not a User-Intent Commissioning Flow device. The
documentation MAY be printed or in the form of online documentation (e.g. Section 11.23.5.8,
“UserManualUrl”).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 284 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• A User-Intent Commissioning Flow device SHALL follow the rules for Manual Pairing Code and
QR Code Inclusion.

• The Distributed Compliance Ledger entries for User-Intent Commissioning Flow devices SHALL
include the CommissioningCustomFlow field set to '1 - User Intent' and the CommissioningMod
eInitialStepsHint field set to a non-zero integer value. Bit 0 (Power Cycle) in the Commissioning
ModeInitialStepsHint field SHALL be set to 0. The CommissioningModeInitialStepsInstruction
field SHALL be set when CommissioningModeInitialStepsHint has a Pairing Instruction depen
dency.

• A User-Intent Commissioning Flow device SHALL set Custom Flow bits in the Onboarding Pay
load to indicate '1 - User Intent'.

• The commissioner SHOULD reference Distributed Compliance Ledger fields such as Commis
sioningModeInitialStepsHint, CommissioningModeInitialStepsInstruction, UserManualUrl, and
SupportUrl to assist the user during commissioning, e.g. to explain how to bring the device into
commissioning mode.

Table 53. Values of Ledger fields to represent User-Intent Commissioning Flow

Field Name Value(s)

CommissioningCustomFlow 1 - User Intent (Mandatory)

CommissioningModeInitialStepsHint This field SHALL be set to a non-zero integer
value. See Pairing Hint Table for a complete list
of pairing instructions.

Example value: 96 - The following bits are set: 6
(Press Reset Button - Optional), 5 (Device Man
ual - Optional). Bit 1 (Device Manufacturer URL)
MAY be set.

CommissioningModeInitialStepsInstruction The field SHALL be set when Commissioning
ModeInitialStepsHint has a Pairing Instruction
dependency. See PI Dependency column of Pair
ing Hint Table to determine which pairing hints
have Pairing Instruction dependency and there
fore require this field to be populated.

5.7.3. Custom Commissioning Flow

• A Custom Commissioning Flow device SHALL require interaction with custom steps, guided by a
service provided by the manufacturer for initial device setup, before it can be commissioned by
any Matter commissioner.

• A Custom Commissioning Flow device MAY include the Onboarding Payload on-device or in
packaging. If it is not included on the device or in packaging, then it SHALL be provided to the
user through other means provided by the manufacturer.

• A Custom Commissioning Flow device SHALL set Custom Flow bits in the Onboarding Payload
to indicate '2 - Custom'.

• The Distributed Compliance Ledger entries for Custom Commissioning Flow devices SHALL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 285

include:

◦ the CommissioningCustomFlow field set to '2 - Custom'

◦ the CommissioningModeInitialStepsHint with bit 0 (Power Cycle) set to 0 and bit 1 (Device
Manufacturer URL) set to 1

◦ the CommissioningCustomFlowUrl field populated in order to indicate to commissioners
that initial commissioning can only be completed by the user visiting the URL contained
therein.
This URL will typically lead to a web page with relevant instructions and/or to a server
which (e.g. by looking at the User-Agent) redirects the user to allow viewing, downloading,
installing or using a manufacturer-provided means for guiding the user through the process
and bring the device into a state that it is available for commissioning by any commissioner.
Since the URL is retrieved from a DCL entry corresponding to a specific VID and PID combi
nation, the device manufacturer MAY choose to use any constructed URL valid in a HTTP
GET request (i.e. dedicated for the product the user wants to commission) such as, for exam
ple, https://domain.example/download-install-app?vid=FFF1&pid=1234. All HTTP based URLs
SHALL use the https scheme.

• When a Commissioner encounters a device with Custom Flow field (in Onboarding Payload) or
its CommissioningCustomFlow field (in Distributed Compliance Ledger) set to '2 - Custom', it
SHOULD use the CommissioningCustomFlowUrl to guide the user on how to proceed, unless it
has alternative means to guide the user to successful commissioning.

◦ If a Commissioner follows or launches the CommissioningCustomFlowUrl after a User
request, it SHALL expand it as described in Section 5.7.3.1, “CommissioningCustomFlowUrl
format”.

• A manufacturer contemplating using this flow should realize that

◦ This flow typically requires internet access to access the URL, so initial commissioning of the
device may fail if there is no internet connection at that time/location.

◦ If the flow requires an app, it needs to be made available for popular platforms amongst the
user population; some of their platforms running a commissioner (e.g. a smart speaker not
running a popular mobile OS) may thus not be able to be used for the initial commissioning
of such devices.

Table 54. Values of Ledger fields to represent Custom Commissioning Flow

Field Name Value(s)

CommissioningCustomFlow 2 - Custom (Mandatory)

CommissioningCustomFlowUrl 'URL' - Device Manufacturer URL (Mandatory)

CommissioningModeInitialStepsHint This field SHALL be set to a non-zero integer
value with at least bit 1 set (Device Manufac
turer URL). See Pairing Hint Table for a com
plete list of pairing instructions.

Example value: 2 - The following bits are set: 1
(Device Manufacturer URL) (Mandatory).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 286 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://domain.example/download-install-app?vid=FFF1&pid=1234

Field Name Value(s)

CommissioningModeInitialStepsInstruction The field SHALL be set when Commissioning
ModeInitialStepsHint has a Pairing Instruction
dependency. See PI Dependency column of Pair
ing Hint Table to determine which pairing hints
have Pairing Instruction dependency and there
fore require this field to be populated.

5.7.3.1. CommissioningCustomFlowUrl format

The CommissioningCustomFlowUrl MAY contain a query component (see RFC 3986 section 3.4). If a
query is present, it SHALL be composed of one or more key-value pairs:

• The query SHALL use the & delimiter between key/value pairs.

• The key-value pairs SHALL in the format name=<value> where name is the key name, and <value>
is the contents of the value encoded with proper URL-encoded escaping.

• If key MTcu is present, it SHALL have a value of "_" (i.e. MTcu=_). This is the "callback URL (Call
backUrl) placeholder".

• If key MTop is present, it SHALL have a value of "_" (i.e. MTop=_). This is the "onboarding payload
placeholder".

• Any key whose name begins with MT not mentioned in the previous bullets SHALL be reserved
for future use by this specification. Manufacturers SHALL NOT include query keys starting with
MT in either the CommissioningCustomFlowUrl or CallbackUrl unless they are referenced by a ver
sion of this specification.

When the CommissioningCustomFlowUrl for a Custom Commissioning Flow device includes the MTop
key, the Passcode embedded in any Onboarding Payload placed on-device or in packaging SHALL
NOT be one that can be used for secure channel establishment with the device. This requirement is
intended to ensure a shared secret used for proof of possession will not be transferred to a server
without user consent. A Custom Commissioning Flow device MAY utilize Onboarding Payload fields
such as the Serial Number (see kTag_SerialNumber) to pass device identification to the server speci
fied in CommissioningCustomFlowUrl, as these fields by themselves could not be used to gain access to
the device on their own like the Passcode could.

When the CommissioningCustomFlowUrl for a Custom Commissioning Flow device includes the MTop
key, the Passcode embedded in any Onboarding Payload placed on-device or in packaging MAY be
set to 0 in order to provide a hint to the Commissioner that it is not one that can be used for secure
channel establishment with the device. This would allow the Commissioner to avoid attempting to
commission the device if an advertisement from it is detected.

Any other element in the CommissioningCustomFlowUrl query field not covered by the above rules, as
well as the fragment field (if present), SHALL remain as obtained from the Distributed Compliance
Ledger's CommissioningCustomFlowUrl field, including the order of query key/value pairs present.

5.7.3.1.1. Expansion of CommissioningCustomFlowUrl by Commissioner

Once the URL is obtained, it SHALL be expanded to form a final URL (ExpandedCommissioningCustom

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 287

FlowUrl) by proceeding with the following substitution algorithm on the original CommissioningCus
tomFlowUrl:

1. If key MTcu is present, compute the CallbackUrl desired (see Section 5.7.3.2, “CallbackUrl format
for Custom Commissioning Flow response”), and substitute the placeholder value "_" (i.e. in
MTcu=_) in the CommissioningCustomFlowUrl with the desired contents, encoded with proper URL-
encoded escaping (see RFC 3986 section 2).

2. If key MTop is present, substitute the placeholder value "_" (i.e. in MTop=_) in the CommissioningCus
tomFlowUrl with either numeric manual code, or QR code body including the MT: prefix and TLV
data (if present), encoded with proper URL-encoded escaping (see RFC 3986 section 2). Note that
both methods SHOULD be supported by the Manufacturer’s custom flow.

A Commissioner SHALL NOT append the MTop= query key/value pair unless the key/value pair was
already present as MTop=_ in the CommissioningCustomFlowUrl previously obtained. This constraint
enables the determination of which products make use of the payload in their Custom Commission
ing Flow infrastructure by inspection of the Distributed Compliance Ledger records.

The final URL after expansion (ExpandedCommissioningCustomFlowUrl) SHALL be the one to follow per
Section 5.7.3, “Custom Commissioning Flow”, rather than the original value obtained from the Dis
tributed Compliance Ledger.

5.7.3.2. CallbackUrl format for Custom Commissioning Flow response

If a CallbackUrl field (i.e. MTcu=) query field placeholder is present in the CommissioningCustom
FlowUrl, the Commissioner MAY replace the placeholder value "_" in the ExpandedCommissioningCus
tomFlowUrl with a URL that the manufacturer custom flow can use to make a smooth return to the
Commissioner when the device is in a state that it can be commissioned.

This URL field MAY contain a query component (see RFC 3986 section 3.4).

If a query is present, it SHALL be composed of one or more key-value pairs:

• The query SHALL use the & delimiter between key/value pairs.

• The key-value pairs SHALL follow the format name=<value> where name is the key name, and
<value> is the contents of the value encoded with proper URL-encoded escaping.

• If key MTrop is present, it SHALL have a value of "_" (i.e. MTrop=_). This is the placeholder for a
"returned onboarding payload" provided by the manufacturer flow to the Commissioner.

• Any key whose name begins with MT not mentioned in the previous bullets SHALL be reserved
for future use by this specification.

Any other element in the CallbackUrl query field not covered by the above rules, as well as the frag
ment field (if present), SHALL remain as provided by the Commissioner through embedding within
the ExpandedCommissioningCustomFlowUrl, including the order of query key/value pairs present.

5.7.3.2.1. Expansion of CallbackUrl by the manufacturer custom flow

Once the CallbackUrl is obtained by the manufacturer flow, it MAY be expanded to form a final
ExpandedCallbackUrl URL to be used by proceeding with the following substitution algorithm on the
provided CallbackUrl:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 288 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• If key MTrop is present, the manufacturer custom flow having received the initial query contain
ing the CallbackUrl MAY compute an Onboarding Payload in QR code format including MT: pre
fix, and substitute the placeholder value "_" (i.e. in MTrop=_) in the CallbackUrl with the desired
contents, encoded with proper URL-encoded escaping (see RFC 3986 section 2).

◦ The contents of the MTrop=_ key/value pair in the ExpandedCallbackUrl SHALL only be
expanded if the manufacturer custom flow, having received the initial query containing the
CallbackUrl, supports opening a commissioning window on the target device and supports
conveying the corresponding onboarding payload to the Commissioner.

◦ The return onboarding payload, if provided, SHALL contain an ephemeral Passcode and not
a permanent code that can be used in a subsequent commissioning window. If the manufac
turer wants the Passcode embedded in the Onboarding Payload placed on-device or in pack
aging to be the one used for session establishment with the Commissioner, then the manu
facturer SHALL NOT include the MTop key in its CommissioningCustomFlowUrl and SHALL NOT
populate the MTrop value in the CallbackUrl expansion.

◦ The contents of the return onboarding payload, if provided, SHALL be constructed to match
the state of the device at the moment the ExpandedCallbackUrl is opened. At least one ingredi
ent which needs to be adapted relative to the received Onboarding Payload is the Custom
Flow field which needs to be 0 for the return onboarding payload.

◦ The presence of this field is to assist automatically resuming commissioning without addi
tional data entry (QR code or numeric manual code) by the user at the Commissioner that
initially triggered the custom flow. The manufacturer custom flow SHOULD provide an alter
nate means of conveying the onboarding payload, such as a manual pairing code.

◦ Note that if the information in the initial onboarding payload that caused triggering of a
Custom Commissioning Flow was directly usable, it may be used by the Commissioner,
either upon being triggered through the ExpandedCallbackUrl having been opened, or
autonomously as a fallback.

◦ Commissioners providing a CallbackUrl to the manufacturer custom flow through the
ExpandedCommissioningCustomFlowUrl SHOULD support using the ExpandedCallbackUrl to trig
ger resumption of Commissioning flow if the ExpandedCallbackUrl is followed, otherwise the
Commissioner SHOULD NOT substitute the MTcu query field when expanding the Commission
ingCustomFlowUrl into the ExpandedCommissioningCustomFlowUrl.

◦ If the manufacturer custom flow failed to make the device commissionable, it SHALL NOT
replace the placeholder value "_" of an included MTrop=_ key/value pair, to avoid a Commis
sioner attempting to discover or commission a device not made ready by the custom flow.

A manufacturer custom flow having received an ExpandedCommissioningCustomFlowUrl SHOULD
attempt to open the ExpandedCallbackUrl, on completion of the steps, if an ExpandedCallbackUrl was
computed from the CallbackUrl and opening such a URL is supported.

5.7.3.3. Examples of CommissioningCustomFlow URLs

Below are some examples of valid ExpandedCommissioningCustomFlowUrl for several valid values of
CommissioningCustomFlowUrl, as well as some examples of invalid values of CommissioningCustom
FlowUrl:

• Valid URL with no query string:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 289

◦ Before expansion: https://company.domain.example/matter/custom/flows/vFFF1p1234

◦ After expansion: https://company.domain.example/matter/custom/flows/vFFF1p1234 (no
change)

• Invalid URL with no query string: http scheme is not allowed:

◦ http://company.domain.example/matter/custom/flows/vFFF1p1234

• Valid URL with basic manufacturer-specific scheme for query:

◦ Before expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234

◦ After expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234
(no change)

• Valid URL with MTop=_ placeholder using QR format onboarding payload embedding:

◦ Before expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234&MTop=_

◦ After expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234&MTop=MT%3A-MOA57ZU02IT2L2BJ00

▪ Onboarding payload QR content MT:-MOA57ZU02IT2L2BJ00 was embedded within MTop key

• Valid URL with MTop=_ placeholder using numeric manual code onboarding payload embedding:

◦ Before expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234&MTop=_

◦ After expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234&MTop=610403146665521046600

▪ Onboarding numeric manual code 610403146665521046600 was embedded within MTop key

• Valid URL with MTop=_ placeholder using numeric manual code onboarding payload embedding,
using a different order of keys/value pairs than the previous example:

◦ Before expansion: https://company.domain.example/matter/custom/flows?pid=1234&
MTop=_&vid=FFF1

◦ After expansion: https://company.domain.example/matter/custom/flows?pid=1234&
MTop=610403146665521046600&vid=FFF1

▪ Onboarding numeric manual code 610403146665521046600 was embedded within MTop key

• Valid URL with onboarding payload elided (because commissioner could not provide it):

◦ Before expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234&MTop=_

◦ After expansion: https://company.domain.example/matter/custom/flows?vid=FFF1&
pid=1234&MTop=_ (no change)

• Valid URL, return onboarding payload and CallbackUrl requested:

◦ Before expansion:

https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_&MTcu

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 290 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://company.domain.example/matter/custom/flows/vFFF1p1234
https://company.domain.example/matter/custom/flows/vFFF1p1234
http://company.domain.example/matter/custom/flows/vFFF1p1234
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=MT%3A-MOA57ZU02IT2L2BJ00
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=MT%3A-MOA57ZU02IT2L2BJ00
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=610403146665521046600
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=610403146665521046600
https://company.domain.example/matter/custom/flows?pid=1234&MTop=_&vid=FFF1
https://company.domain.example/matter/custom/flows?pid=1234&MTop=_&vid=FFF1
https://company.domain.example/matter/custom/flows?pid=1234&MTop=610403146665521046600&vid=FFF1
https://company.domain.example/matter/custom/flows?pid=1234&MTop=610403146665521046600&vid=FFF1
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_

=_

◦ After expansion:

https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=MT%3A-
MOA57ZU02IT2L2BJ00&MTcu=https%3A%2F%2Fcommissioner.domain.example%2Fcb%3Ftoken%3
DmAsJ6_vqbr-vjDiG_w%253D%253D%26MTrop%3D_

◦ The ExpandedCommissioningCustomFlow URL contains:

▪ An embedded onboarding payload QR content value of MT:-MOA57ZU02IT2L2BJ00

▪ A CallbackUrl with a Commissioner-provided arbitrary token= key/value pair and the
MTrop= key/value pair place-holder to indicate support for a return onboarding payload:
https://commissioner.domain.example/cb?token=mAsJ6_vqbr-vjDiG_w%3D%3D&
MTrop=_

▪ After expansion of the CallbackUrl (MTcu key) into an ExpandedCallbackUrl, with an exam
ple return onboarding payload of MT:-MOA5.GB00V68T62O10, the ExpandedCallbackUrl would
be:

https://commissioner.domain.example/cb?token=mAsJ6_vqbr-
vjDiG_w%3D%3D&MTrop=MT%3A-MOA5.GB00V68T62O10

Note that the MTcu key/value pair was initially provided URL-encoded within the Expand
edCommissioningCustomFlow URL and the MTrop=_ key/value pair placeholder now contains
a substituted returned onboarding payload.

• Invalid URL, due to MTza=79 key/value pair in reserved MT-prefixed keys reserved for future use:

◦ https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_&
MTza=79

5.7.3.4. Example Custom Commissioning Flow

An example of this flow is illustrated below. The "DCL info" concept denotes that the Commissioner
SHALL collect the information from the DCL via some mechanism, such as a network resource
accessible to the Commissioner containing a replicated set of the DCL’s content.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 291

https://commissioner.domain.example/cb?token=mAsJ6_vqbr-vjDiG_w%3D%3D&MTrop=_
https://commissioner.domain.example/cb?token=mAsJ6_vqbr-vjDiG_w%3D%3D&MTrop=_
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_&MTza=79
https://company.domain.example/matter/custom/flows?vid=FFF1&pid=1234&MTop=_&MTza=79

Figure 35. Custom Commissioning Flow sequence diagram

In the flow above:

• In the final steps, the User has to perform the trigger to the first Commissioner, so that it can
start or continue the commissioning process.

• If possible, a Commissioner MAY continue to scan for announcements from the device in the
background while any manufacturer-specific app is configuring the device to be available for
commissioning. The Commissioner may need a new OnboardingPayload provided to the User by
the Manufacturer Website or App.

• In order to simplify the flow, the Commissioner MAY:

◦ Include the onboarding payload obtained from the user (see MTop key in Section 5.7.3.1,
“CommissioningCustomFlowUrl format”) within the CommissioningCustomFlowUrl.

◦ Include a callback URL (see MTcu key in Section 5.7.3.1, “CommissioningCustomFlowUrl for
mat”) within the ExpandedCommissioningCustomFlowUrl.

• The Manufacturer Website or App MAY utilize the CallbackUrl field, if provided in the query
string, in order to simplify the process for signaling the completion of the manufacturer-specific
part of the flow back to the Commissioner. When doing so, the Manufacturer Website or App
SHOULD put the device into Commissioning mode and SHOULD provide the corresponding
onboarding payload to the Commissioner using the MTrop key/value pair within the Expanded
CallbackUrl.

5.7.4. Manual Pairing Code and QR Code Inclusion

Manual Pairing Code and QR setup codes enable secure commissioning and provide a consistent
experience that many users are familiar with. However, because they contain a symmetric security
code it is not appropriate in all circumstances to have them be in a readily accessible location on

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 292 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

the device, such as printed on the back.

The following are the requirements and recommendations regarding the QR Code and Manual Pair
ing code for Standard and User Intent Commissioning Flow Devices. Custom Commissioning Flow
Device rules are described in the Custom Commissioning Flow.

The term 'on-device' allows for a physical label affixed to the device or printed directly on the
device, as well as one that can be displayed on demand through some physical interface properties
of the device (e.g. visual or audio).

1. Devices SHALL include the Manual Pairing code on-device or in packaging.

2. Devices SHALL NOT have the QR nor the manual pairing code in an unprotected format on the
outer packaging.

3. Devices SHOULD include the QR Code, and SHOULD include it alongside the Manual Pairing
Code on-device or in packaging.

4. Manual Pairing Code and QR Code on-device MAY be removable or obscured to allow the owner
to prevent commissioning without their consent.

5. Devices MAY include the QR Code and Manual Pairing Code in multiple forms (see below).

Presentation of the QR Code and Manual Pairing code on-device can occur in many forms to allow
for adherence to device security requirements and manufacturing considerations. For example
security devices could limit the access to the QR code or Manual Pairing Code to avoid an unautho
rized user obtaining the information by simple inspection, or make the QR code and/or Manual
Pairing Code removable.

The following is a list of possible ways that are acceptable to satisfy the requirements of inclusion
of the QR code and Manual Pairing Code. An entry in the list should not be interpreted as being
mutually exclusive with another entry. A device SHOULD include as many of these ways as possible.

• QR and Manual Pairing Code shown via an on-device display (when available)

• QR and Manual Pairing Code printed on-device, with removal/obscuring considerations noted
above.

• Manual Pairing Code presented on-device via audio output (when available)

• QR and Manual Pairing Code printed on in-packaging materials.

The following are examples of QR code and Manual Pairing Code inclusion.

• QR Code and Manual Pairing Code printed on a Matter wireless shade inside the battery com
partment cover, and provided in the packaging.

• QR Code and Manual Pairing code on a Matter Smart Thermostat that can be activated via an
on-device User Interface and displayed only on screen.

• QR Code and Manual Pairing code for a security sensor that is provided in the packaging, and
on-device hidden behind a tamper-monitored cover.

• QR code provided on an E12 light bulb, with manual pairing code on a removable label (the
area of QR code likely fits better on small form factor bulb than the area for a 13 character
string).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 293

• A wearable device with only a Manual Pairing Code printed on the fabric. No QR code is present
because of the difficulty in scanning a QR code on an irregular surface.

• A Smart speaker, without printed QR or manual pairing code on the device (but possibly in-
packaging), that can be triggered to read out a Manual Pairing Code.

5.8. In-field Upgrade to Matter
This (informative) section discusses the case of a pre-Matter device currently in the user’s home
which gets software updated to support Matter, and which steps (either Matter-specified or manu
facturer specific) would typically be applied to accomplish this goal.

• The initial situation is a device which is connected to the local network, and some manufacturer
specific means (e.g. a manufacturer-provided app) is used to provide new firmware (including
Matter functionality) to the device, along with the associated Certification Declaration. Also, a
unique Device Attestation Certificate is provided into the device using secure, manufacturer-
specific means.

• The device restarts to enable the new firmware, and is now an uncommissioned Matter device.

• The device can be commissioned by any Commissioner; the Onboarding Payload needs to be
provided to that Commissioner (since this information is not provided on or with the device out
of the factory).

◦ For this, similar mechanisms as discussed as in Section 5.6.3, “Enhanced Commissioning
Method (ECM)” can be employed:

▪ information equivalent to the parameters of the Open Commissioning Window com
mand is sent to the device using some secure manufacturer-defined means

▪ presentation of the passcode and other relevant information can be performed using the
mechanisms described in Section 5.6.3.1, “Presentation of Onboarding Payload for ECM”.

◦ For devices with a means to output the Onboarding Payload themselves (e.g. device with a
display or audio output), alternatively, similar mechanisms as discussed as in Section 5.6.2,
“Basic Commissioning Method (BCM)” can be employed:

▪ information equivalent to the parameters of the Open Basic Commissioning Window
command is sent to the device using some secure manufacturer-defined means

▪ the device itself presents Onboarding Payload.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 294 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 6. Device Attestation and
Operational Credentials
This chapter describes the procedures and cryptographic credentials involved in establishing trust
between entities.

The Device Attestation section provides mechanisms for Commissioners and Administrators to
determine whether a Node is a genuine certified product before sharing sensitive information such
as keys and other credentials. The Device Attestation feature relies on a Device Attestation Certifi
cate (DAC) chain and on a Certification Declaration (CD).

The Node Operational Credentials section describes the credentials used by all Nodes to mutually
authenticate each other during Certificate-Authenticated Session Establishment, including the Node
Operational Certificate (NOC) chain. These credentials form the basis of how Nodes are identified
and take part in securing operational unicast communication.

6.1. Certificate Common Conventions
This chapter makes use of digital certificates in several subsections. All certificates within this spec
ification are based on X.509v3-compliant certificates as defined in RFC 5280. The storage format of
the certificates depends on application (e.g., DAC or NOC chain), but all certificates are directly com
patible with X.509v3 DER representation after suitable loading or decompression.

In order to simplify further exposition, this subsection contains some common normative conven
tions that SHALL apply to all digital certificates described in this specification.

The following certificate formats are defined within this specification:

• Compressed Node Operational credentials certificate chain elements in Matter Operational Cer
tificate Encoding or "Matter Certificate" format:

◦ Node Operational Certificate (NOC)

◦ Intermediate CA Certificate (ICAC)

◦ Root CA Certificate (RCAC)

• Device Attestation certificate chain elements in Standard X.509 DER format:

◦ Device Attestation Certificate (DAC): see Section 6.2.2.3, “Device Attestation Certificate (DAC)”

◦ Product Attestation Intermediate (PAI): see Section 6.2.2.4, “Product Attestation Intermediate
(PAI) Certificate”

◦ Product Attestation Authority (PAA): see Section 6.2.2.5, “Product Attestation Authority (PAA)
Certificate”

6.1.1. Encoding of Matter-specific RDNs

In addition to the standard DN (Distinguished Names) attribute types that appear in certificate Sub
ject and Issuer fields, there are Matter-specific DN attribute types under the 1.3.6.1.4.1.1.37244 pri

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 295

vate arc. These are listed in Table 55, “Matter-specific DN Object Identifiers”. These OID values are
assigned by the Connectivity Standards Alliance for use with Matter. All of these Matter-specific
RDNs encode values normatively defined as scalars.

When used in Matter Operational Certificate (TLV) format (see Section 6.5, “Operational Certificate
Encoding”), Matter-specific DN attribute types SHALL be encoded in Matter TLV as unsigned inte
gers with the specified length.

When used in X.509 ASN.1 DER format certificate encoding, Matter-specific DN attribute types
SHALL have their value encoded as either a UTF8String or PrintableString according to the table
below. The values SHALL be encoded in network byte order as exactly twice their specified maxi
mum octet length, encoded as uppercase hexadecimal number format without any separators or
prefix, and without omitting any leading zeroes.

For example:

• A scalar value 0x0123_4567_89AB_CDEF for matter-node-id:

◦ Scalar maximal length: 8 octets (64 bits)

◦ Resulting string: "0123456789ABCDEF" (without quotes)

◦ Resulting length: 16 characters

• A scalar value 0xAA_33CC for matter-noc-cat:

◦ Scalar maximal length: 4 octets (32 bits)

◦ Resulting string: "00AA33CC" (without quotes)

◦ Resulting length: 8 characters

Table 55. Matter-specific DN Object Identifiers

TLV Tag Matter name Length
(octets)

String length ASN.1 OID Types Allowed
in X.509

17 matter-node-id 8 16 1.3.6.1.4.1.3724
4.1.1

UTF8String

18 matter-
firmware-sign
ing-id

8 16 1.3.6.1.4.1.3724
4.1.2

UTF8String

19 matter-icac-id 8 16 1.3.6.1.4.1.3724
4.1.3

UTF8String

20 matter-rcac-id 8 16 1.3.6.1.4.1.3724
4.1.4

UTF8String

21 matter-fabric-
id

8 16 1.3.6.1.4.1.3724
4.1.5

UTF8String

22 matter-noc-cat 4 8 1.3.6.1.4.1.3724
4.1.6

UTF8String

N/A matter-oid-vid 2 4 1.3.6.1.4.1.3724
4.2.1

UTF8String,
PrintableString

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 296 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

TLV Tag Matter name Length
(octets)

String length ASN.1 OID Types Allowed
in X.509

N/A matter-oid-pid 2 4 1.3.6.1.4.1.3724
4.2.2

UTF8String,
PrintableString

6.1.2. Key Identifier Extension Constraints

Whenever an X.509 certificate contains Authority Key Identifier or Subject Key Identifier exten
sions, the associated Key Identifier SHALL be of a length of 20 octets, consistent with the length of
derivation method (1) described in section 4.2.1.2 of [RFC 5280].

Further constraints related to the exact derivation appear in the following subsections:

• Matter Certificates (NOC, ICAC, RCAC) Subject Key Identifier extension: see Section 6.5.11.4,
“Subject Key Identifier Extension”

• Matter Certificates Authority Key Identifier extension: see Section 6.5.11.5, “Authority Key Iden
tifier Extension”

• Device Attestation Certificate (DAC) extensions: see Section 6.2.2.3, “Device Attestation Certifi
cate (DAC)”

• Product Attestation Intermediate (PAI) Certificate extensions: see Section 6.2.2.4, “Product Attes
tation Intermediate (PAI) Certificate”

• Product Attestation Authority (PAA) Certificate extensions: see Section 6.2.2.5, “Product Attesta
tion Authority (PAA) Certificate”

6.1.3. Certificate Sizes

All certificates SHALL NOT be longer than 600 bytes in their uncompressed DER format. This con
straints SHALL apply to the entire DAC chain (DAC, PAI, PAA) and NOC chain (NOC, ICAC, RCAC).

Wherever Matter Operational Certificate Encoding representation is used, all certificates SHALL
NOT be longer than 400 bytes in their TLV form. This constraint only applies to the NOC chain (NOC,
ICAC, RCAC) since the DAC chain (DAC, PAI, PAA) only appears in DER format.

All certificates used within Matter SHOULD be as short as possible.

6.1.4. Presentation of example certificates

Certificate bodies are presented for exemplary purposes in multiple formats within this chapter.
Since the translation of an X.509 certificate from ASN.1 DER format to human-readable text format
may lose fidelity, especially with regards to equivalent types (e.g., PrintableString versus IA5String
versus UTF8String) or serialization when non-standard OIDs are seen, textual examples SHALL
NOT be considered to be normative. Only direct encoding of DER encoding, such as PEM blocks,
should be used to further study the examples. In case of unforeseen divergence between an exam
ple certificate illustration and the normative rules expressed in prose, the normative prose SHALL
take precedence over an ambiguous interpretation of an example.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 297

6.2. Device Attestation

6.2.1. Introduction

Certification of a Device includes configuring the Device with immutable credentials that can be
cryptographically verified. Device Attestation is the step of the Commissioning process whereby a
Commissioner cryptographically verifies a Commissionee is in fact a certified Device. This chapter
describes the Device Attestation Certificate (DAC) and the systems involved in the verification of a
DAC.

The processes used to convey the DAC from a Commissionee to a Commissioner, how to verify that
a Commissionee holds the private key corresponding to its DAC, and specifically how the DAC is ver
ified are described in Section 6.2.3, “Device Attestation Procedure”.

This chapter refers to the signature algorithm ECDSA with SHA256 and to the elliptic curve secp256r1
(a.k.a. prime256v1 and NIST P-256) in compliance with the mapping for version 1.0 of the Matter Mes
sage Format of the cryptographic primitives as specified in Chapter 3, Cryptographic Primitives.
Future versions of this specification might adapt these references accordingly.

6.2.2. Device Attestation Certificate (DAC)

All commissionable Matter Nodes SHALL include a Device Attestation Certificate (DAC) and corre
sponding private key, unique to that Device. The DAC is used in the Device Attestation process, as
part of Commissioning a Commissionee into a Fabric. The DAC SHALL be a DER-encoded X.509v3-
compliant certificate as defined in RFC 5280 and SHALL be issued by a Product Attestation Interme
diate (PAI) that chains directly to an approved Product Attestation Authority (PAA), and therefore
SHALL have a certification path length of 2.

The DAC also SHALL contain specific values of Vendor ID and Product ID (see Section 6.2.2.2,
“Encoding of Vendor ID and Product ID in subject and issuer fields”) in its subject field to indicate
the Vendor ID and Product ID provenance of the attestation certificate. See Section 6.2.3.1, “Attesta
tion Information Validation” for how these are used.

The validity period of a DAC is determined by the vendor and MAY be set to the maximum allowed
value of 99991231235959Z GeneralizedTime to indicate that the DAC has no well-defined expiration
date.

The notation used in this section to describe the specifics of the DAC uses the ASN.1 basic notation
as defined in X.680. The notation below also leverages types defined in RFC 5280 such as Algorith
mIdentifier, RelativeDistinguishedName, Validity, Time, UTCTime, GeneralizedTime, or permitted exten
sion types. Additionally, the notation below uses the ASN.1 definitions captured in the figure below:

-- Matter signatures are ECDSA with SHA256

MatterSignatureIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER(id-x962-ecdsa-with-sha256) }

-- Matter Names

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 298 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

-- The second to last RelativeDistinguishedName object in MatterDACName SEQUENCE SHALL
contain an
-- attribute with type equal to matter-oid-vid and the last RelativeDistinguishedName
object in the
-- SEQUENCE SHALL contain an attribute with type field set to matter-oid-pid

MatterDACName ::= SEQUENCE OF RelativeDistinguishedName

-- There are two acceptable formats for MatterPA name. The first is identical to
MatterDACName,
-- i.e. the second to last RelativeDistinguishedName object in MatterPAName SEQUENCE
SHALL contain an
-- attribute with type equal to matter-oid-vid and the last RelativeDistinguishedName
object in the
-- SEQUENCE SHALL contain an attribute with type field set to matter-oid-pid. In the
second acceptable
-- format, the last element of the MatterPAName SEQUENCE SHALL be an
RelativeDistinguishedName with
-- an attribute with type field set to matter-oid-vid

MatterPAName ::= SEQUENCE OF RelativeDistinguishedName

-- Object definitions and references

-- X962 OIDs

id-x962 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) ansi-x962(10045) }

id-x962-ecdsa-with-sha256 OBJECT IDENTIFIER ::= { id-x962 signatures(4) ecdsa-with-
SHA2(3) ecdsa-with-SHA256(2) }

id-x962-prime256v1 OBJECT IDENTIFIER ::= { id-x962 curves(3) prime(1) prime256v1(7) }

-- CSA and Matter specific OIDs

csa-root OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1)
private(4) enterprise(1) zigbee(37244) }

-- root arc for attestation certificates
matter-att-root OBJECT IDENTIFIER ::= { csa-root 2 }

-- Matter Device Attestation Certificate DN attribute for the Vendor ID (VID)
matter-oid-vid OBJECT IDENTIFIER ::= { matter-att-root 1 }

-- Matter Device Attestation Certificate DN attribute for the Product ID (PID)
matter-oid-pid OBJECT IDENTIFIER ::= { matter-att-root 2 }

6.2.2.1. Device Attestation Public Key Infrastructure (PKI)

The Device Attestation PKI hierarchy consists of the PAA, PAI and individual DAC. The public key

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 299

from the associated PAI certificate is used to cryptographically verify the DAC signature. The PAI
certificate in turn is signed and attested to by the Product Attestation Authority (PAA) CA. The pub
lic key from the associated PAA certificate is used to cryptographically verify the PAI certificate sig
nature. The PAA certificate is an implicitly trusted self-signed root certificate. In this way, the DAC
chains up to the PAI certificate, which in turn chains up to the PAA root certificate. A PAI SHALL be
assigned to a Vendor ID value. A PAI MAY further be scoped to a single ProductID value. If a PAI is
used for multiple products, then it cannot be scoped to a ProductID value, otherwise the Device
Attestation Procedure will fail policy validations.

Commissioners SHALL use PAA and PAI certificates to verify the authenticity of a Commissionee
before proceeding with the rest of the Commissioning flow.

The subject of all DAC and PAI certificates SHALL be unique among all those issued by their issuer,
as intended by RFC 5280 section 4.1.2.6, through the use of RelativeDistinguishedName s that ensure
the uniqueness, such as for example a unique combination of commonName (OID 2.5.4.3), serialNumber
(OID 2.5.4.5), organizationalUnitName (OID 2.5.4.11), etc. The exact additional constraints, including
for the subject field, for PAA, PAI and DAC certificates, are presented in the following subsections.

The following figure shows the Device Attestation PKI hierarchy.

Figure 36. Device Attestation PKI hierarchy

6.2.2.2. Encoding of Vendor ID and Product ID in subject and issuer fields

The following subsections contain references to VendorID and ProductID:

• Section 6.2.2.3, “Device Attestation Certificate (DAC)”

• Section 6.2.2.4, “Product Attestation Intermediate (PAI) Certificate”

• Section 6.2.2.5, “Product Attestation Authority (PAA) Certificate”

The values for VendorID and ProductID, where possible or required in issuer or subject fields
SHALL be encoded by only one of two methods, without mixing the methods within a given field:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 300 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

1. The "preferred method", using Matter-specific RelativeDistinguishedName attributes:

a. VendorID encoded as AttributeTypeAndValue entry with type equal to 1.3.6.1.4.1.37244.2.1,
and value respecting encoding specified in Section 6.1.1, “Encoding of Matter-specific RDNs”.

b. ProductID encoded as AttributeTypeAndValue entry with type equal to 1.3.6.1.4.1.37244.2.2,
and value respecting encoding specified in Section 6.1.1, “Encoding of Matter-specific RDNs”.

2. A "fallback method" to support certificate authorities that only allow customary RFC 5280 OIDs
in the arc {joint-iso-itu-t(2) ds(5) attributeType(4)} for type values in AttributeTypeAndValue
entries of RelativeDistinguishedName elements is to encode them as substrings within the com
monName attribute type ({joint-iso-itu-t(2) ds(5) attributeType(4) commonName(3)}):

a. VendorID value encoded with substring Mvid: followed by exactly 4 uppercase hexadecimal
characters without elision of leading zeroes, anywhere within the commonName, such as for
example:

i. VendorID 0xFFF1 (65521 decimal): Mvid:FFF1

ii. VendorID 0x2A (42 decimal): Mvid:002A

b. ProductID value encoded with substring Mpid: followed by exactly 4 uppercase hexadecimal
characters without elision of leading zeroes, anywhere within the commonName, such as for
example:

i. ProductID 0xC20A (49674 decimal): Mpid:C20A

ii. ProductID 0x3A5 (933 decimal): Mpid:03A5

c. For both VendorID and ProductID, the following additional rules apply to the "fallback
method":

i. The leftmost match having a correct encoding SHALL be used, with other correct
matches discarded.

ii. For either of VendorID and ProductID, if the prefix string is found on its own anywhere
within the commonName, but there is no fully correct match anywhere in the commonName, the
field SHALL be considered incorrectly formatted.

The "preferred method" leaves more space for content in the commonName attribute type if present. It
is also less ambiguous which may allow simpler processing of certificate issuance policy validations
in CAs that support the Matter-specific RelativeDistinguishedName attributes, and simplify the audit
of certificates where Vendor ID and Product ID appear.

The "fallback method" is present to support less flexible CA infrastructure.

Fallback method to encode VendorID and ProductID

The "fallback method" requires exactly 9 characters that are safe to use in both PrintableString and
UTF8String for either VendorID or ProductID encoding. Since these VendorID and ProductID sub
strings have unambiguous format, they MAY be provided anywhere within a commonName value, and
therefore separator selection does not need to be considered. Note that the standard RFC 5280
length limitation for commonName attribute value is 64 characters in total (see ub-common-name in
RFC 5280).

Using the "fallback method" for embedding of VendorID and ProductID in commonName in the subject

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 301

field of a Device Attestation Certificate claiming VendorID 0xFFF1 and ProductID 0x00B1 can be
illustrated with the following valid and invalid examples (without the double quotes):

• "ACME Matter Devel DAC 5CDA9899 Mvid:FFF1 Mpid:00B1": valid and recommended since easily
human-readable

• "ACME Matter Devel DAC 5CDA9899 Mpid:00B1 Mvid:FFF1": valid and recommended since easily
human-readable

• "Mpid:00B1,ACME Matter Devel DAC 5CDA9899,Mvid:FFF1": valid example showing that order or
separators are not considered at all for the overall validity of the embedded fields

• "ACME Matter Devel DAC 5CDA9899 Mvid:FFF1Mpid:00B1": valid, but less readable

• "Mvid:FFF1ACME Matter Devel DAC 5CDAMpid:00B19899": valid, but highly discouraged, since
embedding of substrings within other substrings may be confusing to human readers.

• "ACME Matter Devel DAC 5CDA9899 Mvid:FF1 Mpid:00B1": invalid, since substring following Mvid: is
not exactly 4 uppercase hexadecimal digits

• "ACME Matter Devel DAC 5CDA9899 Mvid:fff1 Mpid:00B1": invalid, since substring following Mvid:
is not exactly 4 uppercase hexadecimal digits

• "ACME Matter Devel DAC 5CDA9899 Mvid:FFF1 Mpid:B1": invalid, since substring following Mpid: is
not exactly 4 uppercase hexadecimal digits

• "ACME Matter Devel DAC 5CDA9899 Mpid: Mvid:FFF1": invalid, since the prefix Mpid: was found but
there is no occurrence of Mpid: followed by exactly 4 uppercase hexadecimal digits.

In addition, the following example shows a highly discouraged, though technically valid encoding:

• "Mpid:Mvid:FFF1 Mpid:12cd Matter Test Mpid:FE67": VendorID 0xFFF1 and ProductID 0xFE67
(leftmost match is the correct match for Mpid: prefix).

◦ Instances such as this example SHOULD be avoided since they can cause confusion in differ
ent implementations, even if the rules are obeyed.

If either the Vendor ID (1.3.6.1.4.1.37244.2.1) or Product ID (1.3.6.1.4.1.37244.2.2) Matter-specific
OIDs appear in any RelativeDistinguishedName in the subject or issuer fields of a certificate which
is part of the Device Attestation Certificate chain path, then that certificate within the chain SHALL
NOT have its commonName, if present, parsed for the "fallback method", in the rest of the issuer or sub
ject field where the Matter-specific OIDs appear. In other words, considering a field such as subject
or issuer, the presence of either of these OIDs as the type for any AttributeTypeAndValue within any
RelativeDistinguishedName of that field SHALL cause the "fallback method" to be skipped altogether
for that field. Otherwise, when the "fallback method" can legally be used, it SHALL only be used
against AttributeTypeAndValue sequences where the type field is commonName ({joint-iso-itu-t(2)
ds(5) attributeType(4) commonName(3)}) in the issuer and subject fields, and any mention thereafter
of using or matching a "Vendor ID" or "Product ID" with regards to a Device Attestation Procedure
step SHALL rely on values obtained with that method.

For example, if a given Product Attestation Intermediate certificate has a subject field employing a
particular method of encoding the VendorID and ProductID, either using only Matter-specific OIDs
or only the fallback method, then it follows that a Device Attestation Certificates issued by the cer
tificate authority of that Product Attestation Intermediate SHALL have the same Distinguished

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 302 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Name content in its issuer field, so that the basic path validation algorithm works. That Device
Attestation Certificate MAY however have the "fallback method" used within its subject field, if the
Product Attestation Intermediate certificate authority is unable to encode/reflect the Matter-specific
OIDs in RelativeDistinguishedName attributes within the subject field. The rules for whether to
consider the canonical or "fallback method" for VendorID and ProductID encoding applies field by
field independently for each instance of subject or issuer field found in certificates within the DAC
chain.

6.2.2.3. Device Attestation Certificate (DAC)

The attributes in a DAC include:

Certificate ::= SEQUENCE {
 tbsCertificate DACTBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

DACTBSCertificate ::= SEQUENCE {
 version INTEGER (v3(2)),
 serialNumber INTEGER,
 signature MatterSignatureIdentifier,
 issuer MatterPAName,
 validity Validity,
 subject MatterDACName,
 subjectPublicKeyInfo SEQUENCE {
 algorithm OBJECT IDENTIFIER(id-x962-prime256v1),
 subjectPublicKey BIT STRING },
 extensions DACExtensions }

DACExtensions ::= SEQUENCE {
 basicConstraint Extension({extnID id-ce-basicConstraints, critical TRUE, extnValue
BasicConstraints {cA FALSE} }),
 keyUsage Extension({extnID id-ce-keyUsage, critical TRUE, extnValue
KeyUsage({digitalSignature})}),
 authorityKeyIdentifier Extension({extnID id-ce-authorityKeyIdentifier}),
 subjectKeyIdentifier Extension({extnID id-ce-subjectKeyIdentifier}),
 extendedKeyUsage Extension({extnID id-ce-extKeyUsage}) OPTIONAL,
 authorityInformationAccess Extension({extnID id-pe-authorityInfoAccess}) OPTIONAL,
 subjectAlternateName Extension({extnID id-ce-subjectAltName}) OPTIONAL
}

The DAC certificate SHALL follow the following constraints layered on top of the encoding specified
by RFC 5280 within the TBSCertificate structure:

1. The version field SHALL be set to 2 to indicate v3 certificate.

2. The signature field SHALL contain the identifier for signatureAlgorithm ecdsa-with-SHA256.

3. The issuer field SHALL be a sequence of RelativeDistinguishedName s.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 303

4. The issuer field SHALL have exactly one VendorID value present.

5. The issuer field SHALL have exactly zero or one ProductID value present.

6. The issuer field SHALL match, byte-for-byte, the subject field of the PAI certificate for the PAI
that issued this DAC.

7. The subject field SHALL be a sequence of RelativeDistinguishedName s.

8. The subject field SHALL have exactly one VendorID value present.

a. The VendorID value present in the issuer field SHALL match the VendorID value found in
subject field.

9. The subject field SHALL have exactly one ProductID value present.

a. If a ProductID value was present in the issuer field, the ProductID value found in subject
field SHALL match the value found in the issuer field.

10. The algorithm field in subjectPublicKeyInfo field SHALL be the object identifier for prime256v1.

11. The certificate SHALL carry the following Extensions:

a. Basic Constraint extension SHALL be marked critical and have the cA field set to FALSE.

b. Key Usage extension SHALL be marked critical

i. The KeyUsage bitstring SHALL only have the digitalSignature bit set.

ii. Other bits SHALL NOT be set

c. Authority Key Identifier

d. Subject Key Identifier

12. The certificate MAY also carry the following additional Extensions:

a. Extended Key Usage

b. Authority Information Access

c. Subject Alternate Name

d. CRLDistributionPoints

e. Any other extension allowed in RFC 5280 where inclusion does not violate size limitations.
These extensions insofar not defined in this specification SHALL be ignored by commission
ers conforming to this specification, but MAY be present to allow flexibility in CA operation.

Valid example DAC with associated private key, in X.509 PEM format

-----BEGIN CERTIFICATE-----
MIIB6TCCAY+gAwIBAgIIDgY7dCvPvl0wCgYIKoZIzj0EAwIwRjEYMBYGA1UEAwwP
TWF0dGVyIFRlc3QgUEFJMRQwEgYKKwYBBAGConwCAQwERkZGMTEUMBIGCisGAQQB
gqJ8AgIMBDgwMDAwIBcNMjEwNjI4MTQyMzQzWhgPOTk5OTEyMzEyMzU5NTlaMEsx
HTAbBgNVBAMMFE1hdHRlciBUZXN0IERBQyAwMDAxMRQwEgYKKwYBBAGConwCAQwE
RkZGMTEUMBIGCisGAQQBgqJ8AgIMBDgwMDAwWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAATCJYMix9xyc3wzvu1wczeqJIW8Rnk+TVrJp1rXQ1JmyQoCjuyvJlD+cAnv
/K7L6tHyw9EkNd7C6tPZkpW/ztbDo2AwXjAMBgNVHRMBAf8EAjAAMA4GA1UdDwEB
/wQEAwIHgDAdBgNVHQ4EFgQUlsLZJJTql4XA0WcI44jxwJHqD9UwHwYDVR0jBBgw
FoAUr0K3CU3r1RXsbs8zuBEVIl8yUogwCgYIKoZIzj0EAwIDSAAwRQIgX8sppA08
NabozmBlxtCdphc9xbJF7DIEkePTSTK3PhcCIQC0VpkPUgUQBFo4j3VOdxVAoESX

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 304 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

kjGWRV5EDWgl2WEDZA==
-----END CERTIFICATE-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIHtcWp+0aVVH+DAQ38iXpphqmT7LfMnMD4V/kIqszwfuoAoGCCqGSM49
AwEHoUQDQgAEwiWDIsfccnN8M77tcHM3qiSFvEZ5Pk1ayada10NSZskKAo7sryZQ
/nAJ7/yuy+rR8sPRJDXewurT2ZKVv87Www==
-----END EC PRIVATE KEY-----

Human-readable contents of example DAC X.509 certificate

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1010560536528535133 (0xe063b742bcfbe5d)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = Matter Test PAI, 1.3.6.1.4.1.37244.2.1 = FFF1,
1.3.6.1.4.1.37244.2.2 = 8000
 Validity
 Not Before: Jun 28 14:23:43 2021 GMT
 Not After : Dec 31 23:59:59 9999 GMT
 Subject: CN = Matter Test DAC 0001, 1.3.6.1.4.1.37244.2.1 = FFF1,
1.3.6.1.4.1.37244.2.2 = 8000
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c2:25:83:22:c7:dc:72:73:7c:33:be:ed:70:73:
 37:aa:24:85:bc:46:79:3e:4d:5a:c9:a7:5a:d7:43:
 52:66:c9:0a:02:8e:ec:af:26:50:fe:70:09:ef:fc:
 ae:cb:ea:d1:f2:c3:d1:24:35:de:c2:ea:d3:d9:92:
 95:bf:ce:d6:c3
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Key Usage: critical
 Digital Signature
 X509v3 Subject Key Identifier:
 96:C2:D9:24:94:EA:97:85:C0:D1:67:08:E3:88:F1:C0:91:EA:0F:D5
 X509v3 Authority Key Identifier:
 keyid:AF:42:B7:09:4D:EB:D5:15:EC:6E:CF:33:B8:11:15:22:5F:32:52:88

 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:20:5f:cb:29:a4:0d:3c:35:a6:e8:ce:60:65:c6:d0:
 9d:a6:17:3d:c5:b2:45:ec:32:04:91:e3:d3:49:32:b7:3e:17:
 02:21:00:b4:56:99:0f:52:05:10:04:5a:38:8f:75:4e:77:15:
 40:a0:44:97:92:31:96:45:5e:44:0d:68:25:d9:61:03:64

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 305

Valid example DAC with associated private key, in X.509 PEM format, using "fallback method" for VendorID
and ProductID in Subject

-----BEGIN CERTIFICATE-----
MIIB0DCCAXegAwIBAgIIbec9lw3wZpAwCgYIKoZIzj0EAwIwRjEYMBYGA1UEAwwP
TWF0dGVyIFRlc3QgUEFJMRQwEgYKKwYBBAGConwCAQwERkZGMTEUMBIGCisGAQQB
gqJ8AgIMBDgwMDAwIBcNMjEwNjI4MTQyMzQzWhgPOTk5OTEyMzEyMzU5NTlaMDMx
MTAvBgNVBAMMKE1hdHRlciBUZXN0IERBQyAwMDAxIE12aWQ6RkZGMSBNcGlkOjgw
MDAwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATCJYMix9xyc3wzvu1wczeqJIW8
Rnk+TVrJp1rXQ1JmyQoCjuyvJlD+cAnv/K7L6tHyw9EkNd7C6tPZkpW/ztbDo2Aw
XjAMBgNVHRMBAf8EAjAAMA4GA1UdDwEB/wQEAwIHgDAdBgNVHQ4EFgQUlsLZJJTq
l4XA0WcI44jxwJHqD9UwHwYDVR0jBBgwFoAUr0K3CU3r1RXsbs8zuBEVIl8yUogw
CgYIKoZIzj0EAwIDRwAwRAIgbvYsHaGRTg1JzPTB6TqfVFPABF8LCYkEP1AvV7Ah
yL4CIACKW3A6YixqtqKfkwuvw81mMVymqafU8kx5k1c0zqbe
-----END CERTIFICATE-----

Human-readable contents of example DAC X.509 certificate, using "fallback method" for VendorID and Pro
ductID in Subject

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 7919366188737521296 (0x6de73d970df06690)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = Matter Test PAI, 1.3.6.1.4.1.37244.2.1 = FFF1,
1.3.6.1.4.1.37244.2.2 = 8000
 Validity
 Not Before: Jun 28 14:23:43 2021 GMT
 Not After : Dec 31 23:59:59 9999 GMT
 Subject: CN = Matter Test DAC 0001 Mvid:FFF1 Mpid:8000
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c2:25:83:22:c7:dc:72:73:7c:33:be:ed:70:73:
 37:aa:24:85:bc:46:79:3e:4d:5a:c9:a7:5a:d7:43:
 52:66:c9:0a:02:8e:ec:af:26:50:fe:70:09:ef:fc:
 ae:cb:ea:d1:f2:c3:d1:24:35:de:c2:ea:d3:d9:92:
 95:bf:ce:d6:c3
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Key Usage: critical
 Digital Signature
 X509v3 Subject Key Identifier:
 96:C2:D9:24:94:EA:97:85:C0:D1:67:08:E3:88:F1:C0:91:EA:0F:D5
 X509v3 Authority Key Identifier:
 keyid:AF:42:B7:09:4D:EB:D5:15:EC:6E:CF:33:B8:11:15:22:5F:32:52:88

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 306 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 Signature Algorithm: ecdsa-with-SHA256
 30:44:02:20:6e:f6:2c:1d:a1:91:4e:0d:49:cc:f4:c1:e9:3a:
 9f:54:53:c0:04:5f:0b:09:89:04:3f:50:2f:57:b0:21:c8:be:
 02:20:00:8a:5b:70:3a:62:2c:6a:b6:a2:9f:93:0b:af:c3:cd:
 66:31:5c:a6:a9:a7:d4:f2:4c:79:93:57:34:ce:a6:de

6.2.2.4. Product Attestation Intermediate (PAI) Certificate

The attributes in a PAI certificate include:

Certificate ::= SEQUENCE {
 tbsCertificate PAITBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

PAITBSCertificate ::= SEQUENCE {
 version INTEGER (v3(2)),
 serialNumber INTEGER,
 signature MatterSignatureIdentifier,
 issuer Name,
 validity Validity,
 subject MatterPAName,
 subjectPublicKeyInfo SEQUENCE {
 algorithm OBJECT IDENTIFIER(id-x962-prime256v1),
 subjectPublicKey BIT STRING },
 extensions PAIExtensions }

PAIExtensions ::= SEQUENCE {
 basicConstraint Extension({extnID id-ce-basicConstraints, critical TRUE, extnValue
BasicConstraints {cA TRUE, pathLen 0} }),
 keyUsage Extension({extnID id-ce-keyUsage, critical TRUE, extnValue KeyUsage(<see
text>)}),
 authorityKeyIdentifier Extension({extnID id-ce-authorityKeyIdentifier}),
 subjectKeyIdentifier Extension({extnID id-ce-subjectKeyIdentifier}),
 extendedKeyUsage Extension({extnID id-ce-extKeyUsage}) OPTIONAL
}

The PAI certificate SHALL follow the following constraints layered on top of the encoding specified
by RFC 5280 within the TBSCertificate structure:

1. The version field SHALL be set to 2 to indicate v3 certificate.

2. The signature field SHALL contain the identifier for signatureAlgorithm ecdsa-with-SHA256.

3. The issuer field SHALL be a sequence of RelativeDistinguishedName s.

4. The issuer field SHALL have exactly zero or one VendorID value present.

5. The issuer field SHALL match, byte-for-byte, the subject field of the PAA certificate for the PAA

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 307

that issued this PAI certificate.

6. The subject field SHALL be a sequence of RelativeDistinguishedName s.

7. The subject field SHALL have exactly one VendorID value present.

a. If a VendorID value was present in the issuer field, the VendorID value found in subject
field SHALL match the value found in the issuer field.

8. The subject field SHALL have exactly zero or one ProductID value present.

9. The algorithm field in subjectPublicKeyInfo field SHALL be the object identifier for prime256v1.

10. The certificate SHALL carry the following Extensions:

a. Basic Constraint extension SHALL be marked critical and have the cA field set to TRUE and
pathLen field set to 0.

b. Key Usage extension SHALL be marked critical

i. Both the keyCertSign and cRLSign bits SHALL be set in the KeyUsage bitstring

ii. The digitalSignature bit MAY be set in the KeyUsage bitstring

iii. Other bits SHALL NOT be set

c. Authority Key Identifier

d. Subject Key Identifier

11. The certificate MAY also carry the following additional Extensions:

a. Extended Key Usage

b. CRLDistributionPoints

c. Any other extension allowed in RFC 5280 where inclusion does not violate size limitations.
These extensions insofar not defined in this specification SHALL be ignored by commission
ers conforming to this specification, but MAY be present to allow flexibility in CA operation.

The PAI certificate presented in the following example is for the issuer of the example DAC certifi
cate from the previous section.

Valid example PAI with associated private key, in X.509 PEM format

-----BEGIN CERTIFICATE-----
MIIB1DCCAXqgAwIBAgIIPmzmUJrYQM0wCgYIKoZIzj0EAwIwMDEYMBYGA1UEAwwP
TWF0dGVyIFRlc3QgUEFBMRQwEgYKKwYBBAGConwCAQwERkZGMTAgFw0yMTA2Mjgx
NDIzNDNaGA85OTk5MTIzMTIzNTk1OVowRjEYMBYGA1UEAwwPTWF0dGVyIFRlc3Qg
UEFJMRQwEgYKKwYBBAGConwCAQwERkZGMTEUMBIGCisGAQQBgqJ8AgIMBDgwMDAw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASA3fEbIo8+MfY7z1eY2hRiOuu96C7z
eO6tv7GP4avOMdCO1LIGBLbMxtm1+rZOfeEMt0vgF8nsFRYFbXDyzQsio2YwZDAS
BgNVHRMBAf8ECDAGAQH/AgEAMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQUr0K3
CU3r1RXsbs8zuBEVIl8yUogwHwYDVR0jBBgwFoAUav0idx9RH+y/FkGXZxDc3DGh
cX4wCgYIKoZIzj0EAwIDSAAwRQIhAJbJyM8uAYhgBdj1vHLAe3X9mldpWsSRETET
i+oDPOUDAiAlVJQ75X1T1sR199I+v8/CA2zSm6Y5PsfvrYcUq3GCGQ==
-----END CERTIFICATE-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIEZ7LYpps1z+a9sPw2qBp9jj5F0GLffNuCJY88hAHcMYoAoGCCqGSM49

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 308 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

AwEHoUQDQgAEgN3xGyKPPjH2O89XmNoUYjrrvegu83jurb+xj+GrzjHQjtSyBgS2
zMbZtfq2Tn3hDLdL4BfJ7BUWBW1w8s0LIg==
-----END EC PRIVATE KEY-----

Human-readable contents of example PAI X.509 certificate

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 4498223361705918669 (0x3e6ce6509ad840cd)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = Matter Test PAA, 1.3.6.1.4.1.37244.2.1 = FFF1
 Validity
 Not Before: Jun 28 14:23:43 2021 GMT
 Not After : Dec 31 23:59:59 9999 GMT
 Subject: CN = Matter Test PAI, 1.3.6.1.4.1.37244.2.1 = FFF1,
1.3.6.1.4.1.37244.2.2 = 8000
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:80:dd:f1:1b:22:8f:3e:31:f6:3b:cf:57:98:da:
 14:62:3a:eb:bd:e8:2e:f3:78:ee:ad:bf:b1:8f:e1:
 ab:ce:31:d0:8e:d4:b2:06:04:b6:cc:c6:d9:b5:fa:
 b6:4e:7d:e1:0c:b7:4b:e0:17:c9:ec:15:16:05:6d:
 70:f2:cd:0b:22
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:0
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 AF:42:B7:09:4D:EB:D5:15:EC:6E:CF:33:B8:11:15:22:5F:32:52:88
 X509v3 Authority Key Identifier:
 keyid:6A:FD:22:77:1F:51:1F:EC:BF:16:41:97:67:10:DC:DC:31:A1:71:7E

 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:21:00:96:c9:c8:cf:2e:01:88:60:05:d8:f5:bc:72:
 c0:7b:75:fd:9a:57:69:5a:c4:91:11:31:13:8b:ea:03:3c:e5:
 03:02:20:25:54:94:3b:e5:7d:53:d6:c4:75:f7:d2:3e:bf:cf:
 c2:03:6c:d2:9b:a6:39:3e:c7:ef:ad:87:14:ab:71:82:19

6.2.2.5. Product Attestation Authority (PAA) Certificate

The attributes in a PAA certificate include:

Certificate ::= SEQUENCE {

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 309

 tbsCertificate PAATBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

PAATBSCertificate ::= SEQUENCE {
 version INTEGER (v3(2)),
 serialNumber INTEGER,
 signature MatterSignatureIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SEQUENCE {
 algorithm OBJECT IDENTIFIER(id-x962-prime256v1),
 subjectPublicKey BIT STRING },
 extensions PAAExtensions }

PAAExtensions ::= SEQUENCE {
 basicConstraint Extension({extnID id-ce-basicConstraints, critical TRUE, extnValue
BasicConstraints {cA TRUE, pathLen 1} }),
 keyUsage Extension({extnID id-ce-keyUsage, critical TRUE, extnValue KeyUsage(<see
text>)}),
 authorityKeyIdentifier Extension({extnID id-ce-authorityKeyIdentifier}) OPTIONAL,
 subjectKeyIdentifier Extension({extnID id-ce-subjectKeyIdentifier}),
 extendedKeyUsage Extension({extnID id-ce-extKeyUsage}) OPTIONAL
}

The PAA certificate SHALL follow the following constraints layered on top of the encoding specified
by RFC 5280 within the TBSCertificate structure:

1. The version field SHALL be set to 2 to indicate v3 certificate.

2. The signature field SHALL contain the identifier for signatureAlgorithm ecdsa-with-SHA256.

3. The issuer field SHALL be a sequence of RelativeDistinguishedName s.

4. The issuer field SHALL have exactly zero or one VendorID value present.

5. The subject field SHALL be a sequence of RelativeDistinguishedName s.

6. The subject field SHALL have exactly zero or one VendorID value present.

7. The issuer and subject fields SHALL match exactly.

8. A ProductID value SHALL NOT be present in either the subject or issuer fields.

9. The algorithm field in subjectPublicKeyInfo field SHALL be the object identifier for prime256v1.

10. The certificate SHALL carry the following Extensions:

a. Basic Constraint extension SHALL be marked critical and have the cA field set to TRUE. The
'pathLen' field MAY be set and if the 'pathLen' is field is present it SHALL be set to 1.

b. Key Usage extension SHALL be marked critical.

i. Both the keyCertSign and cRLSign bits SHALL be set in the KeyUsage bitstring

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 310 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ii. The digitalSignature bit MAY be set in the KeyUsage bitstring

iii. Other bits SHALL NOT be set

c. Subject Key Identifier

11. The certificate MAY also carry the following additional Extensions:

a. Extended Key Usage

b. Authority Key Identifier

c. Any other extension allowed in RFC 5280 where inclusion does not violate size limitations.
These extensions insofar not defined in this specification SHALL be ignored by commission
ers conforming to this specification, but MAY be present to allow flexibility in CA operation.

The PAA certificate presented in the following example is for the issuer of the example PAI certifi
cate from the previous section.

Valid example PAA with associated private key, in X.509 PEM format

-----BEGIN CERTIFICATE-----
MIIBvTCCAWSgAwIBAgIITqjoMYLUHBwwCgYIKoZIzj0EAwIwMDEYMBYGA1UEAwwP
TWF0dGVyIFRlc3QgUEFBMRQwEgYKKwYBBAGConwCAQwERkZGMTAgFw0yMTA2Mjgx
NDIzNDNaGA85OTk5MTIzMTIzNTk1OVowMDEYMBYGA1UEAwwPTWF0dGVyIFRlc3Qg
UEFBMRQwEgYKKwYBBAGConwCAQwERkZGMTBZMBMGByqGSM49AgEGCCqGSM49AwEH
A0IABLbLY3KIfyko9brIGqnZOuJDHK2p154kL2UXfvnO2TKijs0Duq9qj8oYShpQ
NUKWDUU/MD8fGUIddR6Pjxqam3WjZjBkMBIGA1UdEwEB/wQIMAYBAf8CAQEwDgYD
VR0PAQH/BAQDAgEGMB0GA1UdDgQWBBRq/SJ3H1Ef7L8WQZdnENzcMaFxfjAfBgNV
HSMEGDAWgBRq/SJ3H1Ef7L8WQZdnENzcMaFxfjAKBggqhkjOPQQDAgNHADBEAiBQ
qoAC9NkyqaAFOPZTaK0P/8jvu8m+t9pWmDXPmqdRDgIgI7rI/g8j51RFtlM5CBpH
mUkpxyqvChVI1A0DTVFLJd4=
-----END CERTIFICATE-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIGUSyuyuz8VD1gYjFhWXFi8BRoTFZaEpti/SjCerHMxQoAoGCCqGSM49
AwEHoUQDQgAEtstjcoh/KSj1usgaqdk64kMcranXniQvZRd++c7ZMqKOzQO6r2qP
yhhKGlA1QpYNRT8wPx8ZQh11Ho+PGpqbdQ==
-----END EC PRIVATE KEY-----

Human-readable contents of example PAA X.509 certificate

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 5668035430391749660 (0x4ea8e83182d41c1c)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = Matter Test PAA, 1.3.6.1.4.1.37244.2.1 = FFF1
 Validity
 Not Before: Jun 28 14:23:43 2021 GMT
 Not After : Dec 31 23:59:59 9999 GMT
 Subject: CN = Matter Test PAA, 1.3.6.1.4.1.37244.2.1 = FFF1
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 311

 Public-Key: (256 bit)
 pub:
 04:b6:cb:63:72:88:7f:29:28:f5:ba:c8:1a:a9:d9:
 3a:e2:43:1c:ad:a9:d7:9e:24:2f:65:17:7e:f9:ce:
 d9:32:a2:8e:cd:03:ba:af:6a:8f:ca:18:4a:1a:50:
 35:42:96:0d:45:3f:30:3f:1f:19:42:1d:75:1e:8f:
 8f:1a:9a:9b:75
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:1
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 6A:FD:22:77:1F:51:1F:EC:BF:16:41:97:67:10:DC:DC:31:A1:71:7E
 X509v3 Authority Key Identifier:
 keyid:6A:FD:22:77:1F:51:1F:EC:BF:16:41:97:67:10:DC:DC:31:A1:71:7E

 Signature Algorithm: ecdsa-with-SHA256
 30:44:02:20:50:aa:80:02:f4:d9:32:a9:a0:05:38:f6:53:68:
 ad:0f:ff:c8:ef:bb:c9:be:b7:da:56:98:35:cf:9a:a7:51:0e:
 02:20:23:ba:c8:fe:0f:23:e7:54:45:b6:53:39:08:1a:47:99:
 49:29:c7:2a:af:0a:15:48:d4:0d:03:4d:51:4b:25:de

6.2.3. Device Attestation Procedure

The device attestation procedure SHALL be executed by Commissioners when commissioning a
device. It serves to validate whether a particular device is certified for Matter compliance and that
it was legitimately produced by the certified manufacturer. See Section 5.5, “Commissioning Flows”
for the possible outcomes based on whether the Device Attestation Procedure succeeds or fails to
attest the device.

The Device Attestation Certificate Chain MAY be read at any time, either prior to or after receipt of
the AttestationResponse. The Commissionee SHALL make the Certificate Chain available whenever
requested using CertificateChainRequest. If the Commissioner does not already have this informa
tion, to proceed with the validation, it SHALL request the Commissionee’s Device Attestation Certifi
cate Chain using CertificateChainRequest.

The procedure is as follows:

1. The Commissioner SHALL generate a random 32 byte attestation nonce using Crypto_DRBG().

2. The Commissioner SHALL send the AttestationNonce to the Commissionee and request Attesta
tion Information using AttestationRequest.

3. The Commissionee SHALL return the signed Attestation Information to the Commissioner using
AttestationResponse.

After execution of the procedure, the Attestation Information SHOULD be validated using the
checks described in Section 6.2.3.1, “Attestation Information Validation”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 312 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6.2.3.1. Attestation Information Validation

A Commissioner validating the Attestation Information SHOULD record sufficient information to
provide detailed results of the validation outcome to users. Therefore, prior to validating Attesta
tion Information, a Commissioner SHOULD have previously obtained the Device Attestation Certifi
cate chain for the Commissionee, so that the DAC and PAI necessary for the procedure are available.

In order to consider a Commissionee successfully attested, a Commissioner SHALL have success
fully validated at least the following:

• The PAA SHALL be validated for presence in the Commissioner’s trusted root store, which
SHOULD include at least the set of globally trusted PAA certificates present in the Distributed
Compliance Ledger at the issuing timestamp (notBefore) of the DAC.

• The DAC certificate chain SHALL be validated using the Crypto_VerifyChainDER() function, tak
ing into account the mandatory presence of the PAI and of the PAA. It is especially important to
ensure the entire chain has a length of exactly 3 elements (PAA certificate, PAI certificate,
Device Attestation Certificate) and that the necessary format policies previously exposed are
validated, to avoid unauthorized path chaining (e.g., through multiple PAI certificates).

◦ Chain validation SHALL be performed with respect to the notBefore timestamp of the DAC to
ensure that the DAC was valid when it was issued. This way of validating is abided by the
Crypto_VerifyChainDER() function.

◦ Chain validation SHALL include revocation checks of the DAC and PAI, based on the Com
missioner’s best understanding of revoked entities. See Section 6.2.4, “Device attestation
revocation” for an interoperable method of obtaining revocation information in the Device
Attestation PKI.

• The VendorID value found in the subject DN of the DAC SHALL match the VendorID value in the
subject DN of the PAI certificate.

• If the PAA certificate contains a VendorID value in its subject DN, its value SHALL match the
VendorID value in the subject DN of the PAI certificate.

• The Device Attestation Signature (attestation_signature) field from Attestation Response SHALL
be validated:

Success = Crypto_Verify(
 publicKey = Public key from DAC,
 message = Attestation Information TBS (attestation_tbs),
 signature = Device Attestation Signature (attestation_signature)
)

where the fields are encoded as described in Section 11.18.4.7, “Attestation Information”.

◦ The AttestationChallenge SHALL be obtained from a CASE session, resumed CASE session, or
PASE session depending on the method used to establish the secure session within which
device attestation is conducted.

• The AttestationNonce in Device Attestation elements SHALL match the Commissioner’s pro
vided AttestationNonce.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 313

• The Certification Declaration signature SHALL be validated using the Crypto_Verify() function
and the public key obtained from the CSA’s Certificate Authority Certificate.

• The Certification Declaration SHALL be validated:

◦ The vendor_id field in the Certification Declaration SHALL match the VendorID attribute
found in the Basic Information cluster.

◦ The product_id_array field in the Certification Declaration SHALL contain the value of the
ProductID attribute found in the Basic Information cluster.

◦ The Certification Declaration SHALL be considered valid only if it contains both or neither
of the dac_origin_vendor_id and dac_origin_product_id fields.

◦ If the Certification Declaration has both the dac_origin_vendor_id and the dac_origin_produc
t_id fields, the following validation SHALL be done:

▪ The VendorID value from the subject DN in the DAC SHALL match the dac_origin_ven
dor_id field in the Certification Declaration.

▪ The VendorID value from the subject DN in the PAI SHALL match the dac_origin_ven
dor_id field in the Certification Declaration.

▪ The ProductID value from the subject DN in the DAC SHALL match the dac_origin_pro
duct_id field in the Certification Declaration.

▪ The ProductID value from the subject DN in the PAI, if such a ProductID value appears,
SHALL match the dac_origin_product_id field in the Certification Declaration.

◦ If the Certification Declaration has neither the dac_origin_vendor_id nor the dac_origin_pro
duct_id fields, the following validation SHALL be done:

▪ The VendorID value from the subject DN in the DAC SHALL match the vendor_id field in
the Certification Declaration.

▪ The VendorID value from the subject DN in the PAI SHALL match the vendor_id field in
the Certification Declaration.

▪ The ProductID value from the subject DN in the DAC SHALL be present in the produc
t_id_array field in the Certification Declaration.

▪ The ProductID value from the subject DN in the PAI, if such a Product ID is present,
SHALL match one of the values present in the product_id_array field in the Certification
Declaration.

◦ If the Certification Declaration contains the authorized_paa_list field, the following valida
tion SHALL be done:

▪ The Subject Key Identifier (SKI) extension value of the PAA certificate, which is the root
of trust of the DAC, SHALL be present as one of the values in the authorized_paa_list
field.

◦ The certificate_id field SHOULD match the CDCertificateID field found in the entry of the
DeviceSoftwareCompliance schema in the Distributed Compliance Ledger where the entry’s
VendorID, ProductID and SoftwareVersion field match the respective VendorID, ProductID and
SoftwareVersion attributes values found in the Basic Information Cluster. For further clarity,
a scenario where a mismatch is most likely to occur is with devices that have received an
updated firmware but not an updated CD. Also, the Commissioner might not find the combi

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 314 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

nation of VendorID, ProductID and SoftwareVersion fields in the DCL information it has avail
able.

▪ Since it is possible certificate_id does not match the CDCertificateID field due to the
above point, a Commissioner SHOULD NOT reject the Commissionee solely because of
this mismatch. Instead, the Commissioner SHOULD separately check that the reported
SoftwareVersion in the Basic Information Cluster exists as a DeviceSoftwareVersion
Model in the Distributed Compliance Ledger to see if the current version is certified. For
the case of offline commissioning without access to DCL, the Commissioner SHOULD pro
ceed trusting that a valid CD matching the reported VendorID and ProductID at least
ensures the device has been previously certified and SHOULD check the DCL at a later
time to ensure the current SoftwareVersion is also certified.

◦ The firmware_information field in the Attestation Information, if present, SHALL match the
content of an entry in the Distributed Compliance Ledger for the specific device as explained
in Section 6.3.2, “Firmware Information”. If the Commissioner does not support Firmware
Information validation, it MAY skip checking this match.

The order of execution of the above validation steps MAY be optimized by Commissioners. For
example, if some validation steps are deemed by a Commissioner to make the remainder of the
steps unnecessary because they have no chance of succeeding, then the validation steps could be
ordered such that superfluous steps or rounds trips are omitted.

6.2.4. Device attestation revocation

The Distributed Compliance Ledger contains a trusted list of revocation distribution points for the
Device Attestation PKI. The schema is documented in Section 11.23.8, “Device Attestation PKI Revo
cation Distribution Points Schema”.

The format of certificates in the Device Attestation PKI is constrained to maximum sizes and a spe
cific format to reduce the complexity and system requirements for Device and Commissioner
implementations. Therefore, there are no requirements for common revocation information, such
as cRLDistributionPoints (see RFC 5280 section 4.2.1.13) to be included. Furthermore, OCSP (see
RFC 6960) is not used in order to allow Commissioner implementations which rely on previously
cached revocation information, or which do not have concurrent access both to the public Internet
and to the Commissionee when commissioning. The Device Attestation PKI Revocation Distribution
Points Schema in the Distributed Compliance Ledger is thus the main method of delivering interop
erable and universally accessible revocation information for Matter Commissioners and Adminis
trators.

The revocation information MAY be partitioned over multiple Device Attestation PKI Revocation
Distribution Points Schema entries, as the provider of such information deems fit. In other words,
there may be more than one record to consult to determine revocation status of a given certificate.

If a DAC, PAI or PAA certificate contains the cRLDistributionPoints (see RFC 5280 section 4.2.1.13)
extension, it SHALL be ignored, since the Device Attestation PKI Revocation Distribution Points
Schema in the Distributed Compliance Ledger is the only supported method of determining up-to-
date revocation status.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 315

6.2.4.1. Conceptual algorithm for revocation set construction

To build the list of revoked entities for a given PAI or PAA certificate authority, the table described
in the Device Attestation PKI Revocation Distribution Points Schema can be used with a conceptual
algorithm, which can then be used at time of revocation checks.

To build an oracle of revoked entities, the conceptual algorithm is as follows:

• Inputs:

◦ List of all entries in the Device Attestation PKI Revocation Distribution Points table of the
Distributed Compliance Ledger.

• Outputs:

◦ For each tuple of (CertificateAuthorityKeyIdentifier, CertificateAuthorityName), a set of
RevokedEntitySerialNumber.

▪ CertificateAuthorityKeyIdentifier is the Subject Key Identifier of a PAA or PAI as an
octet string (e.g. ASN.1 OCTET STRING, or protobuf bytes).

▪ CertificateAuthorityName is the X.500 Name associated with the PAA or PAI whose revo
cation information is being aggregated, as it appears in the Issuer field of a certificate it
issues.

▪ RevokedEntitySerialNumber is a serial number containing a large integer matchable to an
ASN.1 INTEGER as seen in the CertificateSerialNumber field of an RFC 5280-compliant cer
tificate.

▪ NOTE: While the algorithm here does not mention the recording of any metadata per
revoked entity to simplify illustration, implementers MAY do so to allow richer diagnos
tics information to be provided to end-users if a revoked entity is found.

• Algorithm:

◦ For each entry in the Device Attestation PKI Revocation Distribution Points

1. If entry.RevocationType is not equal to 1 (not of type RFC 5280 CRL), stop further process
ing of the entry, and continue to next entry, as it is a format not defined in this Specifica
tion.

2. Parse the certificate found entry.CRLSignerCertificate from its PEM encoding, keeping it
as CRLSignerCertificate.

3. If entry.IsPAA is TRUE:

a. If CRLSignerCertificate encoded a VendorID, validate that it matches entry.VendorID.
In case of mismatch, stop further processing of the entry, and continue to next entry,
if any.

4. Else if entry.IsPAA is FALSE:

a. Validate that the CRLSignerCertificate 's VendorID, matches entry.VendorID. In case of
mismatch, stop further processing of the entry, and continue to next entry, if any.

b. If CRLSignerCertificate encoded a ProductID, validate that it matches entry.Produc
tID. In case of mismatch, stop further processing of the entry, and continue to next
entry, if any.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 316 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

5. Validate the certification path containing CRLSignerCertificate, using the approved PAAs
currently in force in the Distributed Compliance Ledger as the trust anchors. In case of
failure, stop further processing of the entry, and continue to next entry, if any.

6. Obtain the CRL at entry.DataUrl, keeping it as CRLFile.

7. Perform CRLFile validation:

a. Validate that the crlExtensions field of CRLFile has an Authority Key Identifier
extension matching the CRLSignerCertificate 's Subject Key Identifier. In case of
mismatch, stop further processing of the entry, and continue to next entry, if any.

b. If more than one entry exists in the Distributed Compliance Ledger where the
entry.VendorID and entry.IssuerSubjectKeyID are matching, then:

i. Validate that the CRLFile has the Issuing Distribution Point critical CRL extension
present (see RFC 5280 section 5.2.5), and then:

A. Validate that the distributionPoint field of the extension has a single General
Name of type uniformResourceIdentifier.

B. Validate that the uniformResourceIdentifier in the GeneralName field matches
exactly, byte-for-byte, the value found in the entry.DataUrl field.

c. If any of above validations fail, stop further processing of the entry, and continue to
next entry, if any.

8. Validate the CRL according to Section 6.3 of RFC 5280, using the certificate specified in
CRLSignerCertificate as the trust anchor. Delta CRLs are not supported, so the "use-
deltas" input variable SHALL be false. Note that since the conceptual algorithm in this
section constructs a revocation set in advance without access to the candidate certificate,
validations from Section 6.3 of RFC 5280 SHALL be adapted by the implementer, and
implementations MAY use any algorithm that conforms to the algorithm equivalence
clause of Section 6.3. In case of failure, stop further processing of the entry, and continue
to next entry, if any.

9. Assign the CRLFile 's issuer field to variable CertificateAuthorityName.

10. For each entry in the CRLFile 's CertificateList.tbsCertList.revokedCertificates
sequence:

a. If the entry in revokedCertificates has the certificateIssuer entry extension and the
CertificateAuthorityName variable does not match the distinguished name found in
the certificateIssuer extension, ignore this entry.

b. Verify that the certificate chain of the entry is linking to the same PAA that issued the
CRLSignerCertificate for this entry. If the PAAs under which were issued the certifi
cate and the CRLSignerCertificate are different, ignore the entry.

c. Access the correct revocation set by the tuple of (CertificateAuthorityKeyIdentifier
:= entry.IssuerSubjectKeyID, CertificateAuthorityName). If the set is missing, create it.

d. Set the RevokedEntitySerialNumber to the revoked certificate’s userCertificate field
(which is a serial number).

e. Insert the RevokedEntitySerialNumber entry in the revocation set found earlier.

◦ Optionally record metadata to record when each revocation distribution point requires an

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 317

update.

After execution of this algorithm, an oracle exists which MAY then be used to determine the revoca
tion of any PAI or DAC certificate.

6.2.4.2. Determining Revocation Status of an Entity

During the device attestation procedure, a Commissioner SHALL use a revocation set it maintains
to determine whether the PAI and DAC certificates are revoked, unless the Commissioner does not
have access to the revocation set due to a transient lack of access to necessary resources it uses to
maintain the revocation set. If the revocation set was unavailable, the Commissioner SHOULD
notify the user of the fact that commissioning could succeed for some non-genuine devices, due to
lack of access to some of the necessary information.

If the revocation set is available but no updated CRL is available beyond the timestamp in the "nex
tUpdate" field in the PAI or the PAA CRL, the Commissioner MAY assume that no updated revoca
tion information is being provided by the CA. The Commissioner SHOULD notify the user of the fact
that commissioning could succeed for some non-genuine devices, due to lack of access to some of
the necessary information.

The revocation set SHOULD at least include the Device Attestation PKI Revocation Distribution
Points Schema of the Distributed Compliance Ledger.

Since there may be multiple formats for revocation information developed over time, the algorithm
in this section is purposefully described in generic terms that would allow expansion to future for
mats.

The following conceptual algorithm is an example of how to determine whether a DAC or PAI cer
tificate is "revoked" or "not revoked":

• Inputs:

◦ The AuthorityKeyIdentifier extension of the certificate being queried.

◦ The issuer name field of the certificate being queried.

◦ The serialNumber field of the certificate being queried.

◦ A conceptual RevocationDataSet indexed by (CertificateAuthorityKeyIdentifier, Certifi
cateAuthorityName), yielding a set of RevokedEntitySerialNumber.

▪ CertificateAuthorityKeyIdentifier is the Subject Key Identifier of a PAA or PAI as an
octet string (e.g. ASN.1 OCTET STRING, or protobuf bytes).

▪ CertificateAuthorityName is the X.500 Name associated with the PAA or PAI whose revo
cation information is being looked-up.

▪ RevokedEntitySerialNumber is a serial number containing as an ASN.1 INTEGER as seen in
the CertificateSerialNumber field of an RFC 5280-conformant certificate.

▪ See Section 6.2.4.1, “Conceptual algorithm for revocation set construction” for a usable
method to generate this dataset.

• Outputs:

◦ A boolean value IsRevoked, where true indicates that the entity is revoked, and false indi

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 318 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

cates that it is not revoked.

• Algorithm:

1. Initialize IsRevoked to FALSE.

2. Obtain the correct RevocationSet by indexing the RevocationDataSet by the AuthorityKeyIden
tifier and issuer of the certificate whose status is being determined.

3. If no matching RevocationSet is found, return immediately.

4. If a matching RevocationSet is found, determined if serialNumber is a member of the set.

a. If the serialNumber is part of the set, set IsRevoked to TRUE.

The certificate in question is deemed revoked if IsRevoked was TRUE after execution of the above
algorithm.

6.3. Certification Declaration
A Certification Declaration (CD) is a cryptographic document that allows a Matter device to assert
its protocol compliance. It is encoded in a CMS format described in RFC 5652. Upon successful com
pletion of certification by a device type, Connectivity Standards Alliance creates the CD for that
device type so that it can be included in the device firmware by the manufacturer.

6.3.1. Certification Declaration (CD) Format

The Certification Declaration is a CMS(RFC5652)-encoded single-signature envelope whose message
is a TLV-encoded certification-elements structure with an anonymous tag:

Certification Elements TLV structure

certification-elements => STRUCTURE [tag-order]
{
 format_version [0] : UNSIGNED INTEGER [range 16-bits]
 vendor_id [1] : UNSIGNED INTEGER [range 16-bits]
 product_id_array [2] : ARRAY [length 1..100] OF UNSIGNED INTEGER [range 16-
bits]
 device_type_id [3] : UNSIGNED INTEGER [range 32-bits]
 certificate_id [4] : STRING [length 19]
 security_level [5] : UNSIGNED INTEGER [range 8-bits]
 security_information [6] : UNSIGNED INTEGER [range 16-bits]
 version_number [7] : UNSIGNED INTEGER [range 16-bits]
 certification_type [8] : UNSIGNED INTEGER [range 8-bits]
 dac_origin_vendor_id [9, optional] : UNSIGNED INTEGER [range 16-bits]
 dac_origin_product_id [10, optional] : UNSIGNED INTEGER [range 16-bits]
 authorized_paa_list [11, optional] : ARRAY [length 1..10] OF OCTET STRING [
length 20]
}

The Certification Elements TLV is encoded with data to form a cd_content message to be signed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 319

cd_content =
{
 format_version (0) = 1,
 vendor_id (1) = <vendor_id>,
 product_id_array (2) = <array of product_id values>,
 device_type_id (3) = <primary device type identifier>,
 certificate_id (4) = <globally unique certificate ID issued by CSA>,
 security_level (5) = 0,
 security_information (6) = 0,
 version_number (7) = <version_number>,
 certification_type (8) = <certification_type>,
 dac_origin_vendor_id (9) = <Vendor ID associated with the DAC, optional>,
 dac_origin_product_id (10) = <Product ID associated with the DAC, optional>,
 authorized_paa_list (11) = <array of PAA SKIs, optional>
}

The format_version field SHALL contain the value 1.

The vendor_id field SHALL contain the Vendor ID associated with the Certification Declaration.

The product_id_array field SHALL contain an array of a number of Product IDs which are covered
by the same certification (e.g. certification by similarity). All other fields of a Certification Declara
tion apply to all products in this array.

The device_type_id field SHALL contain the device type identifier for the primary function of the
device. For example, if device_type_id is 10 (0x000A), it would indicate that the device has a pri
mary function of a Door Lock device type. See also the _T subtype in Section 4.3.1.3, “Commissioning
Subtypes”.

The device_type_id field in a given Certification Declaration SHOULD match the device_type_id
value in the DCL entries associated with the VendorID and ProductID combinations present in that
Certification Declaration.

The certificate_id field SHALL contain a globally unique serial number allocated by the CSA for
this Certification Declaration.

The security_level and security_information fields are reserved for future use and SHALL be
ignored at read time, and set to zero at issuance time.

The version_number field SHALL contain a version number assigned by the CSA that matches the
Vendor ID and Product ID used in a DeviceSoftwareVersionModel entry in the Distributed Compli
ance Ledger matching the certification record associated with the product presenting this CD. The
value of the version_number is not meant to be interpreted by commissioners and SHALL be
recorded as assigned.

The certification_type field SHALL contain the type of certification for this CD, interpreted accord
ing to the following table:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 320 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

certification_type meaning

0 used for development and test purposes

1 provisional - used for a device when going into
certification testing, or to allow production and
distribution to occur in parallel with certifica
tion (with potential software fixes yielding a
higher SoftwareVersion which gets certification)

2 official - allocated after passing certification

other values reserved

For details about the usage of the certification_type field in the Device Attestation Procedure, see
failure of Device Attestation Procedure.

The dac_origin_vendor_id field, if present, SHALL contain the Vendor ID value expected to be found
in the Device Attestation Certificate’s subject DN.

The dac_origin_product_id field, if present, SHALL contain the Product ID value expected to be
found in the Device Attestation Certificate’s subject DN.

The dac_origin_vendor_id and dac_origin_product_id SHALL only be present together.

The use of the dac_origin_vendor_id and dac_origin_product_id fields allows for a target of the
device attestation procedure to have a manufacturing provenance which differs from the entity
that obtains the ultimate certification. If present, they tie a given Certification Declaration to an
original manufacturer’s device attestation chain of trust, so that DACs MAY be issued at manufac
turing time without a priori knowledge of the ultimate vendor.

The optional authorized_paa_list field, if present, SHALL contain a list of one or more Product
Attestation Authority (PAA) which is/are authorized (by the device manufacturer) to sign the Prod
uct Attestation Intermediate (PAI) Certificate which signs the Device Attestation Certificate for a
product carrying this Certification Declaration. Each such PAA is identified by the Subject Key Iden
tifier (SKI) extension value of its certificate.

Any context-specific tags not listed in the above schema for Certification Elements SHALL be
reserved for future use, and SHALL be silently ignored if seen by a Commissioner which cannot
understand them.

See Section 6.2.3, “Device Attestation Procedure” for more details about usage of the Certification
Declaration fields.

Certification Declaration CMS ASN.1 Encoding Format

CertificationDeclaration ::= SEQUENCE {
 version INTEGER (v3(3)),
 digestAlgorithm OBJECT IDENTIFIER sha256 (2.16.840.1.101.3.4.2.1),
 encapContentInfo EncapsulatedContentInfo,
 signerInfo SignerInfo }

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 321

EncapsulatedContentInfo ::= SEQUENCE {
 eContentType OBJECT IDENTIFIER pkcs7-data (1.2.840.113549.1.7.1),
 eContent OCTET STRING cd_content }

SignerInfo ::= SEQUENCE {
 version INTEGER (v3(3)),
 subjectKeyIdentifier OCTET STRING,
 digestAlgorithm OBJECT IDENTIFIER sha256 (2.16.840.1.101.3.4.2.1),
 signatureAlgorithm OBJECT IDENTIFIER ecdsa-with-SHA256 (1.2.840.10045.4.3.2),
 signature OCTET STRING }

The Certification Declaration encoding rules:

1. The format SHALL only support CMS version v3.

2. The digestAlgorithm SHALL use the sha256 algorithm.

3. The signatureAlgorithm SHALL use the ecdsa-with-SHA256 (ECDSA with SHA256) and secp256r1
curve, as defined in Section 2.4.2 of SEC 2.

4. The eContentType SHALL use the pkcs7-data type.

5. The subjectKeyIdentifier SHALL contain the subject key identifier (SKI) of a well-known Con
nectivity Standards Alliance certificate, that was used to generate the signature. The format of
the key identifiers supported is available as part of the Certification Policy.

Note that Certification Declarations SHALL NOT be generated by any Node, but rather, they SHALL
be stored and transmitted to a Commissioner by a Commissionee during the conveyance of the
Attestation Information in response to an Attestation Request command.

See Section F.1, “Certification Declaration CMS test vector” for a complete example of generating a
Certification Declaration.

6.3.2. Firmware Information

Firmware Information is an optional component of the Device Attestation Information (see Section
6.2.3, “Device Attestation Procedure”).

Firmware Information MAY contain one or more Firmware Digests that correspond to the compo
nents in the firmware that have been measured and recorded during the boot process (e.g., boot
loader, kernel, root filesystem, etc), and MAY contain other metadata. A Firmware Digest SHALL
either represent a hash of the corresponding firmware layer or a hash of the signed manifest that
was used to validate the corresponding firmware layer during secure boot. An implementation
MAY choose to hash the measurements of all components into a single hash and include only that
hash in Firmware Information.

A device MAY report Firmware Information containing its firmware digests only if it implements a
secure subsystem that protects the device attestation private key and is able to securely collect and
report firmware digests as shown in Figure 37, “Illustration of the measured boot process”. This
process is known as "measured boot".

Ideally, the measured boot process SHOULD be rooted in silicon such as a boot ROM, similar to the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 322 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

secure boot process found in many systems-on-chip (SoCs). Since many SoCs and microcontrollers
are unable to perform measured boot in hardware, the process SHOULD start at the earliest
firmware component possible (for example, at the bootloader shown in the figure below). In this
case, this firmware component is not measured and in fact, it is the root for measurement. There
fore, it SHALL be resistant to attacks compromising subsequent firmware components (e.g., the
ROM must verify its authenticity (secure boot) or it may be placed in a locked partition at the fac
tory that cannot be updated by software in the field).

Figure 37. Illustration of the measured boot process

The device secure subsystem SHALL use the device attestation private key to sign attestation-ele
ments and NOCSR-elements. The device secure subsystem SHALL fill the attestation-elements fields
using information compiled into its image or generated during the measured boot process. The
device secure subsystem SHALL validate all signing requests so that if the device software, but not
its secure subsystem, gets compromised it cannot act as a signing oracle to sign Attestation Informa
tion Responses with fake Firmware Digests.

The firmware_information field in attestation-elements SHALL NOT be generated by devices that do
not implement a separate secure subsystem, in software or hardware, which maintains and con
trols the use of the device attestation private key.

For devices that support secure boot, it is straightforward to add support for measured boot. Specif
ically, the hashes of the different firmware components that are already generated and verified
sequentially during secure boot SHALL be collected and stored for reporting. Devices that do not
support secure boot MAY implement measured boot by generating the hashes in software during
the boot process implementing the root for measurement in the earliest firmware component.

If a device that chooses to send Firmware Digests and which supports an industry-standard mea
sured boot architecture and which can generate signed firmware attestation reports, the secure
subsystem in the device MAY validate the firmware attestation reports locally and SHALL report
the raw firmware digests in attestation-elements so that the firmware_information field in attesta
tion-elements has the same values in all devices of the same model that run the specific Software
Image.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 323

Firmware Digests SHALL NOT be reported by devices that implement a single firmware component
in the boot chain, because there is nothing to measure and report subsequently, unless they have
support for measured boot built in the device’s boot ROM.

Commissioners MAY use the reported firmware information to confirm that the firmware version
is authorized to run on the device, that it has not been revoked, or that it does not contain known
vulnerabilities. Commissioners and Administrators that choose to verify this information SHOULD
refer to canonical databases, such as the Distributed Compliance Ledger (see Section 11.23, “Distrib
uted Compliance Ledger”) to validate that the reported firmware information matches what is
expected for an authorized Software Image associated with a given Certification Declaration. The
firmware information, when validated, SHALL be validated as an opaque well-known octet string.
Internal semantic validation MAY be applied for error-reporting, but the exact format is out of the
scope of this specification.

In cases where a Commissioner or Administrator detects such an invalid or problematic firmware
version, Commissioners and Administrators MAY, after consultation with the user, refuse to com
mission the device, provide it with operational credentials, or otherwise operate it, until the
firmware has been updated, to avoid putting the user at risk from compromised software.

6.3.3. Firmware information validation examples

Below is an illustrative example of the Commissioner actions to validate the firmware information.

1. Retrieve the firmware_information field from attestation-elements

2. Retrieve all Distributed Compliance Ledger DeviceSoftwareVersionModel entries for the Com
missionee’s Vendor ID and Product ID.

3. Verify that there is a valid, non-revoked, entry where the FirmwareInformation field exactly
matches the firmware_information field in attestation-elements.

4. If verification fails, report error to the user

5. If verification succeeds, proceed with device commissioning

Below is an example of the corresponding Device actions. For illustrative purposes, it is assumed
that the device implements a secure subsystem that maintains the private device attestation key
and signs attestation-elements using this key but it does not have direct hardware support for mea
sure boot. This is expected to be the common case for many devices covered by this version of the
specification. Consequently, the measurement process can only start from the bootloader shown in
the figure above.

1. The device bootloader produces a measurement of the OS kernel using a supported hash algo
rithm from RFC 5912 and delivers it to the secure subsystem.

2. The secure subsystem receives the measurement and stores in a location inaccessible to the OS.

3. The OS kernel produces a hash of the root filesystem and delivers the measurement to the
secure subsystem.

4. When the secure subsystem is asked to sign an attestation-elements structure using its private
device attestation key, it generates two FirmwareDigests or one combined FirmwareDigest from
these measurements, fills the firmware_information field in attestation-elements using these

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 324 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

measurements, fills the CD blob compiled into the secure environment and signs the attestation-
elements structure.

The Device Vendor is responsible to provide the FirmwareInformation field when a new Software
Image entry is reported in the corresponding Distributed Compliance Ledger entry.

Below is an exemplary ASN.1 schema for an encoding scheme that could be used to encode
firmware information.

Firmware Information encoding example

HashAlgorithm ::= SEQUENCE {
 id OBJECT IDENTIFIER,
 params ANY OPTIONAL
}

FirmwareDigest ::= SEQUENCE {
 digestAlgorithm HashAlgorithm,
 digestHash OCTET STRING
}

FirmwareInformation ::= SEQUENCE {
 firmwareDigests SEQUENCE OF FirmwareDigest
}

-- Example HashAlgorithm id
id-sha256 OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 csor(3) nistAlgorithms(4) hashalgs(2) 1
}

-- Below is an example value for the above exemplary FirmwareInformation

firmwareInformation FirmwareInformation ::= {
 -- The firmwareDigests contain two values, for two separate components.
 firmwareDigests {
 {
 digestAlgorithm {
 id id-sha256
 },
 digestHash '00112233445566778899AABBCCDDEEFF00112233445566778899AABBCCDDEEFF'H
 },
 {
 digestAlgorithm {
 id id-sha256
 },
 digestHash '101112131415161718191A1B1C1D1E1F101112131415161718191A1B1C1D1E1F'H
 }
 }
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 325

The above example would yield the following DER-encoded octet string:

30663031 300d0609 60864801 65030402 01050004 20001122 33445566 778899AA
BBCCDDEE FF001122 33445566 778899AA BBCCDDEE FF303130 0D060960 86480165
03040201 05000420 10111213 14151617 18191A1B 1C1D1E1F 10111213 14151617
18191A1B 1C1D1E1F

6.4. Node Operational Credentials Specification

6.4.1. Introduction

The Node Operational credentials are a collection of credentials to enable a Node to identify itself
within a Fabric. The Node Operational credentials are distinct from the Device Attestation creden
tials. The Node Operational credentials are installed during Commissioning.

The Node Operational credentials include the following items:

• Node Operational Key Pair

• Node Operational Certificate (NOC)

• Intermediate Certificate Authority (ICA) Certificate (optional)

• Trusted Root Certificate Authority (CA) Certificate(s)

Each Node in a Fabric is identified with a Node Operational Identifier. In order to securely identify
the Node, the Node Operational Identifier is bound to the Node Operational Public Key as both are
contained within the signed NOC. The Node Operational Identifier is a constituent part of the sub
ject field of the NOC, according to the rules described in Matter DN Encoding Rules. A connecting
Node can attest to the validity of the Node Operational Public Key and the Node Operational Identi
fier in a received NOC because the NOC is signed by a CA that the connecting Node trusts. Used with
Certificate Authenticated Session Establishment (CASE), these data provide the basis for secure
communications on the Fabric.

6.4.2. Node Operational Credentials Management

Commands from the Node Operational Credentials Cluster are used to install and update Node
Operational credentials.

A Node receives its initial set of Node Operational credentials through the AddNOC command when it
is commissioned onto a Fabric by a Commissioner.

Once installed, Node Operational credentials MAY be updated by an Administrator with the appro
priate privileges using the UpdateNOC command.

Once installed, Node Operational credentials MAY be removed by an Administrator with the appro
priate privileges using the RemoveFabric command. The removal uses RemoveFabric, since the Fabric
association for the given Node Operational credentials may underpin a variety of bindings and
other fabric-scoped configuration, which would remain in an inconsistent state if the Node Opera
tional credentials alone were removed, as opposed to the entire associated Fabric and data.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 326 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6.4.3. Node Operational Identifier Composition

The Node Operational Identifier is used for Node discovery and network address resolution within
a network segment. The FabricID portion of the Node Operational Identifier serves a scoping pur
pose to identify disjoint operational Fabrics within a given network segment. The NodeID portion of
the Node Operational Identifier is the logical addressing identifier used:

• within Message-layer messages for logical addressing (see Section 4.4, “Message Frame Format”)

• within Data Model bindings to express data subscription relationships between Nodes (see Sys
tem Model)

• within Access Control List Entries to refer to individual Nodes as access control grantees (sub
jects) when CASE sessions are used for communication (see Access Control Cluster)

In addition to the FabricID and NodeID, a Node Operational Identifier MAY include at most three 32-
bit CASEAuthenticatedTag (1.3.6.1.4.1.37244.1.6) attributes used to tag the operational identifier to
implement access control based on CASE Authenticated Tags.

The Fabric ID is a 64-bit value that identifies the Fabric and is scoped to a particular Root CA. For
example, two fabrics with the same Fabric ID are not equivalent unless their Root CA are the same.
The Fabric ID MAY be chosen randomly or algorithmically but it SHALL be allocated uniquely
within the set of all possible Fabric IDs for which a given Root CA will sign operational certificates.
Before allocating the Fabric ID, the Commissioner SHOULD attempt to ensure that an existing Fab
ric is reused and joined, if any is applicable from the perspective of the Commissioner in the cur
rent commissioning context. The method used for determining local Fabric ID existence is vendor-
specific.

The Node ID is a 64-bit value that identifies a Node within a Fabric. The Node ID MAY be chosen
randomly or algorithmically but it SHALL be allocated uniquely within the Fabric before it is given
to the Node or otherwise used. The Node ID SHALL be chosen, by a Commissioner, at the time of
Node commissioning.

The uniqueness constraint for Fabric ID is only required to be ensured within the scope of the Root
CA serving the Commissioner.

When a Fabric is removed, through the RemoveFabric command or through a factory reset, the
Node Operational Identifier, and the FabricID and NodeID that comprise it, SHALL be permanently
removed from the Node’s memory.

6.4.4. Node Operational Key Pair

A Node Operational Key Pair, comprised of a Node Operational Public Key and a Node Operational
Private Key, is created using the Crypto_GenerateKeypair function. A new Node Operational Key Pair
is generated for each Commissioning Session in accordance with security requirements.

6.4.5. Node Operational Credentials Certificates

All certificates in the Node Operational credentials are X.509v3 certificates compliant with
RFC 5280, encoded in such a way that they respect the constraints in the Operational_Certificate
section. They may be encoded as X.509v3 certificates or Matter Operational Certificates ("Matter

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 327

Certificates" thereafter). The signature field of a certificate SHALL be calculated using the X.509v3
encoding of the certificate.

6.4.5.1. Node Operational Certificate (NOC)

The NOC SHALL be issued by either a Root CA trusted within the Fabric or by an Intermediate Cer
tificate Authority (ICA) whose ICA certificate is directly issued by such a Root CA. The NOC is bound
to the Node Operational Key Pair through the Node Operational Credential Signing Request
(NOCSR).

The validity period specifies the time period for which a NOC is valid. For constrained or sleepy
devices that lack accurate time, enforcement of an NOC’s validity period MAY be omitted.

6.4.5.2. Intermediate CA (ICA) Certificate

In the case where an intermediate CA (ICA) issues the NOC, the ICA certificate is used to attest to the
validity of the NOC. The Root CA certificate associated with the issuer of the ICA certificate is used
in turn to attest to the validity of the ICA certificate.

6.4.5.3. Trusted Root CA Certificates

Each Node has one or more trusted Root CA certificates in its Node Operational credentials that it
uses to verify ICA certificates and Node Operational Certificates presented by other Nodes, treating
them as trust anchors as described in RFC 5280. A Root CA certificate is self-signed. They are not
verified but rather trusted because they were provisioned by a trusted Commissioner.

In the case where a Root CA issues the NOC, the Root CA certificate is used to attest to the validity of
the NOC.

The trusted Root CA certificates that a Device trusts when the Device is verifying operational certifi
cates are those stored in the TrustedRootCertificates attribute of that Device’s Node Operational
Credentials cluster.

A device MAY have Root CA certificates that it trusts for purposes other than for operational creden
tial verification. These certificates SHALL NOT appear in any Node’s TrustedRootCertificates
attribute of the Node Operational Credentials cluster. The certificates configured in that cluster
SHALL only be added during the commissioning process by the Commissioner, or during root rota
tion operations by an Administrator already trusted by the Node. Nodes SHALL NOT modify the
TrustedRootCertificates attribute outside of the processing of Node Operational Credentials cluster
commands.

The figures below show the Node Operational Certificate hierarchies, with and without optional
ICAC.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 328 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 38. Node Operational Certificate PKI hierarchy with optional ICAC

Figure 39. Node Operational Certificate PKI hierarchy without optional ICAC

6.4.6. Node Operational Credentials Procedure

The following procedure is used by a Node to obtain an Operational Credential. This procedure is
part of Commissioning.

6.4.6.1. Node Operational Certificate Signing Request (NOCSR) Procedure

After the Commissioner validates Device Attestation Information, the following procedure is used
to generate a Node Operational Key Pair and obtain the NOCSR.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 329

1. The Commissioner SHALL generate a random 32 byte nonce named CSRNonce using Crypto_
DRBG().

2. The Commissioner SHALL send the CSRNonce to the Node and request NOCSR Information
using the CSRRequest Command.

a. The Node SHALL create a new candidate Node Operational Key Pair, using Crypto_Gener
ateKeyPair(), valid for the duration of the Fail-Safe Context currently in progress.

b. The Node SHOULD verify that the newly generated candidate Node Operational Key Pair
does not match any other existing Node Operational Key Pair on the device. If such a key col
lision was to be found, it would indicate a key pair that was not properly randomly gener
ated. The procedure SHALL fail if such a collision is detected. See CSRRequest for the error
generated in that situation.

c. The candidate Node Operational Key Pair SHALL only be committed to persistent storage
upon successful execution of the next AddNOC Command executed with a Node Operational
Certificate whose public key matches the candidate key.

d. The Node SHALL create a Certificate Signing Request (CSR) by following the format and pro
cedure in PKCS #10, which includes a signature using the Node Operational Private Key (see
RFC 2986 section 4.2).

e. The CSR’s subject MAY be any value and the device SHOULD NOT expect the final opera
tional certificate to contain any of the CSR’s subject DN attributes.

3. The Node SHALL generate and return the NOCSR Information (see Section 11.18.4.9, “NOCSR
Information” for encoding) to the Commissioner using the CSRResponse Command. The NOCSR
Information includes a signature using the Device Attestation Private Key.

Node Operational CSR Information Validation

1. The Commissioner SHALL validate the Device Attestation Signature (attestation_signature)
field from CSRResponse Command:

Success = Crypto_Verify(
 publicKey = Public key from DAC,
 message = NOCSR Information TBS (nocsr_tbs),
 signature = Device Attestation Signature (attestation_signature)
)

where the fields are encoded as described in Section 11.18.4.9, “NOCSR Information”.

◦ The AttestationChallenge SHALL be obtained from a CASE session, resumed CASE session, or
PASE session depending on the method used to establish the secure session within which
device attestation is conducted.

◦ The CSR Nonce in NOCSR Information SHALL match the Commissioner’s CSR Nonce.

2. The inner signature in the PKCS#10 csr sub-field of the CSRResponse Command's NOCSRElements
field SHALL be verified, per the definition of CSR signatures in PKCS #10.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 330 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 40. Node Operational Credentials flow

6.4.7. Node Operational Certificate Signing Request (NOCSR)

A Node creates a NOCSR in response to the Commissioner, so that the Commissioner can request a
NOC on the Node’s behalf from its trusted Certificate Authority. The CSR itself SHALL follow the
encoding and rules from PKCS #10, with the minimum attributes shown in the example below.

Note that the subject field MAY be any value.

NOCSR

Certificate Request:
 Data:
 Version: 1 (0x0)
 Subject:
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:12:3b:90:f5:.......

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 331

 ASN1 OID: prime256v1
 NIST CURVE: P-256
 Attributes:
 Requested Extensions:
 Signature Algorithm: ecdsa-with-SHA256
 30:46:02:21:00:95:ff:......

6.4.8. Node Operational Certificate Renewal

A NOC can be renewed by an Administrator (a Node that has Administer privileges on the Node to
be updated). The Administrator triggers the process by sending an CSRRequest Command.

6.4.9. Node Operational Certificate Revocation

A Node’s access to other Nodes can be revoked by removing the associated Node ID from Access
Control Entry subjects where it appears. This action is taken by an Administrator which has the
privilege to update the Access Control Cluster for its Nodes.

6.4.10. Security Considerations

A NOC is a Node’s credential to operate on a Fabric. It SHALL be protected against the following
threats:

1. The Node Operational Private Key SHALL be protected from unauthorized access.

2. The Node Operational Private Key SHOULD never leave the device.

3. The NOC SHALL NOT contain information that may violate the user’s privacy.

4. The NOC SHALL be wiped if the Node is factory reset.

6.5. Operational Certificate Encoding

6.5.1. Introduction

This section details the Matter certificate data structure (hereafter "Matter certificate"), a specific
encoding that is sometimes used as a compact alternative to the standard X.509 certificate format
[RFC 5280] for bandwidth-efficient transmission. A Node Operational Certificate (NOC), Intermedi
ate CA certificate and Root CA certificate MAY all be encoded as a Matter certificate.

To compress the structure more efficiently than an X.509 certificate, a Matter certificate SHALL be
encoded with the Matter TLV structured data interchange language [Appendix A, Tag-length-value
(TLV) Encoding Format] instead of the ASN.1 Distinguished Encoding Rules (DER) [X.690].

This section provides a technical specification of the structure of data comprising a Matter certifi
cate with accompanying requirements for their semantic validation, and their conversion to and
from X.509 certificates. In some cases, as noted, the limitations on the semantic interpretation of
parts of a Matter certificate follow from limitations applied by [RFC 5280].

A certificate comprises a record of the following conceptual fields:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 332 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Certificate Text
 Version Number
 Serial Number
 Signature Algorithm ID
 Issuer Name
 Validity period
 Not Before
 Not After
 Subject name
 Subject Public Key Info
 Public Key Algorithm
 Subject Public Key
 Issuer Unique Identifier
 Subject Unique Identifier
 Extensions
Certificate Signature Algorithm
Certificate Signature

6.5.1.1. ASN.1 Object Identifiers (OID)

Several important components of X.509 certificates follow the pattern commonly used in ASN.1
data models where some types are constructed with an ASN.1 object identifier (OID) to identify
each variant. For example, the cryptographic algorithm used in the digital signature is identified by
its OID.

Matter certificates do not use ASN.1 OIDs. Instead, each valid ASN.1 OID SHALL be mapped to a
Matter TLV tag within its reference category. Each reference category defines the context of the
Matter tag, and tag values are assigned to the reference categories according to the type of fields
where they can appear in X.509 certificates.

6.5.2. Matter certificate

A Matter certificate encodes a subset of the object identifiers (OIDs) specified in X.509. Only some
attribute types for relative distinguished names are valid, only certain cryptographic algorithms
(corresponding to the algorithms as defined in Chapter 3, Cryptographic Primitives) are used, and
only a limited set of extensions are used. Therefore, every Matter certificate can be represented as a
corresponding X.509 certificate. However, the converse is not true; not every X.509 certificate can
be represented as a Matter certificate.

The signature included in a Matter certificate is the signatureValue of the corresponding X.509 cer
tificate, not a signature of the preceding Matter TLV data in the Matter certificate structure. Accord
ingly, validating the signature in a Matter certificate entails its logical conversion to the correspond
ing X.509 certificate to recover the original tbsCertificate of the basic syntax signed by the Certifi
cate Authority (CA).

matter-certificate [anonymous] => STRUCTURE [tag-order]
{
 serial-num [1] : OCTET STRING [length 0..20],

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 333

 sig-algo [2] : signature-algorithm,
 issuer [3] : LIST [length 1..] OF dn-attribute,
 not-before [4] : UNSIGNED INTEGER [range 32-bits],
 not-after [5] : UNSIGNED INTEGER [range 32-bits],
 subject [6] : LIST [length 1..] OF dn-attribute,
 pub-key-algo [7] : public-key-algorithm,
 ec-curve-id [8] : elliptic-curve-id,
 ec-pub-key [9] : OCTET STRING,
 extensions [10] : LIST [length 1..] OF extension,
 signature [11] : ec-signature,
}

6.5.3. Version Number

Matter certificates SHALL only support version X.509 v3. This field is not encoded in the Matter cer
tificate structure.

6.5.4. Serial Number

The context-specific tag serial-num [1] SHALL be used to identify the serial number field in the
Matter certificate structure.

A Matter certificate follows the same limitation on admissible serial numbers as in [RFC 5280], i.e.,
that implementations SHALL admit serial numbers up to 20 octets in length, and certificate authori
ties SHALL NOT use serial numbers longer than 20 octets in length.

6.5.5. Signature Algorithm

Like an X.509 certificate, a Matter certificate SHALL include a digital signature in its signature com
ponent. The signature algorithm component of a Matter certificate specifies the cryptographic algo
rithm used for composing and validating the signature embedded in the signature component of
the certificate. The signature algorithm SHALL match the algorithm in Section 3.5.3, “Signature and
verification”.

The context-specific tag sig-algo [2] SHALL be used to identify the signature algorithm field in the
Matter certificate structure.

signature-algorithm => UNSIGNED INTEGER [range 8-bits]
{
 ecdsa-with-sha256 = 1,
}

The following values SHALL be defined for signature-algorithm:

Table 56. Signature Algorithm Object Identifiers

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 334 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value ASN.1 OID

1 iso(1) member-body(2) us(840) ansi-x962(10045) signatures(4) ecdsa-with-SHA2(3) ecdsa-
with-SHA256(2)

6.5.6. Issuer and Subject

The context-specific tags issuer [3] and subject [6] SHALL be used to identify the issuer and the
subject DN fields in the Matter certificate structure. The entries in the lists SHALL be Distinguished
Names (DNs), which are described in Section 6.5.6.1, “X.501 Distinguished Names”.

6.5.6.1. X.501 Distinguished Names

The Issuer Name and Subject Name components of an X.509 certificate contain DNs as defined in
[RFC 5280]. The ASN.1 format of a DN is a sequence of Relative Distinguished Names (RDNs). Two
distinguished names DN1 and DN2 match if they have the same number of RDNs, for each RDN in
DN1 there is a matching RDN in DN2, and the matching RDNs appear in the same order in both DNs.

The RDN in an X.509 certificate may be encoded as a set of one or more DN attributes, although in
practice it is usually a single DN attribute. The RDN in a Matter certificate SHALL be always a single
DN attribute. Two relative distinguished names RDN1 and RDN2 match if the attribute in RDN1
matches the attribute in RDN2.

dn-attribute => CHOICE OF
{
 // Standard and Matter-specific DN attributes.
 // Of these, all are encoded as UTF8String except domain-component,
 // which is encoded as IA5String in X.509 form.
 common-name [1] : STRING,
 surname [2] : STRING,
 serial-num [3] : STRING,
 country-name [4] : STRING,
 locality-name [5] : STRING,
 state-or-province-name [6] : STRING,
 org-name [7] : STRING,
 org-unit-name [8] : STRING,
 title [9] : STRING,
 name [10] : STRING,
 given-name [11] : STRING,
 initials [12] : STRING,
 gen-qualifier [13] : STRING,
 dn-qualifier [14] : STRING,
 pseudonym [15] : STRING,
 domain-component [16] : STRING,
 matter-node-id [17] : UNSIGNED INTEGER,
 matter-firmware-signing-id [18] : UNSIGNED INTEGER,
 matter-icac-id [19] : UNSIGNED INTEGER,
 matter-rcac-id [20] : UNSIGNED INTEGER,
 matter-fabric-id [21] : UNSIGNED INTEGER,
 matter-noc-cat [22] : UNSIGNED INTEGER,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 335

 // Standard DN attributes when encoded as PrintableString in X.509 form
 // NOTE: The tags for these SHALL be the base tags + 0x80.
 common-name-ps [129] : STRING,
 surname-ps [130] : STRING,
 serial-num-ps [131] : STRING,
 country-name-ps [132] : STRING,
 locality-name-ps [133] : STRING,
 state-or-province-name-ps [134] : STRING,
 org-name-ps [135] : STRING,
 org-unit-name-ps [136] : STRING,
 title-ps [137] : STRING,
 name-ps [138] : STRING,
 given-name-ps [139] : STRING,
 initials-ps [140] : STRING,
 gen-qualifier-ps [141] : STRING,
 dn-qualifier-ps [142] : STRING,
 pseudonym-ps [143] : STRING,
}

Table 57, “Standard DN Object Identifiers” lists the context-specific tags defined for the standard DN
attribute types used in Matter that can be encoded in X.509 certificates as either UTF8String or as
PrintableString format. In Matter certificates, the context-specific tag is logically-ORed with 0x80
(and its name given a corresponding -ps suffix) to indicate that the corresponding X.509 encoding
of the attribute uses the PrintableString format instead of UTF8String.

Table 57. Standard DN Object Identifiers

Tag
base

Matter name base ASN.1 OID

1 common-name joint_iso_ccitt(2) ds(5) attributeType(4) commonName(3)

2 surname joint_iso_ccitt(2) ds(5) attributeType(4) surname(4)

3 serial-num joint_iso_ccitt(2) ds(5) attributeType(4) serialNumber(5)

4 country-name joint_iso_ccitt(2) ds(5) attributeType(4) countryName(6)

5 locality-name joint_iso_ccitt(2) ds(5) attributeType(4) localityName(7)

6 state-or-province-name joint_iso_ccitt(2) ds(5) attributeType(4) stateOrProvinceName(8)

7 org-name joint_iso_ccitt(2) ds(5) attributeType(4) organizationName(10)

8 org-unit-name joint_iso_ccitt(2) ds(5) attributeType(4) organizationalUnit
Name(11)

9 title joint_iso_ccitt(2) ds(5) attributeType(4) title(12)

10 name joint_iso_ccitt(2) ds(5) attributeType(4) name(41)

11 given-name joint_iso_ccitt(2) ds(5) attributeType(4) givenName(42)

12 initials joint_iso_ccitt(2) ds(5) attributeType(4) initials(43)

13 gen-qualifier joint_iso_ccitt(2) ds(5) attributeType(4) generationQualifier(44)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 336 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Tag
base

Matter name base ASN.1 OID

14 dn-qualifier joint_iso_ccitt(2) ds(5) attributeType(4) dnQualifier(46)

15 pseudonym joint_iso_ccitt(2) ds(5) attributeType(4) pseudonym(65)

Table 58, “Standard DN Domain Component Object Identifier” lists the context-specific tag defined
for the standard DN attribute type used in Matter that is encoded in X.509 certificates as IA5String.

Table 58. Standard DN Domain Component Object Identifier

Tag Matter name ASN.1 OID

16 domain-component itu_t(0) data(9) pss(2342) ucl(19200300) pilot(100) pilotAttribute
Type(1) domainComponent(25)

In addition to the standard DN attribute types, there are Matter-specific DN attribute types under
the 1.3.6.1.4.1.1.37244 private arc. See Section 6.1.1, “Encoding of Matter-specific RDNs” for con
straints and examples related to usage of Matter-specific DN attribute types.

6.5.6.2. Matter Certificate Types

The Matter-specific DN attribute types convey information about Matter-specific certificate types as
listed in Table 59, “Matter Certificate Types”.

Table 59. Matter Certificate Types

Matter name Description

matter-node-id Certifies the identity of a Matter Node Operational Certificate (NOC).

matter-firmware-signing-id Certifies the identity of a firmware signing certificate.

matter-icac-id Certifies the identity of a Matter Intermediate CA (ICA) Certificate.

matter-rcac-id Certifies the identity of a Matter Root CA Certificate.

The value of matter-icac-id and matter-rcac-id DN attribute types MAY be any 64-bit identifier
desired by the certificate’s issuer. Apart from marking what type of certificates are involved, they
MAY be used for debugging purposes to determine the specific CA in use, for example if different
production tiers or regions are used.

6.5.6.3. Matter DN Encoding Rules

The rules that SHALL be followed for Matter-specific attribute types when encoding the subject DN
are:

• For a Matter Node Operational Certificate (NOC):

◦ The subject DN SHALL encode exactly one matter-node-id attribute.

▪ The matter-node-id attribute’s value SHALL be in the Operational Node ID range
(0x0000_0000_0000_0001 to 0xFFFF_FFEF_FFFF_FFFF), see Table 4, “Node Identifier Allo
cations”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 337

◦ The subject DN SHALL encode exactly one matter-fabric-id attribute.

▪ The matter-fabric-id attribute’s value SHALL NOT be 0 (see Section 2.5.1, “Fabric Refer
ences and Fabric Identifier”).

◦ The subject DN SHALL NOT encode any matter-icac-id attribute.

◦ The subject DN SHALL NOT encode any matter-rcac-id attribute.

◦ The subject DN MAY encode at most three matter-noc-cat attributes.

▪ Each matter-noc-cat attribute present, if any, SHALL encode a different CASE Authenti
cated Tag identifier (upper 16 bits of value) than is used by other matter-noc-cat attrib
utes (CATs).

• For a Matter ICA Certificate:

◦ The subject DN SHALL NOT encode any matter-node-id attribute.

◦ The subject DN MAY encode at most one matter-fabric-id attribute.

▪ If present, the matter-fabric-id attribute’s value SHALL NOT be 0 (see Section 2.5.1, “Fab
ric References and Fabric Identifier”).

◦ The subject DN SHALL encode exactly one matter-icac-id attribute.

◦ The subject DN SHALL NOT encode any matter-rcac-id attribute.

◦ The subject DN SHALL NOT encode any matter-noc-cat attribute.

• For a Matter Root CA Certificate:

◦ The subject DN SHALL NOT encode any matter-node-id attribute.

◦ The subject DN MAY encode at most one matter-fabric-id attribute.

▪ If present, the matter-fabric-id attribute’s value SHALL NOT be 0 (see Section 2.5.1, “Fab
ric References and Fabric Identifier”).

◦ The subject DN SHALL NOT encode any matter-icac-id attribute.

◦ The subject DN SHALL encode exactly one matter-rcac-id attribute.

◦ The subject DN SHALL NOT encode any matter-noc-cat attribute.

• The attributes SHALL appear in the same order in the Matter certificate and in the correspond
ing X.509 certificates.

• When any matter-fabric-id attributes are present in either the Matter Root CA Certificate or the
Matter ICA Certificate, the value SHALL match the one present in the Matter Node Operational
Certificate (NOC) within the same certificate chain.

• The order of the attributes can be issuer-specific and is not enforced by Matter specifications.

• All implementations SHALL accept, parse, and handle Matter certificates with up to 5 RDNs in a
single DN.

• All implementations SHALL reject Matter certificates with more than 5 RDNs in a single DN.

In addition to the above rules, the encoding constraints in Section 6.1.1, “Encoding of Matter-spe
cific RDNs” SHALL be followed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 338 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

6.5.6.4. Matter DN Examples

The following is an example of subject DN encoding for a Matter Node Operational Certificate
(NOC). Typically, it is a list of two RDN attributes:

subject = [[
 matter-node-id = 0x0102030405060708U,
 matter-fabric-id = 0xFAB000000000001DU
]]

In addition to the mandatory attributes, it may also encode other supported RDN attributes such as
common-name and CASE Authenticated Tags as presented below:

subject = [[
 common-name = "NOC Example",
 matter-node-id = 0x0102030405060708U,
 matter-fabric-id = 0xFAB000000000001DU,
 matter-noc-cat = 0xABCD0002U
]]

The following subject DN example illustrates that multiple RDN attributes of the same type can be
encoded. The specific order of attributes is not enforced. Note that number of RDN attributes in the
subject field SHALL NOT exceed five:

subject = [[
 matter-noc-cat = 0xABCD0004U,
 matter-node-id = 0x0102030405060708U,
 matter-noc-cat = 0xABCE0018U,
 matter-fabric-id = 0xFAB000000000001DU,
 matter-noc-cat = 0xABCF0002U
]]

The following example illustrates an illegal subject DN due to the presence of the same CASE
Authenticated Tag value with two different version numbers.

subject = [[
 matter-node-id = 0x0102030405060708U,
 matter-fabric-id = 0xFAB000000000001DU,
 matter-noc-cat = 0xABCD0004U, # <-- Value 0xABCD, Version 0x0004
 matter-noc-cat = 0xABCD0002U, # <-- Value 0xABCD, Version 0x0002
]]

The following is an example of subject DN encoding for a Matter Root CA certificate. In this case, the
Matter Root CA certificate is not associated with a specific Matter fabric:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 339

subject = [[
 matter-rcac-id = 0xCA0000000000001DU
]]

The following is another example of subject DN encoding for a Matter Root CA certificate. In this
case, the Matter Root CA certificate is associated with a specific Matter fabric. This DN also encodes
an issuer-specific common-name RDN attribute:

subject = [[
 matter-rcac-id = 0xCA0000000000001DU,
 matter-fabric-id = 0xFAB000000000001DU,
 common-name = "ROOT CA HOME 3"
]]

6.5.7. Validity

The context-specific tags not-before [4] and not-after [5] SHALL be used to identify the not-before
and not-after fields in the Matter certificate structure, which indicate the period of validity for the
certificate. These two fields SHALL be encoded as unsigned integers. The value of these fields
SHALL be encoded as a UTC time of type epoch-s (Epoch Time in Seconds).

Special value 0, when encoded in the not-after field, corresponds to the X.509/RFC 5280 defined
special time value 99991231235959Z meaning no well-defined expiration date.

6.5.8. Public Key Algorithm

The context-specific tag pub-key-algo [7] SHALL be used to identify the public key algorithm field
in the Matter certificate structure.

public-key-algorithm => UNSIGNED INTEGER [range 8-bits]
{
 ec-pub-key = 1,
}

The following values SHALL be defined for public-key-algorithm:

Table 60. Public Key Algorithm Object Identifiers

Value ASN.1 OID

1 iso(1) member-body(2) us(840) ansi-x962(10045) keyType(2) ecPublicKey(1)

6.5.9. EC Curve Identifier

The context-specific tag ec-curve-id [8] SHALL be used to identify the elliptic curve field in the
Matter certificate structure.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 340 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

elliptic-curve-id => UNSIGNED INTEGER [range 8-bits]
{
 prime256v1 = 1,
}

The following values SHALL be defined for elliptic-curve-id:

Table 61. Elliptic Curve Object Identifiers

Value ASN.1 OID

1 iso(1) member_body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)

6.5.10. Public Key

The context-specific tag ec-pub-key [9] SHALL be used to identify the elliptic curve public key mate
rial field in the Matter certificate structure. The public key SHALL be a byte string representation of
an uncompressed elliptic curve point as defined in section 2.3.3 of SEC 1.

6.5.11. Extensions

The context-specific tag extensions [10] SHALL be used to identify the extensions field in the Mat
ter certificate structure. The extensions list SHALL NOT contain more than one instance of a partic
ular extension. The following table summarizes context-specific tags defined for the certificate
extension types used in Matter.

extension => CHOICE OF
{
 basic-cnstr [1] : basic-constraints,
 key-usage [2] : UNSIGNED INTEGER [range 16-bits],
 extended-key-usage [3] : ARRAY [length 1..] OF key-purpose-id,
 subject-key-id [4] : OCTET STRING [length 20],
 authority-key-id [5] : OCTET STRING [length 20],
 future-extension [6] : OCTET STRING,
}

Table 62. Extensions Object Identifiers

Tag Matter Name ASN.1 OID

1 basic-cnstr joint-iso-itu-t(2) ds(5) certificateExtension(29) basic
Constraints(19)

2 key-usage joint-iso-itu-t(2) ds(5) certificateExtension(29) keyUsage(15)

3 extended-key-usage joint-iso-itu-t(2) ds(5) certificateExtension(29) extended
KeyUsage(37)

4 subject-key-id joint-iso-itu-t(2) ds(5) certificateExtension(29) subjectKeyIdenti
fier(14)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 341

Tag Matter Name ASN.1 OID

5 authority-key-id joint-iso-itu-t(2) ds(5) certificateExtension(29) authorityKeyI
dentifier(35)

6 future-extension any valid ASN.1 OID (future extension)

These context-specific tags identify the extension entries in the extensions list. The type of each
extension is further described in the subsections below.

6.5.11.1. Basic Constraints Extension

The basic constraints extension identifies whether the subject of the certificate is a CA and the max
imum depth of valid certification paths that include this certificate.

When present, the basic constraints extension SHALL be treated as critical and it SHALL be
marked as critical in the corresponding X.509 certificate. The critical field SHALL NOT be
encoded in the Matter certificate structure.

The context-specific tag basic-cnstr [1] SHALL be used to identify a basic constraints extension
entry in the Matter certificate extensions list.

basic-constraints => STRUCTURE [tag-order]
{
 is-ca [1] : BOOLEAN,
 path-len-constraint [2, optional] : UNSIGNED INTEGER [range 8-bits],
}

The is-ca field SHALL be encoded regardless of the value (true or false). The path-len-constraint
MAY be present only when is-ca == true.

6.5.11.2. Key Usage Extension

The key usage extension defines the purpose of the key contained in the certificate.

When present, the key usage extension SHALL be treated as critical and it SHALL be marked as
critical in the corresponding X.509 certificate. The critical field SHALL NOT be encoded in the
Matter certificate structure.

The context-specific tag number key-usage [2] SHALL be used to identify a key usage extension
entry in the Matter certificate extensions list.

The key-usage field is derived as a logical OR of all key-usage-flag values that apply to the corre
sponding public key:

key-usage-flag => UNSIGNED INTEGER [range 16-bits]
{
 digitalSignature = 0x0001,
 nonRepudiation = 0x0002,
 keyEncipherment = 0x0004,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 342 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 dataEncipherment = 0x0008,
 keyAgreement = 0x0010,
 keyCertSign = 0x0020,
 CRLSign = 0x0040,
 encipherOnly = 0x0080,
 decipherOnly = 0x0100,
}

6.5.11.3. Extended Key Usage Extension

The extended key usage extension indicates one or more purposes for which the certified public
key may be used, in addition to or in place of the basic purposes indicated in the key usage exten
sion.

When present, the extended key usage extension SHALL be treated as critical and it SHALL be
marked as critical in the corresponding X.509 certificate. The critical field SHALL NOT be
encoded in the Matter certificate structure.

The context-specific tag number extended-key-usage [3] SHALL be used to identify an extended key
usage extension entry in the Matter certificate extensions list.

The extended-key-usage field SHALL be encoded as an array of key-purpose-id values, where each
key-purpose-id value SHALL be encoded as 8-bit unsigned integer:

key-purpose-id => UNSIGNED INTEGER [range 8-bits]

The following values SHALL be defined for key-purpose-id:

Table 63. Key Purpose Object Identifiers

Value ASN.1 OID

1 iso(1), organization(3), dod(6), internet(1), security(5), mechanisms(5), pkix(7), 3, server
Auth(1)

2 iso(1), organization(3), dod(6), internet(1), security(5), mechanisms(5), pkix(7), 3, clien
tAuth(2)

3 iso(1), organization(3), dod(6), internet(1), security(5), mechanisms(5), pkix(7), 3, code
Signing(3)

4 iso(1), organization(3), dod(6), internet(1), security(5), mechanisms(5), pkix(7), 3, email
Protection(4)

5 iso(1), organization(3), dod(6), internet(1), security(5), mechanisms(5), pkix(7), 3, time
Stamping(8)

6 iso(1), organization(3), dod(6), internet(1), security(5), mechanisms(5), pkix(7), 3, OCSP
Signing(9)

The key-purpose-id values in the extended-key-usage array SHALL be encoded in the same order as
they appeared in the corresponding X.509 certificate.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 343

6.5.11.4. Subject Key Identifier Extension

The subject key identifier extension provides a means of identifying Matter certificates that contain
a particular public key.

When present, the subject key identifier extension SHALL be treated as non-critical and it SHALL
be marked as non-critical in the corresponding X.509 certificate. The critical field SHALL NOT be
encoded in the Matter certificate structure.

The context-specific tag number subject-key-id [4] SHALL be used to identify a subject key identi
fier extension entry in the Matter certificate extensions list.

The Subject Key Identifier field SHALL be derived from the public key using method (1) described
in section 4.2.1.2 of [RFC 5280]. Thus, the subject-key-id SHALL be composed of the 160-bit SHA-1
hash of the certificate’s subject public key value.

See Section 6.1.2, “Key Identifier Extension Constraints” for additional constraints.

6.5.11.5. Authority Key Identifier Extension

The authority key identifier extension provides a means of identifying the public key correspond
ing to the private key used to sign a Matter certificate.

When present, the authority key identifier extension SHALL be treated as non-critical and it
SHALL be marked as non-critical in the corresponding X.509 certificate. The critical field SHALL
NOT be encoded in the Matter certificate structure.

The context-specific tag number authority-key-id [5] SHALL be used to identify an authority key
identifier extension entry in the Matter certificate extensions list.

Note that the authority key identifier extension field in an X.509 certificate may optionally include
issuer and serial number fields, which are not supported by Matter certificates.

The Authority Key Identifier field SHALL be derived from the public key using method (1) described
in section 4.2.1.2 of [RFC 5280]. Thus, the authority-key-id SHALL be composed of the 160-bit SHA-1
hash of the public key used to verify the certificate’s signature.

See Section 6.1.2, “Key Identifier Extension Constraints” for additional constraints.

6.5.11.6. Future Extension

The Matter certificate is designed with extensibility in mind and this field is added to support arbi
trary certificate extension in the future.

Note that implementations that do not support specific future extension will ignore it but will be
able to use it for the Matter certificate signature validation. If ignored extension is marked as criti
cal then validation of the corresponding Matter certificate SHALL fail.

The context-specific tag number future-extension [6] SHALL be used to identify all future exten
sion entries in the Matter certificate extensions list. There MAY be more than one future extension
field.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 344 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The future-extension field SHALL be encoded as OCTET STRING and it SHALL be an exact copy of
the DER encoded extension field (including the DER encoded ASN.1 OID of the extension) in the cor
responding X.509 certificate. These extension fields in a Matter certificate SHALL be encoded in the
same order as they appeared in the original X.509 certificate.

6.5.12. Matter certificate Extensions Encoding Rules

The rules that SHALL be followed when encoding the Matter certificate are:

• For a Matter Node Operational Certificate (NOC):

◦ The basic constraints extension SHALL be encoded with is-ca set to false.

◦ The key usage extension SHALL be encoded with exactly one flag: digitalSignature.

◦ The extended key usage extension SHALL be encoded with exactly two key-purpose-id val
ues: serverAuth and clientAuth.

◦ The subject key identifier extension SHALL be present.

◦ The authority key identifier extension SHALL be present.

• For Matter ICA Certificate and Matter Root CA Certificate:

◦ The basic constraints extension SHALL be encoded with is-ca set to true.

◦ The key usage extension SHALL be encoded with exactly two flags: keyCertSign and CRLSign.

◦ The extended key usage extension SHALL NOT be present.

◦ The subject key identifier extension SHALL be present.

◦ The authority key identifier extension SHALL be present.

◦ For the Matter Root CA Certificate the authority key identifier extension SHALL be equal to
the subject key identifier extension.

• For a Matter Firmware Signing Certificate these rules SHALL be followed:

◦ The basic constraints extension SHALL be encoded with is-ca set to false.

◦ The key usage extension SHALL be encoded with exactly one flag: digitalSignature.

◦ The extended key usage extension SHALL be encoded with exactly one key-purpose-id val
ues: codeSigning.

◦ The subject key identifier extension SHALL be present.

◦ The authority key identifier extension SHALL be present.

• The extensions SHALL appear in the same order in the Matter certificate and in the correspond
ing X.509 certificates.

Note that Matter doesn’t specify how firmware images are signed and implementation of firmware
image signing is manufacturer-specific. However, since firmware image signing is a common fea
ture, the format for Matter TLV certificates has affordances for encoding firmware signing certifi
cates.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 345

6.5.13. Signature

The context-specific tag signature [11] SHALL be used to identify the signature field in the Matter
certificate structure.

An ec-signature is the encoding of the signature as defined in Section 3.5.3, “Signature and verifica
tion”.

ec-signature => OCTET STRING [length (CRYPTO_GROUP_SIZE_BYTES * 2)]

6.5.14. Invalid Matter certificates

The Matter certificate is considered invalid if it violates Matter certificate encoding rules defined in
this section. The processing of invalid Matter certificate SHOULD fail and an error SHOULD be
reported to the application. Here is a non-exhaustive list of errors that may invalidate the certifi
cate:

• Matter certificate structure includes elements that are not defined in this section.

• Matter certificate elements are encoded in a wrong order.

• Matter certificate element has wrong type.

• Length of an element is outside of its valid range, for example:

◦ serial-num field is longer than 20 octets.

◦ not-before or not-after field is longer than 32-bits.

◦ subject-key-id or authority-key-id field is different from 20 octets.

• Matter OID values encoded in Matter certificate are not defined in this section, for example:

◦ sig-algo field encodes value, which is not defined in Table 56, “Signature Algorithm Object
Identifiers”.

◦ pub-key-algo field encodes value, which is not defined in Table 60, “Public Key Algorithm
Object Identifiers”.

◦ ec-curve-id field encodes value, which is not defined in Table 61, “Elliptic Curve Object Iden
tifiers”.

◦ key-purpose-id field of the Extended Key Usage Extension encodes value, which is not
defined in Table 63, “Key Purpose Object Identifiers”.

• Invalid Matter Distinguished Names encoding for Issuer and Subject DNs. Refer to Section
6.5.6.3, “Matter DN Encoding Rules” for more details. For example:

◦ Node Subject DN doesn’t include Matter specific matter-node-id or matter-fabric-id
attribute.

◦ Firmware signing Subject DN doesn’t include Matter specific matter-firmware-signing-id
attribute.

◦ Intermediate CA Subject DN doesn’t include Matter specific matter-icac-id attribute.

◦ Root CA Subject DN doesn’t include Matter specific matter-rcac-id attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 346 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

◦ Certificate Subject DN encodes matter-node-id and matter-rcac-id, which contradict each
other.

◦ Multiple matter-cat-id with the same identifier value and different version numbers, or any
matter-cat-id with a version number of 0.

• CA certificate doesn’t have Basic Constraints Extension is-ca field set to 'true'.

• key-usage field of the Key Usage Extension has undefined flags.

• Certificate extension that SHALL be marked as critical is marked as non-critical in the X.509
representation and vise versa.

6.5.15. Examples

6.5.15.1. Example of Operational Root CA Certificate (RCAC)

The same RCAC in X.509 and Matter TLV formats is presented in this section.

RCAC with Corresponding Private Key in an X.509 PEM Format

-----BEGIN CERTIFICATE-----
MIIBnTCCAUOgAwIBAgIIWeqmMpR/VBwwCgYIKoZIzj0EAwIwIjEgMB4GCisGAQQB
gqJ8AQQMEENBQ0FDQUNBMDAwMDAwMDEwHhcNMjAxMDE1MTQyMzQzWhcNNDAxMDE1
MTQyMzQyWjAiMSAwHgYKKwYBBAGConwBBAwQQ0FDQUNBQ0EwMDAwMDAwMTBZMBMG
ByqGSM49AgEGCCqGSM49AwEHA0IABBNTo7PvHacIxJCASAFOQH1ZkM4ivE6zPppa
yyWoVgPrptzYITZmpORPWsoT63Z/r6fc3dwzQR+CowtUPdHSS6ijYzBhMA8GA1Ud
EwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgEGMB0GA1UdDgQWBBQTr4GrNzdLLtKp
ZJsSt6OkKH4VHTAfBgNVHSMEGDAWgBQTr4GrNzdLLtKpZJsSt6OkKH4VHTAKBggq
hkjOPQQDAgNIADBFAiBFgWRGbI8ZWrwKu3xstaJ6g/QdN/jVO+7FIKvSoNoFCQIh
ALinwlwELjDPZNww/jNOEgAZZk5RUEkTT1eBI4RE/HUx
-----END CERTIFICATE-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIH1zW+/pFqHAygL4ypiB5CZjqq+aucQzsom+JnAQdXQaoAoGCCqGSM49
AwEHoUQDQgAEE1Ojs+8dpwjEkIBIAU5AfVmQziK8TrM+mlrLJahWA+um3NghNmak
5E9ayhPrdn+vp9zd3DNBH4KjC1Q90dJLqA==
-----END EC PRIVATE KEY-----

RCAC Printed in an X.509 DER Format

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 6479173750095827996 (0x59eaa632947f541c)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: 1.3.6.1.4.1.37244.1.4 = CACACACA00000001
 Validity
 Not Before: Oct 15 14:23:43 2020 GMT
 Not After : Oct 15 14:23:42 2040 GMT
 Subject: 1.3.6.1.4.1.37244.1.4 = CACACACA00000001
 Subject Public Key Info:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 347

 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:13:53:a3:b3:ef:1d:a7:08:c4:90:80:48:01:4e:
 40:7d:59:90:ce:22:bc:4e:b3:3e:9a:5a:cb:25:a8:
 56:03:eb:a6:dc:d8:21:36:66:a4:e4:4f:5a:ca:13:
 eb:76:7f:af:a7:dc:dd:dc:33:41:1f:82:a3:0b:54:
 3d:d1:d2:4b:a8
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 13:AF:81:AB:37:37:4B:2E:D2:A9:64:9B:12:B7:A3:A4:28:7E:15:1D
 X509v3 Authority Key Identifier:
 keyid:13:AF:81:AB:37:37:4B:2E:D2:A9:64:9B:12:B7:A3:A4:28:7E:15:1D

 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:20:45:81:64:46:6c:8f:19:5a:bc:0a:bb:7c:6c:b5:
 a2:7a:83:f4:1d:37:f8:d5:3b:ee:c5:20:ab:d2:a0:da:05:09:
 02:21:00:b8:a7:c2:5c:04:2e:30:cf:64:dc:30:fe:33:4e:12:
 00:19:66:4e:51:50:49:13:4f:57:81:23:84:44:fc:75:31

RCAC in Matter TLV Format

15 30 01 08 59 ea a6 32 94 7f 54 1c 24 02 01 37 03 27 14 01 00 00 00 ca
ca ca ca 18 26 04 ef 17 1b 27 26 05 6e b5 b9 4c 37 06 27 14 01 00 00 00
ca ca ca ca 18 24 07 01 24 08 01 30 09 41 04 13 53 a3 b3 ef 1d a7 08 c4
90 80 48 01 4e 40 7d 59 90 ce 22 bc 4e b3 3e 9a 5a cb 25 a8 56 03 eb a6
dc d8 21 36 66 a4 e4 4f 5a ca 13 eb 76 7f af a7 dc dd dc 33 41 1f 82 a3
0b 54 3d d1 d2 4b a8 37 0a 35 01 29 01 18 24 02 60 30 04 14 13 af 81 ab
37 37 4b 2e d2 a9 64 9b 12 b7 a3 a4 28 7e 15 1d 30 05 14 13 af 81 ab 37
37 4b 2e d2 a9 64 9b 12 b7 a3 a4 28 7e 15 1d 18 30 0b 40 45 81 64 46 6c
8f 19 5a bc 0a bb 7c 6c b5 a2 7a 83 f4 1d 37 f8 d5 3b ee c5 20 ab d2 a0
da 05 09 b8 a7 c2 5c 04 2e 30 cf 64 dc 30 fe 33 4e 12 00 19 66 4e 51 50
49 13 4f 57 81 23 84 44 fc 75 31 18

RCAC Printed in Matter TLV Schema Format

matter-certificate = {
 serial-num = 59 EA A6 32 94 7F 54 1C,
 sig-algo = 0x01U,
 issuer = [[matter-rcac-id = 0xCACACACA00000001U]],
 not-before = 0x271B17EFU,
 not-after = 0x4CB9B56EU,
 subject = [[matter-rcac-id = 0xCACACACA00000001U]],
 pub-key-algo = 0x01U,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 348 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 ec-curve-id = 0x01U,
 ec-pub-key = 04 13 53 A3 B3 EF 1D A7 08 C4 90 80 48 01 4E 40
 7D 59 90 CE 22 BC 4E B3 3E 9A 5A CB 25 A8 56 03
 EB A6 DC D8 21 36 66 A4 E4 4F 5A CA 13 EB 76 7F
 AF A7 DC DD DC 33 41 1F 82 A3 0B 54 3D D1 D2 4B
 A8,
 extensions = [[
 basic-constraints = {
 is-ca = true
 },
 key-usage = 0x60U,
 subject-key-id = 13 AF 81 AB 37 37 4B 2E D2 A9 64 9B 12 B7 A3 A4
 28 7E 15 1D,
 authority-key-id = 13 AF 81 AB 37 37 4B 2E D2 A9 64 9B 12 B7 A3 A4
 28 7E 15 1D,
]],
 signature = 45 81 64 46 6C 8F 19 5A BC 0A BB 7C 6C B5 A2 7A
 83 F4 1D 37 F8 D5 3B EE C5 20 AB D2 A0 DA 05 09
 B8 A7 C2 5C 04 2E 30 CF 64 DC 30 FE 33 4E 12 00
 19 66 4E 51 50 49 13 4F 57 81 23 84 44 FC 75 31
}

6.5.15.2. Example of Operational Intermediate CA Certificate (ICAC)

The same ICAC in X.509 and Matter TLV formats is presented in this section. An issuer of this ICAC is
RCAC from previous section.

ICAC with Corresponding Private Key in an X.509 PEM Format

-----BEGIN CERTIFICATE-----
MIIBnTCCAUOgAwIBAgIILbREhVZBrt8wCgYIKoZIzj0EAwIwIjEgMB4GCisGAQQB
gqJ8AQQMEENBQ0FDQUNBMDAwMDAwMDEwHhcNMjAxMDE1MTQyMzQzWhcNNDAxMDE1
MTQyMzQyWjAiMSAwHgYKKwYBBAGConwBAwwQQ0FDQUNBQ0EwMDAwMDAwMzBZMBMG
ByqGSM49AgEGCCqGSM49AwEHA0IABMXQhhu4+QxAXBIxTkxevuqTn3J3S8wzI54v
Wfb0avjcfUaCoOPMxkbm3ynqhr9WKucgqJgzfTg/MsCgnkFgGeqjYzBhMA8GA1Ud
EwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQDAgEGMB0GA1UdDgQWBBRTUtcFnpwVpQiQ
aGKGSAGinx9B0zAfBgNVHSMEGDAWgBQTr4GrNzdLLtKpZJsSt6OkKH4VHTAKBggq
hkjOPQQDAgNIADBFAiEAhBoG1Dten+zSToexJE61HGos8g2bXmugfxHmAC9+DKMC
IE4ypgLDYJ0AktNIvb0ZihFGRr1BzxA3g2Qa4l4/I/0m
-----END CERTIFICATE-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBGEO9zwrSBtsQJRpU2sWB11+ZL8tSJ1KiFs15xxdUapoAoGCCqGSM49
AwEHoUQDQgAExdCGG7j5DEBcEjFOTF6+6pOfcndLzDMjni9Z9vRq+Nx9RoKg48zG
RubfKeqGv1Yq5yComDN9OD8ywKCeQWAZ6g==
-----END EC PRIVATE KEY-----

ICAC Printed in an X.509 DER Format

Certificate:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 349

 Data:
 Version: 3 (0x2)
 Serial Number: 3293332566983159519 (0x2db444855641aedf)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: 1.3.6.1.4.1.37244.1.4 = CACACACA00000001
 Validity
 Not Before: Oct 15 14:23:43 2020 GMT
 Not After : Oct 15 14:23:42 2040 GMT
 Subject: 1.3.6.1.4.1.37244.1.3 = CACACACA00000003
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:c5:d0:86:1b:b8:f9:0c:40:5c:12:31:4e:4c:5e:
 be:ea:93:9f:72:77:4b:cc:33:23:9e:2f:59:f6:f4:
 6a:f8:dc:7d:46:82:a0:e3:cc:c6:46:e6:df:29:ea:
 86:bf:56:2a:e7:20:a8:98:33:7d:38:3f:32:c0:a0:
 9e:41:60:19:ea
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 53:52:D7:05:9E:9C:15:A5:08:90:68:62:86:48:01:A2:9F:1F:41:D3
 X509v3 Authority Key Identifier:
 keyid:13:AF:81:AB:37:37:4B:2E:D2:A9:64:9B:12:B7:A3:A4:28:7E:15:1D

 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:21:00:84:1a:06:d4:3b:5e:9f:ec:d2:4e:87:b1:24:
 4e:b5:1c:6a:2c:f2:0d:9b:5e:6b:a0:7f:11:e6:00:2f:7e:0c:
 a3:02:20:4e:32:a6:02:c3:60:9d:00:92:d3:48:bd:bd:19:8a:
 11:46:46:bd:41:cf:10:37:83:64:1a:e2:5e:3f:23:fd:26

ICAC in Matter TLV Format

15 30 01 08 2d b4 44 85 56 41 ae df 24 02 01 37 03 27 14 01 00 00 00 ca
ca ca ca 18 26 04 ef 17 1b 27 26 05 6e b5 b9 4c 37 06 27 13 03 00 00 00
ca ca ca ca 18 24 07 01 24 08 01 30 09 41 04 c5 d0 86 1b b8 f9 0c 40 5c
12 31 4e 4c 5e be ea 93 9f 72 77 4b cc 33 23 9e 2f 59 f6 f4 6a f8 dc 7d
46 82 a0 e3 cc c6 46 e6 df 29 ea 86 bf 56 2a e7 20 a8 98 33 7d 38 3f 32
c0 a0 9e 41 60 19 ea 37 0a 35 01 29 01 18 24 02 60 30 04 14 53 52 d7 05
9e 9c 15 a5 08 90 68 62 86 48 01 a2 9f 1f 41 d3 30 05 14 13 af 81 ab 37
37 4b 2e d2 a9 64 9b 12 b7 a3 a4 28 7e 15 1d 18 30 0b 40 84 1a 06 d4 3b
5e 9f ec d2 4e 87 b1 24 4e b5 1c 6a 2c f2 0d 9b 5e 6b a0 7f 11 e6 00 2f
7e 0c a3 4e 32 a6 02 c3 60 9d 00 92 d3 48 bd bd 19 8a 11 46 46 bd 41 cf
10 37 83 64 1a e2 5e 3f 23 fd 26 18

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 350 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ICAC Printed in Matter TLV Schema Format

matter-certificate = {
 serial-num = 2D B4 44 85 56 41 AE DF,
 sig-algo = 0x01U,
 issuer = [[matter-rcac-id = 0xCACACACA00000001U]],
 not-before = 0x271B17EFU,
 not-after = 0x4CB9B56EU,
 subject = [[matter-icac-id = 0xCACACACA00000003U]],
 pub-key-algo = 0x01U,
 ec-curve-id = 0x01U,
 ec-pub-key = 04 C5 D0 86 1B B8 F9 0C 40 5C 12 31 4E 4C 5E BE
 EA 93 9F 72 77 4B CC 33 23 9E 2F 59 F6 F4 6A F8
 DC 7D 46 82 A0 E3 CC C6 46 E6 DF 29 EA 86 BF 56
 2A E7 20 A8 98 33 7D 38 3F 32 C0 A0 9E 41 60 19
 EA,
 extensions = [[
 basic-constraints = {
 is-ca = true
 },
 key-usage = 0x60U,
 subject-key-id = 53 52 D7 05 9E 9C 15 A5 08 90 68 62 86 48 01 A2
 9F 1F 41 D3,
 authority-key-id = 13 AF 81 AB 37 37 4B 2E D2 A9 64 9B 12 B7 A3 A4
 28 7E 15 1D,
]],
 signature = 84 1A 06 D4 3B 5E 9F EC D2 4E 87 B1 24 4E B5 1C
 6A 2C F2 0D 9B 5E 6B A0 7F 11 E6 00 2F 7E 0C A3
 4E 32 A6 02 C3 60 9D 00 92 D3 48 BD BD 19 8A 11
 46 46 BD 41 CF 10 37 83 64 1A E2 5E 3F 23 FD 26
}

6.5.15.3. Example of Node Operational Certificate (NOC)

The same NOC in X.509 and Matter TLV formats is presented in this section. An issuer of this NOC is
ICAC from previous section.

NOC with Corresponding Private Key in an X.509 PEM Format

-----BEGIN CERTIFICATE-----
MIIB4DCCAYagAwIBAgIIPvz/FwK5oXowCgYIKoZIzj0EAwIwIjEgMB4GCisGAQQB
gqJ8AQMMEENBQ0FDQUNBMDAwMDAwMDMwHhcNMjAxMDE1MTQyMzQzWhcNNDAxMDE1
MTQyMzQyWjBEMSAwHgYKKwYBBAGConwBAQwQREVERURFREUwMDAxMDAwMTEgMB4G
CisGAQQBgqJ8AQUMEEZBQjAwMDAwMDAwMDAwMUQwWTATBgcqhkjOPQIBBggqhkjO
PQMBBwNCAASaKiFvs53WtvohG4NciePmr7ZsFPdYMZVPn/T3o/ARLIoNjq8pxlMp
TUju4HCKAyzKOTk8OntG8YGuoHj+rYODo4GDMIGAMAwGA1UdEwEB/wQCMAAwDgYD
VR0PAQH/BAQDAgeAMCAGA1UdJQEB/wQWMBQGCCsGAQUFBwMCBggrBgEFBQcDATAd
BgNVHQ4EFgQUn1Wia35DA+YIg+kTv5T0+14qYWEwHwYDVR0jBBgwFoAUU1LXBZ6c
FaUIkGhihkgBop8fQdMwCgYIKoZIzj0EAwIDSAAwRQIgeVXCAmMLS6TVkSUmMi/f
KPie3+WvnA5XK9ihSqq7TRICIQC4PKF8ewX7Fkt315xSlhMxa8/ReJXksqTyQEuY

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 351

FzJxWQ==
-----END CERTIFICATE-----

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIKVls/ooqO1qdPtvD/ik00DZ4a6Y8h36HwpZpOoCGhYnoAoGCCqGSM49
AwEHoUQDQgAEmiohb7Od1rb6IRuDXInj5q+2bBT3WDGVT5/096PwESyKDY6vKcZT
KU1I7uBwigMsyjk5PDp7RvGBrqB4/q2Dgw==
-----END EC PRIVATE KEY-----

NOC Printed in an X.509 DER Format

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 4538782998777667962 (0x3efcff1702b9a17a)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: 1.3.6.1.4.1.37244.1.3 = CACACACA00000003
 Validity
 Not Before: Oct 15 14:23:43 2020 GMT
 Not After : Oct 15 14:23:42 2040 GMT
 Subject: 1.3.6.1.4.1.37244.1.1 = DEDEDEDE00010001, 1.3.6.1.4.1.37244.1.5 =
FAB000000000001D
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:9a:2a:21:6f:b3:9d:d6:b6:fa:21:1b:83:5c:89:
 e3:e6:af:b6:6c:14:f7:58:31:95:4f:9f:f4:f7:a3:
 f0:11:2c:8a:0d:8e:af:29:c6:53:29:4d:48:ee:e0:
 70:8a:03:2c:ca:39:39:3c:3a:7b:46:f1:81:ae:a0:
 78:fe:ad:83:83
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Key Usage: critical
 Digital Signature
 X509v3 Extended Key Usage: critical
 TLS Web Client Authentication, TLS Web Server Authentication
 X509v3 Subject Key Identifier:
 9F:55:A2:6B:7E:43:03:E6:08:83:E9:13:BF:94:F4:FB:5E:2A:61:61
 X509v3 Authority Key Identifier:
 keyid:53:52:D7:05:9E:9C:15:A5:08:90:68:62:86:48:01:A2:9F:1F:41:D3

 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:20:79:55:c2:02:63:0b:4b:a4:d5:91:25:26:32:2f:
 df:28:f8:9e:df:e5:af:9c:0e:57:2b:d8:a1:4a:aa:bb:4d:12:
 02:21:00:b8:3c:a1:7c:7b:05:fb:16:4b:77:d7:9c:52:96:13:
 31:6b:cf:d1:78:95:e4:b2:a4:f2:40:4b:98:17:32:71:59

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 352 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

NOC in Matter TLV Format

15 30 01 08 3e fc ff 17 02 b9 a1 7a 24 02 01 37 03 27 13 03 00 00 00 ca
ca ca ca 18 26 04 ef 17 1b 27 26 05 6e b5 b9 4c 37 06 27 11 01 00 01 00
de de de de 27 15 1d 00 00 00 00 00 b0 fa 18 24 07 01 24 08 01 30 09 41
04 9a 2a 21 6f b3 9d d6 b6 fa 21 1b 83 5c 89 e3 e6 af b6 6c 14 f7 58 31
95 4f 9f f4 f7 a3 f0 11 2c 8a 0d 8e af 29 c6 53 29 4d 48 ee e0 70 8a 03
2c ca 39 39 3c 3a 7b 46 f1 81 ae a0 78 fe ad 83 83 37 0a 35 01 28 01 18
24 02 01 36 03 04 02 04 01 18 30 04 14 9f 55 a2 6b 7e 43 03 e6 08 83 e9
13 bf 94 f4 fb 5e 2a 61 61 30 05 14 53 52 d7 05 9e 9c 15 a5 08 90 68 62
86 48 01 a2 9f 1f 41 d3 18 30 0b 40 79 55 c2 02 63 0b 4b a4 d5 91 25 26
32 2f df 28 f8 9e df e5 af 9c 0e 57 2b d8 a1 4a aa bb 4d 12 b8 3c a1 7c
7b 05 fb 16 4b 77 d7 9c 52 96 13 31 6b cf d1 78 95 e4 b2 a4 f2 40 4b 98
17 32 71 59 18

NOC Printed in Matter TLV Schema Format

matter-certificate = {
 serial-num = 3E FC FF 17 02 B9 A1 7A,
 sig-algo = 0x01U,
 issuer = [[matter-icac-id = 0xCACACACA00000003U]],
 not-before = 0x271B17EFU,
 not-after = 0x4CB9B56EU,
 subject = [[matter-node-id = 0xDEDEDEDE00010001U,
 matter-fabric-id = 0xFAB000000000001DU]],
 pub-key-algo = 0x01U,
 ec-curve-id = 0x01U,
 ec-pub-key = 04 9A 2A 21 6F B3 9D D6 B6 FA 21 1B 83 5C 89 E3
 E6 AF B6 6C 14 F7 58 31 95 4F 9F F4 F7 A3 F0 11
 2C 8A 0D 8E AF 29 C6 53 29 4D 48 EE E0 70 8A 03
 2C CA 39 39 3C 3A 7B 46 F1 81 AE A0 78 FE AD 83
 83,
 extensions = [[
 basic-constraints = {
 is-ca = false
 },
 key-usage = 0x01U,
 extended-key-usage = [0x02U, 0x01U],
 subject-key-id = 9F 55 A2 6B 7E 43 03 E6 08 83 E9 13 BF 94 F4 FB
 5E 2A 61 61,
 authority-key-id = 53 52 D7 05 9E 9C 15 A5 08 90 68 62 86 48 01 A2
 9F 1F 41 D3,
]],
 signature = 79 55 C2 02 63 0B 4B A4 D5 91 25 26 32 2F DF 28
 F8 9E DF E5 AF 9C 0E 57 2B D8 A1 4A AA BB 4D 12
 B8 3C A1 7C 7B 05 FB 16 4B 77 D7 9C 52 96 13 31
 6B CF D1 78 95 E4 B2 A4 F2 40 4B 98 17 32 71 59
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 353

6.6. Access Control

6.6.1. Scope and Purpose

This section specifies the features related to controlling access to a Node’s Endpoint Clusters ("Tar
gets" hereafter) from other Nodes. The overall features are collectively named "Access Control"
hereafter.

The Access Control features aim to ensure that only authorized Nodes are permitted access to given
application-layer functionality exposed by the Data Model, through the Interaction Model. Access
Control is the fundamental link between the Secure Channel and the Interaction Model.

In order to implement a policy of Access Control, Administrators on the fabric create and maintain
a consistent distributed configuration of Access Control Lists (ACLs) across all Nodes. Each Node has
an ACL containing Access Control Entries which codify the policy. The Access Control Cluster
exposes a data model view of a Node’s ACL which enables its maintenance.

6.6.2. Model

The Access Control system is rule-based with no implicit access permitted by default. Access to a
Node’s Targets is denied unless the Access Control system grants the required privilege level to a
given Subject to interact with given Targets on that Node. Initial Access Control privileges are boot
strapped during the commissioning phase, and maintained thereafter by Administrators.

All access privileges, from the AccessControlEntryPrivilegeEnum enumeration, SHALL be granted
by Access Control. Thus, the Initiator ("Subject" hereafter) of any Interaction Model action SHALL
NOT succeed in executing a given action on a Node’s Target unless that Node’s Access Control sys
tem explicitly grants the required privilege to that Subject for that particular action.

The Access Control system grants privileges by checking and verifying all attempted access against
rules explicitly codified in Access Control Entries within the Node’s Access Control List. Addition
ally, Access Control implicitly grants administrative access privileges to an Administrative Subject
during a Node’s commissioning phase.

Access Control Entries contain:

• A FabricIndex scoping the entry to the Associated Fabric.

• A Privilege level granted by the entry (see AccessControlEntryPrivilegeEnum)

◦ View: reading or subscribing to data from a non-Proxy

◦ Proxy View: reading or subscribing to data from a Proxy

◦ Operate: writing operational data and invoking operational commands

◦ Manage: writing configuration data and invoking configuration commands (for example,
Binding and Group Clusters access)

◦ Administer: writing administrative data and invoking administrative commands (for exam
ple, Access Control and Commissioning Clusters access)

• A list of target Clusters to which the entry applies

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 354 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• A list of source Subjects to which the entry applies

• An Authentication Mode that describes the type of secure channel authentication method to
which the entry’s subjects apply

6.6.2.1. Subjects

The meaning of a "Subject" is primarily that of describing the source for an action, using a given
authentication method provided by the Secure Channel architecture. A subject SHALL be one of:

• A passcode, identified by a Passcode ID, authenticated locally by a PASE session, during the com
missioning phase.

• Note that any Passcode ID other than 0, which is the default commissioning passcode, is
reserved for future use.

• Furthermore, ACL entries with a PASE authentication mode SHALL NOT be explicitly added to
the Access Control List, since there is an invisible implicit administrative entry (see Section
6.6.2.8, “Bootstrapping of the Access Control Cluster”) always equivalently present on the Com
missionee (but not the Commissioner) during PASE sessions.

• A source node, authenticated by a CASE session using its Operational Certificate, during the
operational phase. The source node can be identified by its Node ID and/or by CASE Authenti
cated Tags.

• A destination group, identified by a destination Group ID in the message, authenticated by an
Operational Group Key from the Group Key Management Cluster, during the operational phase.

6.6.2.1.1. PASE and Group Subjects

Note that the subject is not considered to be an individual Node when the authentication is via pass
code or group symmetric key; in these cases, the administrative root of trust is conditional only
upon bearing the correct passcode during session establishment, or bearing the Operational Group
Key when constructing a group message.

6.6.2.1.2. Subjects identified by CASE Authenticated Tag

In contrast, a CASE Authenticated Tag (CAT) is a special subject distinguished name within the Oper
ational Certificate shared during CASE session establishment that functions as a group-like tag.
Such a tag can be applied to several Nodes, thereby facilitating management of Access Control
Entries that use the same set of Nodes as subjects. Because these tags are authenticated within the
CASE session context, the administrative root of trust does chain back through the individual
source Node to the Fabric’s trusted root. This makes CATs suitable for group-like use while main
taining secure authentication and attribution ability.

Each CAT is 32-bit and equally divided into identifier value and its corresponding version:

• The upper 16-bits are allocated to identifier value

• The lower 16-bits are allocated to the version number

The version number represents current version of specific identifier value. An Administrator MAY
increment the version number on any changes in the set of Nodes sharing the given tag. Version
number is a monotonically increasing natural number in the range of 1 to 65535. A version number

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 355

of 0 is invalid and SHALL NOT be used. On reaching the maximum value (65535), wrap-around is
not supported and the tag identifier SHOULD be retired by an Administrator since version increase
will no longer be possible.

When a CAT appears in the Subjects list of an Access Control Entry, it SHALL be encoded within the
CASE Authenticated Tag sub-space of Node Identifiers, with the upper 32 bits set to 0xFFFF_FFFD.
Note that this encoding cannot appear as an operational Node ID. It is merely a sub-encoding allow
ing the 64-bit scalars in an Access Control Entry’s Subjects list to represent both Node IDs and CATs.

Example CASE Authenticated Tags:

• Tag identifier 0xAB12, Version 0x0003

◦ CAT value: 0xAB12_0003

◦ Appears in Access Control Entry Subjects list as 0xFFFF_FFFD_AB12_0003

◦ Appears in Node Operational Certificate subject under OID 1.3.6.1.4.1.37244.1.6 with value
0xAB120003

▪ Would appear in X.509 certificate subject under OID 1.3.6.1.4.1.37244.1.6 as UTF8String
AB120003 for signature validation purposes.

• Tag identifier 0x071C, Version 0x1074

◦ CAT value: 0x071C_1074

◦ Appears in Access Control Entry Subjects list as 0xFFFF_FFFD_071C_1074

◦ Appears in Node Operational Certificate subject under OID 1.3.6.1.4.1.37244.1.6 with value
0x071C1074

▪ Would appear in X.509 certificate subject under OID 1.3.6.1.4.1.37244.1.6 as UTF8String
071C1074 for signature validation purposes.

6.6.2.2. Wildcards

The Subjects list of an Access Control Entry MAY grant a given privilege to more than one Subject, if
the Authentication Mode allows it, such as in the case of the CASE and Group Authentication Modes.
An empty Subjects list SHALL mean that every possible Subject employing the stated Authentication
Mode is granted the entry’s privilege over the Targets.

The Targets list of an Access Control Entry MAY grant a given privilege to more than one Target. An
empty Targets list SHALL mean that every Cluster on every Endpoint exposed by the Node is acces
sible using the granted privilege to any matching Subject. Each Target in the Targets list SHALL
specify Cluster instances directly by Cluster ID (on any Endpoint, or limited to particular End
points), indirectly by Endpoint ID (all Cluster instances on that Endpoint), or indirectly by Device
Type ID (all Cluster instances on all Endpoints containing that Device Type).

For both the Subjects list and Targets list of an Access Control Entry, empty lists permit a rudimen
tary form of "wildcard" behavior, which is especially useful for codifying policies providing com
mon view/read/discover access to a given subset of Nodes based on Authentication Mode.

CAUTION Given that "wildcard" (that is, any subject/target) granting is possible with an
empty Subjects list or an empty Targets list, it follows that care must be taken by

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 356 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Administrators generating and distributing Access Control Lists to ensure unin
tended access does not arise. It is RECOMMENDED to avoid updating Access
Control Entries in such a way as to remove Subjects or Targets one by one,
which may result in a wildcard after individual actions. Rather, entire Tar
gets/Subjects lists SHOULD be written atomically in a single action, to ensure a
complete final state is achieved, with either wildcard or not, and that no acci
dental wildcards arise. Furthermore, such ACL entries with wildcard subject
should be deployed with care as they grant the named privilege level to poten
tially many senders, especially when Group Authentication Mode is specified.

6.6.2.3. Subjects do not correspond to users

The Subjects for an Access Control Entry are logical subjects, configured through policy by an
Administrator, including possibly a Commissioner during the commissioning phase. A given imple
mentation of administrative logic MAY assign authentication identities to Nodes directly associated
with physical end-users (for example, a mobile device of a given end-user). However, since Nodes
are logical networking entities, the specific policy of how Node identities are mapped to physical
end-users and physical devices is implementation-specific. Therefore, the access granted by a given
Node’s Access Control system should not be construed as having any particular meaning in regards
to physical end-users other than the fact that a given set of Administrators computed a consistent
set of Access Control Lists to effect a desired system functionality across all Nodes they administer
and end-users they represent.

6.6.2.4. Implementation-specific Rules

Since the target of a given Access Control Entry is a list of Targets, and since Targets (that is, Clusters
on Endpoints) are Interaction Model constructs, it should be assumed that access control function
ality as described within this model is constrained to the interaction model layer. However, con
straints on incoming session establishment requests MAY be affected by the Access Control system,
based on implementation-defined rules. For example, a Node MAY deny CASE session establishment
from an initiator whose identity doesn’t match any Access Control Entry. These types of rules are
implementation-specific and SHOULD be carefully considered, if applied at all. For example, due to
the richness of Access Control Entry encoding for Subjects, significant care has to be taken to avoid
incorrectly rejecting an incoming CASE session establishment that could be valid. Rejecting valid
connections could cause a Node to become unreachable. Any constraints on transport-level and net
work-level functionality, including but not limited to the availability of commissioning-mode con
nectivity, are out of Access Control scope.

6.6.2.5. Incoming Subject Descriptors

The Message Layer SHALL provide sufficient metadata (e.g. Authentication Mode, source identity)
about incoming messages to the Interaction Model protocol layer in order to properly enforce
Access Control.

An Incoming Subject Descriptor (ISD) is a mapping from the security layer fields of an incoming
Message to a tuple of <AuthMode, SubjectDescriptor> that can map unambiguously to an Access Con
trol Entry’s Subjects and AuthMode fields. See Section 6.6.5.1.2, “Incoming Subject Descriptor (ISD)
Structure” for further details.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 357

6.6.2.6. Access Control Extensions

An implementation MAY use Access Control Extensions to extend the base Access Control model.
Since all extensions are installed by Administrators for a fabric, it is expected that only extensions
that would improve overall security will be applied. Since every Vendor MAY implement extensions
as they see fit, it SHOULD NOT be expected that an extension will be supported by every Node. It is
therefore RECOMMENDED that careful consideration of interoperability concerns be given when
implementing Access Control Extensions. A fabric’s Administrators MAY always read a given Node’s
Access Control Entries and Access Control Extensions pertaining to the fabric. Therefore, Adminis
trators MAY use extensions to record auditing metadata about Access Control Entries which are not
for operational use by the Node.

A Node SHALL preserve every field of the installed Access Control Cluster, including extensions
when present, without internally-initiated modifications, so that they may be read-back verbatim
upon receiving an appropriate request from an Administrator.

6.6.2.7. Application-level Permissions

The Access Control Cluster SHALL NOT be used to encode application-level permissions and config
urations such as smart lock PIN codes or similar user-facing security functionality. Application-level
security is best served by finer-grained capabilities described and addressed by application-
domain-specific clusters.

6.6.2.8. Bootstrapping of the Access Control Cluster

Updates to the Access Control List through Access Control Cluster attributes and commands SHALL
be restricted by the same Access Control mechanisms as all other clusters on the Node, and there
fore require a grant of Administer privilege. Administrators are able to bootstrap a Node’s Access
Control List during the commissioning phase due to the Access Control Privilege Granting algorithm
implicitly granting the Administer privilege to Administrative Subject Nodes over a PASE commis
sioning channel; this implicit privilege grant applies for the Commissioner to administer the Com
missionee, but not in the opposite direction.

6.6.2.9. Action attribution

The recording of a given Interaction Model Action’s attribution to a source entity is distinct from
the contents of an Access Control Entry. Action Attribution SHALL be recorded against the Incoming
Subject Descriptor (see Section 6.6.5.1.2, “Incoming Subject Descriptor (ISD) Structure”) rather than
against any matched Access Control Entry’s contents.

6.6.2.10. Restrictions on Administer Level Privilege Grant

Since the Administer privilege level grants wide access to a Node for a given Subject, it SHALL NOT
be valid to have an Administer privilege set on an Access Control Entry, unless the AuthMode's Auth
ModeCategory is "CASE". For example, an AuthModeCategory of "Group", which admits no source Node
authentication and reduced attribution ability, SHALL NOT be used to grant Administer privilege.

6.6.3. Access Control List Examples

The following Access Control Lists illustrate the flexibility of codifying access control policy using

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 358 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

concrete examples.

Upon Factory Data Reset, the Access Control Cluster is empty, having an Access Control List with no
entries.

Access Control Cluster: {
 ACL: [], // empty
 Extension: [] // empty (omitted hereafter)
}

However, the Access Control Privilege Granting algorithm behaves as if, over a PASE commission
ing channel during the commissioning phase, the following implicit Access Control Entry were
present on the Commissionee (but not the Commissioner) to grant Administer privilege for the
entire Node.

Access Control Cluster: {
 ACL: [
 0: { // implicit entry only; does not explicitly exist!
 FabricIndex: 0, // not fabric-specific
 Privilege: Administer,
 AuthMode: PASE,
 Subjects: [],
 Targets: [] // entire node
 }
]
}

During the commissioning phase, the AddNOC command automatically creates an Access Control
Entry granting Administer privilege for the entire Node, the appropriate CASE authenticated Subject
(in this case, Node ID 0xAAAA_AAAA_AAAA_AAAA) on the appropriate Fabric (in this case, Fabric
0xFAB0_0000_0000_001D as Fabric index 1).

Access Control Cluster: {
 ACL: [
 0: {
 FabricIndex: 1,
 Privilege: Administer,
 AuthMode: CASE,
 Subjects: [0xAAAA_AAAA_AAAA_AAAA],
 Targets: []
 }
]
}

An Administrator adds an Access Control Entry which grants View privilege, for the entire Node, to
all CASE authenticated Nodes.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 359

Access Control Cluster: {
 ACL: [
 ...
 1: {
 FabricIndex: 1,
 Privilege: View,
 AuthMode: CASE,
 Subjects: [],
 Targets: []
 }
]
}

An Administrator adds an Access Control Entry which grants Manage privilege, for endpoints 1 and 3,
to any Nodes which can authenticate as members of Group 1.

Access Control Cluster: {
 ACL: [
 ...
 2: {
 FabricIndex: 1,
 Privilege: Manage,
 AuthMode: Group,
 Subjects: [0x0000_0000_0000_0001],
 Targets: [{ Endpoint: 1 }, { Endpoint: 3 }]
 }
]
}

An Administrator revises this Access Control Entry to grant the same privilege, for only the pump
configuration and control cluster (0x0202) on endpoint 3, and for any door lock cluster (0x0101) on
the entire Node, to the same Nodes.

Access Control Cluster: {
 ACL: [
 ...
 2: {
 FabricIndex: 1,
 Privilege: Manage,
 AuthMode: Group,
 Subjects: [0x0000_0000_0000_0001],
 Targets: [{ Endpoint: 1 }, { Endpoint: 3, Cluster: 0x0000_0202 }, { Cluster:
0x0000_0101 }]
 }
]
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 360 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

An Administrator adds an Access Control Entry which grants Operate privilege, for all endpoints
containing the extended color light device (0x010D) on the entire Node, to CASE authenticated
Nodes 0x1111_1111_1111_1111 and 0x2222_2222_2222_2222.

Access Control Cluster: {
 ACL: [
 ...
 3: {
 FabricIndex: 1,
 Privilege: Operate,
 AuthMode: CASE,
 Subjects: [0x1111_1111_1111_1111, 0x2222_2222_2222_2222],
 Targets: [{ DeviceType: 0x0000_010D }]
 }
]
}

A Commissioner adds four more Nodes into an existing fabric. These new Nodes have Node IDs
0x3333_3333_3333_3333, 0x4444_4444_4444_4444, 0x5555_5555_5555_5555 and
0x6666_6666_6666_6666 respectively. The Fabric Administration policy requires associating these
four nodes and an existing node (0x2222_2222_2222_2222) into a CAT group.

To achieve this, an Administrator will issue NOCs to all five nodes in this CAT group with a CAT
value of 0xABCD_0001, which is tag identifier value 0xABCD and version 1, and encoded as subject
value 0xFFFF_FFFD_ABCD_0001. To distribute these CATs, an Administrator obtains NOCs from its
certificate authority with the requisite subjects including the desired CAT. They are either initially
provisioned with the AddNOC command during initial commissioning (for the new Nodes) or updated
with UpdateNOC (for existing Nodes).

Then the Administrator grants permissions to the five nodes by updating the ACL of all relevant tar
gets by adding an entry with subject of CAT (0xFFFF_FFFD_ABCD_0001). The Administrator may
also remove entries where Node 0x2222_2222_2222_2222 appears as an explicit Subject if presenta
tion of the CAT identifier value 0xABCD and version value 0x0001 confers an equivalent privilege.
Note that any Node with CAT identifier value of 0xABCD and version value 0x0001 or higher in
their NOC will have this privilege.

Access Control Cluster: {
 ACL: [
 ...
 3: {
 FabricIndex: 1,
 Privilege: Operate,
 AuthMode: CASE,
 Subjects: [0x1111_1111_1111_1111, 0xFFFF_FFFD_ABCD_0001],
 Targets: [{ DeviceType: 0x0000_010D }]
 }
]
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 361

An Administrator wants to remove the Node with Node ID 0x3333_3333_3333_3333 from the CAT
group defined by CAT identifier value of 0xABCD, as installed in the previous example.

The Administrator could follow the steps outlined below:

1. Administrator will ensure that the removed node having Node ID 0x3333_3333_3333_3333 will
not receive a new NOC with an CAT identifier value of 0xABCD. Note that the node removed
from the group will continue to hold existing NOC (with CAT identifier of 0xABCD and version
0x0001).

2. An Administrator updates NOCs with CAT identifier value of 0xABCD and version 0x0002
(encoded as subject 0xFFFF_FFFD_ABCD_0002) in all remaining currently reachable Nodes
within the CAT group to ensure they continue to have same privilege as before. In this example,
Nodes having Node IDs 0x2222_2222_2222_2222, 0x4444_4444_4444_4444 and
0x5555_5555_5555_5555 are currently reachable.

3. Node with Node ID 0x6666_6666_6666_6666 from this CAT group is a valid member but was not
reachable by an Administrator at the time of this change. This Node will continue to hold exist
ing NOC with CAT of 0xABCD_0001.

4. After updating NOCs of all reachable Nodes, the Administrator SHOULD revise the Access Con
trol Entry of all reachable nodes who have the previous CAT (encoded as subject 0xFFF
F_FFFD_ABCD_0001) in an ACL entry, to remove privilege from the Node no longer in the group
ing (i.e. those with version 0x0001) by increasing trusted version value to be higher than
0x0001. The Administrator decides to increment version value by one to set the new version
value to be 0x0002.

5. Once ACL changes are propagated to all controlled nodes, they will no longer allow access privi
leges to any Node with older version (i.e. value less than 0x0002) of CAT identifier value
0xABCD. Hence, the node removed from the group, having Node ID 0x3333_3333_3333_3333 and
CAT with identifier 0xABCD and version of 0x0001, can no longer access any of the controlled
nodes whose ACL entries were updated to have a subject of 0xFFFF_FFFD_ABCD_0002 (CAT
identifier value 0xABCD, version 0x0002).

6. Node having Node ID of 0x6666_6666_6666_6666 will not be able to access any Nodes by relying
on CAT, since it does not have an NOC with latest CAT (with version 0x0002). However, it can still
access Nodes that list it as a subject Node ID explicitly. When an Administrator eventually estab
lishes connection to this Node, the Administrator SHOULD update the NOC to the latest version,
with CAT set to 0xABCD_0002. After having its NOC updated to have the newest version of the
CAT, the Node with Node ID 0x6666_6666_6666_6666 will again have access to Nodes that list
subject 0xFFFF_FFFD_ABCD_0002 (CAT identifier value 0xABCD, version 0x0002), with no fur
ther updates to ACL entries of existing Nodes.

7. Any controlled Node which previously held an ACL Entry with prior version of the updated CAT
(subject 0xFFFF_FFFD_ABCD_0001) but was not reachable by an Administrator at the time of
update, will continue to hold the previous Access Control Entry with a subject allowing CAT with
identifier of 0xABCD and version 0x0001 or higher. Thus, these Nodes will grant privileges to
any Node from the original CAT group (including Node ID 0x3333_3333_3333_3333). When an
Administrator eventually establishes connection to this Node with older ACL entry, the Adminis
trator SHOULD update it with the latest value, so that Node ID 0x3333_3333_3333_3333 no
longer has privileges.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 362 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Note that in the above example, the CAT identifier value remained the same (0xABCD) in NOCs and
ACL entries throughout these steps. Only the version portion was updated to effect changes to the
meaning of the CAT.

As can be seen in the example above, there are multiple steps involving updates to NOCs and ACL
entries to affect CAT-based grouping and aliasing policies. It is therefore possible that some Nodes
may not receive these changes immediately, due to network reachability issues, such as being pow
ered down for an extended period, and thus have ACL entries or NOCs that grant temporarily obso
lete privileges. This is true as well with direct Node ID subjects, in general.

Administrators SHOULD aim for best-effort eventual consistency while executing the steps outlined
above.

Access Control Cluster: {
 ACL: [
 ...
 3: {
 FabricIndex: 1,
 Privilege: Operate,
 AuthMode: CASE,
 Subjects: [0x1111_1111_1111_1111, 0xFFFF_FFFD_ABCD_0002],
 Targets: [{ DeviceType: 0x0000_010D }]
 }
]
}

6.6.4. Access Control Cluster update side-effects

Updates to the Access Control Cluster SHALL take immediate effect in the Access Control system.
For example, given an Interaction Model action message containing the following actions, the
Access Control Privilege Granting algorithm would grant a privilege of None for the second action,
since the first action would take effect immediately beforehand.

• Pre-conditions:

• Access Control List has single entry: [{Privilege: Administer, Authmode: CASE (2), Subjects:
[0x0011223344556677], Targets: []}]

• Node ID 0x0011223344556677 over CASE is allowed Administer privilege for all targets

• Incoming message Source is Node ID 0x0011223344556677 over CASE: matches Access Control
Entry subject

• Actions:

1. Action: Write (1st path)

1. Path: Endpoint[0]/Cluster[AccessControl]/Attribute[ACL]/ListIndex[0]/Field[Targets]

2. Value: [{Endpoint: 2}]

▪ Single entry updated to target only Endpoint 2

3. Granted: Administer privilege granted, due to Access Control Entry match

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 363

2. Action: Write (2nd path)

1. Path: Endpoint[1]/Cluster[OnOff]/Attribute[OnTime]

2. Denied: No privilege granted, because prior action in the same message had updated
Access Control List to only allow access to Endpoint 2, and this action targets Endpoint 1

• Post-conditions:

• Access Control List has single entry, updated by first path of Write Action: [{Privilege: Adminis
ter, Authmode: CASE (2), Subjects: [0x0011223344556677], Targets: [{Endpoint: 2}]}]

• Node ID 0x0011223344556677 over CASE is allowed Administer privilege for only Endpoint 2 tar
get

Note that in this example, the Node has inadvertently lost its ability to update the Access Control
Cluster by limiting its Administer privilege to Endpoint 2.

6.6.5. Conceptual Access Control Privilege Granting Algorithm

This section describes an overall Conceptual Access Control Privilege Granting algorithm. Imple
mentations of this algorithm SHALL have an identical outcome to the output of this conceptual
algorithm described below.

The Interaction Model protocol, through its message handling, SHALL determine the privilege level
granted per Target, on every instance where a Target is referenced for use.

6.6.5.1. Necessary Data Structures

6.6.5.1.1. Access Control List

The Access Control List contains several Access Control Entries, previously described in Section
6.6.2, “Model”.

The entry fields are:

• Subjects List (SubjectID[] Subjects)

• Targets List (TargetStruct[] Targets)

• Authentication Mode value (AuthModeEnum AuthMode)

• Privilege value (PrivilegeEnum Privilege)

6.6.5.1.2. Incoming Subject Descriptor (ISD) Structure

Each incoming message has a unique <AuthMode, SubjectDescriptor> applicable to it, whose deriva
tion is deterministic based on both incoming message fields and session metadata fields. For exam
ple, if a message arrives that matches a given CASE Session ID, then the metadata for that CASE ses
sion would be used.

Computation of the ISD is described in Section 6.6.5.3, “Derivation of ISD from Incoming Message”.

The ISD fields are as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 364 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Commissioning Flag (bool IsCommissioning), whether the authentication is over a commission
ing channel.

• Authentication Mode (AuthModeEnum AuthMode), mapping to an authentication mode, directly com
parable to Access Control Entry AuthMode.

• Subjects List (list<SubjectID> Subjects), mapping incoming message source to a type of subject,
such as a CASE session Source Node ID.

• Fabric Index (FabricIndex FabricIndex), mapping to a fabric reference.

6.6.5.2. Overall Algorithm

The algorithm takes as input:

• the ISD of Incoming Message (subject_desc)

• the Endpoint ID (endpoint_id) for which the querier requires a Privilege level

• the Cluster ID (cluster_id) for which the querier requires a Privilege level

• the Access Control List (acl) from the Access Control Cluster

The output of the algorithm is:

• A set of privileges granted for the Action Path, which is a subset of {View, ProxyView, Operate,
Manage, Administer} as described in AccessControlEntryPrivilegeEnum.

The computation of the ISD is a pre-condition to the algorithm and is described in Section 6.6.5.3,
“Derivation of ISD from Incoming Message”.

The goal is to find the complete set of privileges granted given the input. The principle of least privi
lege is respected by virtue of the entire Access Control List having been computed with rules such
that the least privilege is granted to all subjects. Therefore, any Access Control Entry granting the
required privilege to the subject for a given target is sufficient to determine whether access is
allowed.

The algorithm SHALL function as follows:

def subject_matches(acl_subject, isd_subject):
 # Subjects must match exactly, or both are CAT
 # with matching CAT ID and acceptable CAT version
 return (acl_subject == isd_subject) or
 (is_cat(acl_subject) and is_cat(isd_subject) and
 (get_cat_id(acl_subject) == get_cat_id(isd_subject)) and
 (get_cat_version(isd_subject) >= get_cat_version(acl_subject))

def add_granted_privilege(granted_privileges, privilege):
 # Add the new privilege to the granted privileges set
 granted_privileges.add(privilege)
 # Also add any privileges subsumed by the new privilege
 if (privilege == PrivilegeEnum.ProxyView):
 granted_privileges.add(PrivilegeEnum.View)
 elif (privilege == PrivilegeEnum.Operate):

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 365

 granted_privileges.add(PrivilegeEnum.View)
 elif (privilege == PrivilegeEnum.Manage):
 granted_privileges.add(PrivilegeEnum.Operate)
 granted_privileges.add(PrivilegeEnum.View)
 elif (privilege == PrivilegeEnum.Administer):
 granted_privileges.add(PrivilegeEnum.Manage)
 granted_privileges.add(PrivilegeEnum.Operate)
 granted_privileges.add(PrivilegeEnum.ProxyView)
 granted_privileges.add(PrivilegeEnum.View)

def get_granted_privileges(acl, subject_desc, endpoint_id, cluster_id) ->
set[Privilege]:
 # Granted privileges set is initially empty
 granted_privileges = set()

 # PASE commissioning channel implicitly grants administer privilege to commissioner
 if subject_desc.AuthMode == AuthModeEnum.PASE and
subject_desc.IsCommissioneeDuringCommissioning:
 add_granted_privilege(granted_privileges, PrivilegeEnum.Administer)

 for acl_entry in acl:
 # End checking if highest privilege is granted
 if PrivilegeEnum.Administer in granted_privileges: break

 # Fabric index must match, there are no valid entries with FabricIndex == 0
 # other than the implicit PASE entry, which we will not see explicitly in the
 # access control list
 if acl_entry.FabricIndex == 0: continue
 if acl_entry.FabricIndex != subject_desc.FabricIndex: continue

 # Auth mode must match
 if acl_entry.AuthMode != subject_desc.AuthMode: continue

 # Subject must match, or be "wildcard"
 if is_empty(acl_entry.Subjects):
 # Precondition: only CASE and Group auth can have empty subjects
 assert(acl_entry.AuthMode in [AuthModeEnum.CASE, AuthModeEnum.Group])
 # Empty is wildcard, no match required
 else:
 # Non-empty requires a match
 matched_subject = False
 for acl_subject in acl_entry.Subjects:
 for isd_subject in subject_desc.Subjects:
 if subject_matches(acl_subject, isd_subject):
 matched_subject = True
 break
 if matched_subject: break
 if not matched_subject: continue

 # Target must match, or be "wildcard"
 if is_empty(acl_entry.Targets):

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 366 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 # Empty is wildcard, no match required
 else:
 # Non-empty requires a match
 matched_target = False
 for target in acl_entry.Targets:
 # Precondition: target cannot be empty
 assert(target.Cluster != null or target.Endpoint != null or target.DeviceType
!= null)
 # Precondition: target cannot specify both endpoint and device type
 assert(target.Endpoint == null or target.DeviceType == null)
 # Cluster must match, or be wildcard
 if target.Cluster != null and target.Cluster != cluster_id:
 continue
 # Endpoint must match, or be wildcard
 if target.Endpoint != null and target.Endpoint != endpoint_id:
 continue
 # Endpoint may be specified indirectly via device type
 if target.DeviceType != null and not
endpoint_contains_device_type(endpoint_id, target.DeviceType):
 continue
 matched_target = True
 break
 if not matched_target: continue

 # Extensions processing must not fail
 if not extensions_are_valid(acl, acl_entry, subject_desc, endpoint_id,
cluster_id): continue

 # All checks have passed, add privilege to granted privilege set
 add_granted_privilege(granted_privileges, acl_entry.privilege)

 # Should never grant Administer privilege to a Group.
 if subject_desc.AuthMode == AuthModeEnum.Group:
 assert (PrivilegeEnum.Administer not in granted_privileges)

 return granted_privileges

6.6.5.3. Derivation of ISD from Incoming Message

The algorithm to derive the ISD from an incoming message takes as input:

• The incoming message (message)

• The Session ID of the incoming message (session_id)

• A conceptual Sessions Metadata database (sessions_metadata)

• The Group Key Management Cluster (group_key_management_cluster)

The output of the algorithm is the SubjectDescriptor structure below:

DEFAULT_COMMISSIONING_PASSCODE = 0

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 367

enum AuthModeEnum {
 None = 0, # conceptual "no auth" value
 PASE = 1,
 CASE = 2,
 Group = 3
}

struct SubjectDescriptor {
 bool IsCommissioning;
 AuthModeEnum AuthMode;
 list<SubjectID> Subjects; # max 3 items
 FabricIndex FabricIndex;
}

The algorithm SHALL function as follows:

def get_isd_from_message(message) -> SubjectDescriptor:
 isd = {
 IsCommissioning: False,
 AuthMode: AuthModeEnum.None,
 Subjects: [],
 FabricIndex: 0
 }

 session_id = message.get_session_id()

 if sessions_metadata.get_auth_mode(session_id) == AuthModeEnum.PASE:
 isd.AuthMode = AuthModeEnum.PASE
 isd.IsCommissioning = True
 isd.Subjects.append(DEFAULT_COMMISSIONING_PASSCODE)
 isd.FabricIndex = sessions_metadata.get_fabric_index(session_id) # may be zero
 else if sessions_metadata.get_auth_mode(session_id) == AuthModeEnum.CASE:
 isd.AuthMode = AuthModeEnum.CASE
 isd.Subjects.append(sessions_metadata.get_src_node_id(session_id))
 # CASE session may contain CATs which also serve as subjects
 # Append all CATs if present (can be up to 3)
 if sessions_metadata.has_src_case_authenticated_tags(session_id):

isd.Subjects.append(sessions_metadata.get_src_case_authenticated_tags(session_id))
 isd.FabricIndex = sessions_metadata.get_fabric_index(session_id)
 assert(isd.FabricIndex != 0) # cannot be zero
 else if sessions_metadata.get_auth_mode(session_id) == AuthModeEnum.Group:
 # Message is assumed to have been decrypted and matched properly prior to
 # this procedure occurring.
 group_id = message.get_dst_group_id()
 group_key_id = sessions_metadata.get_group_key_id(message)
 # Group membership must be verified against Group Key Management Cluster
 if group_key_management_cluster.group_key_map_has_mapping(group_id, group_key_id):
 isd.AuthMode = AuthModeEnum.Group

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 368 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 isd.Subjects.append(group_id)
 isd.FabricIndex = sessions_metadata.get_fabric_index(message)
 assert(isd.FabricIndex != 0) # cannot be zero
 else:
 # Do nothing on error, ISD remains unchanged
 assert(isd.IsCommissioning == False)
 assert(isd.AuthMode == AuthModeEnum.None)
 assert(is_empty(isd.Subjects))
 assert(isd.FabricIndex == 0)

 return isd

6.6.6. Applying Privileges to Action Paths

The Data Model specifies which privilege is required for each data element, via its access qualities.

The Interaction Model specifies how each action is processed, for both its request and its response.
This includes details on how the Interaction Model uses Access Control to determine whether to
allow the request (i.e. continue processing), or to deny the request (and whether/how that is indi
cated in the response).

Determining whether to allow or deny an action for a request path entails:

• Determining the required privilege for the action, given the request path and type of access
requested;

• Determining the set of granted privileges for the action, given the request path and requesting
subject;

• Checking whether the required privilege is present in the set of granted privileges:

◦ If present, the action is allowed;

◦ If not present, the action is denied.

Note that the Interaction Model may allow the action for some request paths while denying it for
other request paths in the same action. Also, note that Access Control is merely one of the checks
used by the Interaction Model, and an action that is allowed by Access Control may fail for other
reasons.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 369

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 370 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 7. Data Model Specification

7.1. Practical Information

7.1.1. Revision History

Please note that Matter revision 1 SHALL be considered equivalent to revision 16, Subsequent
releases SHALL start at revision 17.

Revision Description

1 Equivalent to revision 16 (1st Matter release of
the Data Model)

2-11 Approved specifications, but not released for
implementation.

12-15 Released as revisions of the Dotdot Architecture
Model specification

16 Initial Release of this specification

17 Added tag data type

7.1.2. Scope & Purpose

This is part of a package of Data Model specifications that are agnostic to underlying layers (encod
ing, message, network, transport, etc.). Each specification below may be independently maintained.
This package, as a whole, SHALL be independently maintained as agnostic and decoupled from
lower layers. This package may be referenced by inclusion in vertical protocol stack specifications.

Data Model Defines first order elements and namespace for endpoints, clusters,
attributes, data types, etc.

Interaction Model Defines interactions, transactions and actions between nodes.

System Model Defines relationships that are managed between endpoints and clusters.

Cluster Library Reference library of cluster specifications.

Device Library Reference library of device type specifications.

7.1.3. Origin Story

The origin of this section is the Dotdot Architecture Model [Dotdot Architecture] and parts of Chap
ter 2 of the Zigbee Cluster Library specification [ZCL] that define the data model.

The purpose of this document is to extend and better define the data model architecture, while not
breaking the certifiable cluster specifications in the Zigbee Cluster Library (currently at revision 8).
Under the Matter project, new and existing clusters and device types may take advantage of
extended architecture elements. Ultimately, the plan is that this architecture is available and main

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 371

tained for all underlying certifiable protocol stacks.

7.1.4. Overview

This document defines first order elements and namespace of the data model and can also be called
the meta-model (of the data model). This document is the "read me first" specification in the data
model. This data model is ultimately implemented in the application layer of a communication
stack.

This specification does not define how data is stored, encoded or what interactions are allowed on
the data.

7.1.5. Glossary

Term Description

MS Manufacturer or Vendor Specific

N/A not applicable

desc see detailed description section

7.1.6. Conventions

See the Conventions section for conventions used in the Data Model specifications.

7.2. Data Qualities
Cluster specifications and device type definitions have tables that define the qualities of elements
that make up the cluster or device type. Not all elements have all qualities. For example, a com
mand does not have the read quality. Some elements have intrinsic qualities, that are not listed. For
example, an event always has the read quality. Qualities SHALL be defined in columns in tables that
describe data model elements.

7.2.1. Common Data Table Columns

The following columns are common across tables describing attributes, commands, events and
structs:

ID

Defines an identifier for the data model element that is unique at its context.

Name

Defines a CamelCase name of the element to be used in specification text, not the protocol. Text
usage SHALL always be followed with the element name (e.g. CurrentLevel attribute, Stopped
event, or Left field).

Field

Same as Name. Other headers like "Field", "Bit Field", and "Command Field", are deprecated. Use
Name.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 372 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Conformance

Defines dependencies on whether an element is optional or mandatory.

Access

Defines how an element is accessed (e.g. read or write) and what privileges are required to
access the data.

Summary

A short summary of the element with no normative text.

7.2.2. Description Section

A separate section, describing a table row element, is required to include normative text, such as
behavior associated with the element.

7.2.3. Other Data Table Columns

Other columns specific to the element:

Data Type

A data field requires this column for attribute, event or command data.

Other Qualities

This is a catchall column for uncategorized qualities.

Default

This defines a default value for data fields.

Response

Cluster command tables have this column.

Direction

Cluster command tables have this column.

Priority

Event tables have this column.

Value

Enumerations use this column instead of the ID column.

7.3. Conformance
A Conformance column defines optionality and dependency for any data model element or set of
elements. This column is valid for attributes, commands, events, enumerations, and fields of com
mands, events or structures.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 373

Conformance Column Name Summary

M Mandatory This is part of the base manda
tory feature set and is manda
tory for current revision.

O Optional This is a purely optional ele
ment with no dependencies,
except the M set.

P Provisional See Provisional below.

D Deprecated This is a deprecated item that
MAY occur in legacy implemen
tations, but not in the current
revision.

X Disallowed This is disallowed for the clus
ter derivation.

AB Mandatory This SHALL be supported if AB
is true. AB is a boolean expres
sion

[AB] Optional This MAY be supported only if
AB is true. Brackets also act as
parentheses.

EF Operand True if EF feature or element is
supported.

EF==v Equal True if EF is equal to the fixed
and non-changing value v.

EF!=v UnEqual True if EF does not equal the
non-changing value v.

AB | CD Or True if either AB or CD is true.

AB ^ CD Xor True if only one of AB or CD is
true, not both.

AB & CD And True if both AB and CD are true.

!AB Exclusivity True if AB is false.

(AB & CD) Parentheses Parentheses can be put around
any conformance expression to
combine.

C1, C2… Otherwise A conformance that is a list of
boolean expressions, processed
left to right.

C.an Choice Exclusive choices between a
number of elements with the
same conformance

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 374 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.3.1. Operands in Conformance

Supported operands in a conformance expression are:

• feature code

• element in the same table (e.g. attribute, field or value)

7.3.2. Feature Code in Conformance

A feature code evaluates to TRUE, if the feature is supported.

7.3.3. Element in Conformance

An element name, by itself, SHALL evaluate to TRUE if the element exists. Only an attribute with
the Fixed quality SHALL support evaluation as a value.

7.3.4. Optional Conformance

Optionality with "[]" SHALL be defined for an entire expression and not for parts of an expression.
Individual conformance list entries MAY define optionality with "[]", but not the entire list.

For example: The expression "[AA] & BB" is illegal, however, "[AA & BB]" or "AA & BB" is legal.

For example: The expression "AA | [BB]" is illegal, however, "[AA | BB]" or "AA, [BB]" is legal.

The tag "O" SHALL define the element as optional for the revision. "O" SHALL only be used by itself,
without operators, to mean optional without dependencies, or SHALL be used in a conformance list
ending in ", O", to mean otherwise optional.

7.3.5. Provisional Conformance

The tag "P" defines the element as provisional. "P" may be used in a list, where the intended confor
mance or list follows the "P". If the intended conformance has not been determined, then nothing
appears after the "P".

It is recommended that the intended future conformance be noted, so that when the provisional
marking is removed, the intended conformance becomes the current conformance.

For example: "P, M" means provisional, but mandatory, when not provisional in the future.

For example: "P, [AA & BB]" means provisional for now, but optional if AA & BB are true, when not
provisional in the future.

For example: "[AA], P" means optional for AA and provisional otherwise, where the future confor
mance is unknown at this time.

Each provisional element SHALL be listed in a higher level specification, that includes the data
model, and data model derived specifications that use this notation.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 375

7.3.6. Mandatory Conformance

The tag "M" SHALL define the element as mandatory. "M" SHALL only be used by itself, without
operators, to mean mandatory without dependencies, or SHALL be used in a conformance list end
ing in ", M", to mean otherwise mandatory.

7.3.7. Disallowed Conformance

The tag "X" is used when a derived cluster removes support for some elements. The tag "X" SHALL
define the element as disallowed for the revision of the derivation. "X" SHALL only be used by itself,
without operators.

7.3.8. Deprecated Conformance

The tag "D" SHALL define the element as disallowed for the revision. Previous revisions MAY sup
port this element and conformance is defined in such previous revisions. "D" SHALL only be used
by itself, without operators, to mean disallowed for the current revision, or SHALL be used in a con
formance list ending in ", D", to mean that now it is still allowed (based on the conformance preced
ing the ", D"), but it is planned to be deprecated in the future after some grace period.

7.3.9. Exclusivity Conformance

Exclusivity occurs when the entire expression only excludes.

It is recommended to not use exclusive conformance. Inclusive conformance is recommended.

For example: Excluding an element with "!Matter" means that it is mandatory otherwise. Better to
use inclusive conformance with (e.g. "Zigbee"). For example: Excluding an element with "[!Matter]"
means that it is optional otherwise. Better to use inclusive conformance with (e.g. "[Zigbee]").

7.3.10. Otherwise Conformance

Otherwise conformance is a list evaluated from top to bottom (see Quality Conformance), and left to
right, where an expression is mutually exclusive to the previous expressions (above and to the left).
It is a shorthand that allows defining conformance which depends on the previously evaluated true
expression.

Some examples:

• "AB, O" means mandatory for AB and optional otherwise.

• "AB, [CD]" means mandatory for AB, optional if CD is true and AB is false, otherwise not allowed.

• "!AB, O" means mandatory if AB is false, otherwise optional (if AB is true).

• "[AB], M" is the equivalent to "!AB, O", and a clearer way to define the conformance.

• "[AA], [BB], [CC]" is the equivalent to "[AA | BB | CC]".

7.3.11. Quality Conformance

To support differing quality conformance for an element, the element row is duplicated with the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 376 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

qualities that differ and the conformance for those qualities. Duplicating the rows requires top to
bottom evaluation, similar to left to right evaluation for Otherwise Conformance. However, if 2
adjacent rows evaluate to the same conformance (e.g. "AB, O" and "O" when AB is false), then the
choice of qualities is optional, if the row element is implemented.

For the example below, the MinLevel element is mandatory for LT with the minimum of 1 (not
zero), mandatory for AB with the minimum of 0 (zero), otherwise the element is optional with a
minimum of 0 (zero).

ID Name Type Constraint Quality Access Default Confor
mance

43 MinLevel uint8 1 to 100 F R V 1 LT

43 MinLevel uint8 0 to 100 F R V 0 AB, O

For the example below, the MaxLevel element is fixed, read only and mandatory for LT, writeable
and mandatory for AB, otherwise the element is optional and access may be read only or writable.

ID Name Type Constraint Quality Access Default Confor
mance

44 MaxLevel uint8 1 to 100 F R V 100 LT

44 MaxLevel uint8 0 to 100 RW VM 100 AB, O

44 MaxLevel uint8 0 to 100 F R V 100 O

7.3.12. Expressions and Optionality

A conformance expression supports conformance tags as operands. A conformance tag for a cluster
MAY be the name of a cluster feature (see FeatureMap Attribute). A conformance tag for a cluster
MAY be the name of an element in the Name column of the same table. A conformance tag for a
device type definition MAY also include a condition of the node.

Expressions SHALL represent a dependency with boolean logic using:

• the NOT operator such as "!AA"

• the OR operator such as “AA | BB”

• the AND operator such as “AA & BB”

• the XOR (exclusive or) operator such as "AA ^ BB"

• the equal operator such as "AA==10"

• the not equal operator such as "AA!=10"

Equality operators require that a value can be resolved for the left operand. If the left operand is
not supported, the default is the value. "null" is a valid value for the equality operator.

Simple dependencies MAY also be defined in conformance. If a Max attribute has a dependency on
a Min attribute, then the conformance for Max is "Min". Exclusive logic also applies. For example, if
the Absolute attribute is mutually exclusive to the Percentage attribute, and one of the two must be

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 377

supported, then conformance for Absolute would be "!Percentage", and conformance for Percent
age would be "!Absolute".

Unless overridden with parentheses, the order of operations is:

• NOT operator "!"

• AND operator "&", OR operator "|", XOR operator "^"

• equal "==", not equal "!="

If an expression is false, there SHALL be no assumption of general optionality. If the conformance
expression evaluates to false but optional, the expression is false.

Some examples of conformance definitions:

• "[AB]" means the element is not allowed, if AB evaluates to false.

• "[AA & BB]" means optional if AA and BB are both true, but excluded (and not optional) other
wise.

• "[!AA & BB]" means only optional if AA is false and BB is true.

7.3.13. Choice

Choice conformance defines requirements for implementing a set of elements at the same level.
This set of elements is called the choice set.

Choice parameters determine the requirements for a choice set and are added to a conformance
expression following a period, for example C.an+.

C is any logical optional [AB] conformance expression or optional conformance list, including "O"
(optional), but not "M", "X", "D", or "P". If C is a conformance list, then the list SHALL be surrounded
by parentheses. A conformance list may also include optional choice expressions among others in
the list that do not support a choice.

It is invalid to use mandatory conformance for choice such as "M.a", "AB.a+" or "!AB.a-". This gives
the reader the false impression that the individual element is mandatory.

The choice parameters are a, n, "+" (plus sign) and "-" (minus sign):

• a is a lower case letter identifying 2 or more elements in the choice set, that SHALL be at the
same scope (in the same table).

• n determines the number from the choice set that SHALL be supported after evaluation of the
conformance C and subject to the conditions described below. n SHALL only be present as a suf
fix to a choice set.

• + and - serve to limit the number of elements that may be included from the choice set in an
implementation and SHALL only be present as a suffix to n or to the choice set if n is omitted.
These choice parameters SHALL NOT appear together in the same conformance designation.

The n, +, and - choice parameters, if present, are interpreted as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 378 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• If n is omitted, then n is considered to be one.

• If n appears without a plus ("+") or minus ("-") sign choice parameter, n represents the exact
number of elements from the choice set that SHALL be included in an implementation. n SHALL
be between 1 and the number of elements in the choice set minus 1.

• If n appears with a plus ("+") sign choice parameter, n represents that at least n elements of the
choice set SHALL be included in an implementation. n SHALL be between 1 and the number of
elements in the choice set minus 1.

• If n appears with a minus ("-") sign choice parameter, n represents that at most n elements of the
choice set SHALL be included in an implementation. n SHALL be between 1 and the number of
elements in the choice set minus 1.

• n can appear as a range, e.g. 2-4, without a trailing plus ("+") or minus ("-") sign, to indicate that
the number of elements included in an implementation SHALL be within the indicated range
inclusive. The values in the range SHALL be between 1 and the number of elements in the
choice set minus 1. If a range is used, trailing choice parameters plus ("+") and minus ("-")
SHALL NOT be used.

When choice conformance notation is used, each element in the choice set SHALL have identical
choice parameters.

Invalid example: It is illegal to use "O.a" for one element and "O.a2" for another.

Valid examples:

• "O.a" means exactly one of the "a" elements SHALL be supported.

• "O.a2" means exactly two of the "a" elements SHALL be supported.

• "O.a2+" means at least two of the "a" elements SHALL be supported.

• "O.a+" means at least one of the "a" elements SHALL be supported.

• "O.a2-" means at most two of the "a" elements SHALL be supported.

• "O.a-" means at most one of the "a" elements SHALL be supported.

• "O.a2-4" means 2, 3 or 4 of the "a" elements SHALL be supported.

Although individual element conformance such as "O.a", "O.a+", "[AB].a+" or "[AB].a2-4" allows an
individual element to be optional, the restrictions on the choice set defined by the choice set para
meters must be satisfied once the conformance expression is evaluated and an implementation
SHALL support a number of elements as allowed by the choice set parameters. This may be a spe
cific number of elements, or one of a range of possible numbers of elements, depending on the
choice set parameters.

For example: The following is valid, because the n value of 1 or more is always supported.

If AB is true and CD is false then AbsoluteValue must be supported and optionally PercentValue. If
AB is false and CD is true then PercentValue must be supported and optionally AbsoluteValue. If AB
is true and CD is true then both elements must be supported. If AB is false and CD is false then
either one or both elements must be supported.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 379

ID Name Type Constraint Default Conformance

43 AbsoluteValue uint16 0 to 5000 0 AB, O.a1+

44 PercentValue uint8 0 to 100 0 CD, O.a1+

Different expressions for C are allowed, which may limit the choices, based on conformance, to
greater than zero, but less than n. In such cases, consideration is needed to define the choices and
conformance so that the n value is satisfied in every valid combination.

For example: The following is invalid if conformance allows AB to be false and CD to be true,
because the n value of 2 is not satisfied.

ID Name Type Constraint Default Conformance

43 AbsoluteCm uint16 0 to 5000 0 [AB & CM].a2

44 AbsoluteIn uint16 0 to 2000 0 [AB & IN].a2

45 Percent uint8 0 to 100 0 [CD].a2

7.3.14. Blank Conformance

If an element does not have a designated conformance (the column is blank or omitted), then it
SHALL inherit conformance from the next highest element in the model hierarchy. For example: A
data field in a struct attribute inherits its conformance from the attribute.

7.3.15. Feature Conformance

The above examples use (all capitalized) cluster feature codes in conformance expressions.

If a feature table has no conformance column then each feature is considered to be optional for
that revision and therefore either true (feature supported) or false (feature unsupported).

If a feature table has a Conformance column then these are the allowed conformance:

Conformance Feature Meaning

M true This means the feature is now
mandatory, and the confor
mance expression is true, and
the feature supported (true).

O implementation This is the default conformance
(if blank), which means the fea
ture support is indicated by the
implementation (true or false).

D false The conformance expression is
false, and the feature is unsup
ported (false). A legacy imple
mentation may still support the
feature with a true value.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 380 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Conformance Feature Meaning

X false This is used in a device type
that overrides cluster specifica
tion conformance, which means
the conformance expression is
false, and the feature is unsup
ported (false).

P false This means the conformance
expression is false, and the fea
ture is provisional and unsup
ported.

false mandatory expression false Conformance expressions are
used to define more complex
feature dependencies. A list of
expressions evaluates to a sin
gle expression. Choice options
only support optional expres
sions.

false optional expression false

true mandatory expression true

true optional expression implementation

• If the feature indicator (bit) is unsupported, then the feature indicator SHALL be false and the
feature SHALL be unsupported (false).

• Otherwise, if the conformance expression evaluates to false, then the feature indicator SHALL
be false and the feature SHALL be unsupported (false).

• Otherwise, if the conformance expression evaluates to mandatory, then the feature indicator
and feature support SHALL be the value of the conformance expression.

• Otherwise:

◦ the feature support (true or false) SHALL be the value or the feature indicator (bit) as imple
mented.

◦ If the conformance expression evaluates to a choice conformance, then the indicators for
the choice set SHALL also conform to the choice parameters.

7.4. Element
An element of the data model is a data construct that supports an instance of data. Listed below are
the elements of the data model.

First order elements

fabric, node, endpoint, cluster

Cluster first order elements

command, event, attribute

Nested elements

command field, event field, struct field

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 381

Dynamic element

list entry

Semantic elements

device type, data type

Attribute data

elements (above) that are part of an attribute

Data field

attribute, field element, or list entry (see Data Field)

7.4.1. Encoded Element Processing

When parsing or processing encoded payloads of elements as represented by an encoding layer,
such as TLV format, the following general rules apply:

• Unknown elements SHALL be ignored and skipped. This provides forward compatibility with
future elements.

• Elements SHALL be present when conveyed according to the element’s conformance.

• Elements that are present and conformant SHALL be processed.

7.5. Fabric
A fabric is a set of nodes that interact by accessing data model elements as defined in the Interac
tion Model. A fabric is a security domain that allows a set of nodes to be identified and communi
cate within the context of the domain. A node is considered to be 'on' a fabric, when it can be identi
fied and interact in the context of that fabric. An interaction is considered to occur 'on' a fabric,
when the interaction occurs in the context of that fabric (see Accessing Fabric). Each interaction
occurs either on a single fabric, or without a fabric context (see Accessing Fabric).

A node MAY be identified and interact on one or more fabrics.

How a fabric is established and how a node comes to be on a fabric is not defined here and left to
the lower layers.

7.5.1. Accessing Fabric

If an interaction is associated with a particular fabric, that fabric is called the "accessing fabric".

If the interaction is not associated with a fabric, the accessing fabric does not exist. In this case any
comparison of the accessing fabric to any existing fabric SHALL consider them not equal.

7.5.2. Fabric-Index

Each fabric supported on a node is referenced by fabric-index that is unique on the node. This fab
ric-index enables the look-up of the full fabric information from the fabric-index. A fabric-index of
0 (zero) or null SHALL indicate that there is no fabric associated with the context in which the fab

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 382 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ric-index is being used. If fabric-index is used in a context that is exclusively associated with a fab
ric, such as fabric-scoped data model elements, then the fabric-index values SHALL NOT include 0
(zero) or null.

The fabric-index corresponding to the accessing fabric is called the "accessing fabric-index". If the
accessing fabric does not exist, the accessing fabric-index SHALL indicate no fabric with a fabric-
index of 0.

7.5.3. Fabric-Scoped Data

Most cluster data instances are accessible regardless of the accessing fabric. However, data that is
exclusively associated with a particular fabric SHALL be defined as being fabric-scoped. Fabric-
scoped data SHALL be defined with the fabric-scoped quality.

The fabric associated with fabric-scoped data is called the "associated fabric".

Fabric-scoped data allows multiple accessing fabrics to manipulate a list of data items without
interfering with each other. See Fabric Filtered List.

Fabric-scoped data SHALL be limited to the following:

• list of fabric-scoped structs, which MAY include fabric-sensitive fields

• fabric-sensitive event

A fabric-scoped data instance is always a composite struct-like data instance, with multiple fields.

Fabric-scoped data SHALL always include the FabricIndex field to indicate the associated fabric.
The FabricIndex field for fabric-scoped data SHALL NOT be 0 or null.

Any interaction, including cluster commands, SHALL NOT cause modification of fabric-scoped data,
directly or indirectly, if the interaction has an accessing fabric different than the associated fabric
for the data, except in the case of a cluster command that explicitly defines an exception to this
rule.

Data fields in a fabric-scoped struct MAY also have the fabric-sensitive quality.

7.5.4. Fabric-Scoped IDs

Some data types are fabric-scoped IDs, including, but not limited to, node ID and group ID.

A fabric-scoped ID MAY require the presence of a fabric-index data type field within the same nest
ing scope to indicate the fabric associated with the ID in these cases:

• If the fabric-scoped ID is not part of fabric-scoped data.

• If the fabric-scoped ID is part of fabric-scoped data with an associated fabric that is not the fab
ric associated with the ID.

Fabric-scoped IDs SHALL only be indicated in these elements:

• structs

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 383

• events

• commands

Where necessary, specification text SHOULD define the data to which the fabric-index applies.

7.6. Access
Data model elements have access qualities. Some elements have intrinsic access or access limita
tions. For example: Cluster commands or command fields are not writable.

An Access column defines access to a data model element or set of elements. This column is valid
for attributes, commands, events, and nested attribute data fields.

Access Column Description

R Read Access

W Write Access

R[W] Read Access and optionally Write Access

R*W Deprecated: use R[W]

Privileges - separate with space

V Read Access or Invoke Access requires View
privilege

O Read Access, Write Access, or Invoke Access
requires Operate privilege

M Read Access, Write Access, or Invoke Access
requires Manage privilege

A Read Access, Write Access, or Invoke Access
requires Administer privilege

Fabric - separate with space

F Fabric-Scoped Quality

S Fabric-Sensitive Quality

Timed - separate with space

T Write Access or Invoke Access with timed inter
action only

Attributes, commands, and events SHALL define their access, and SHALL include privileges in their
access definition. For example: An attribute defines whether it is readable or writable, and what
privileges are required to do so.

Attributes, commands, and events that do not define any privileges as access qualities SHALL be
deemed to have the following:

• View privilege required for Read access,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 384 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Operate privilege required for Write access,

• Operate privilege required for Invoke access for request commands.

• No privileges defined for response commands.

For example: An event with implicit read access or explicit 'R' access defaults to access 'R V'. An
attribute with access 'RW' defaults to access 'RW VO'. A request command with implicit invoke
access defaults to privilege 'O'.

Nested elements MAY define their access, but SHALL NOT include privileges in their access defini
tion. Nested elements SHALL inherit their privileges from the next highest element in the model
hierarchy. Nested elements that do not define their access SHALL inherit their access from the next
highest element in the model hierarchy. For example: A data field in a struct attribute inherits its
access qualities from attribute.

Elements SHALL only include the lowest required privilege for a type of access.

That means:

• An event SHALL define the single privilege required for Read access.

• A command SHALL define the single privilege required for Invoke access.

• A readable attribute SHALL define the single privilege required for Read access.

• A writable (but not readable) attribute SHALL define the single privilege (that is not View or
ProxyView) required for Write access.

• A readable and writable attribute MAY define a single privilege (that is not View or ProxyView)
required for both Read and Write access.

• A readable and writable attribute MAY define the View or ProxyView privilege as required for
Read access and one other privilege (that is not View or ProxyView) as required for Write
access.

7.6.1. Read Access

Read access means that a request for data values associated with an element SHALL be supported.
This quality SHALL only be defined for cluster event and attribute data definitions. This quality
SHALL NOT be defined for cluster command definitions.

This quality is implicitly defined for cluster events and does not need to be stipulated explicitly.

7.6.2. Write Access

Write access means that a request to modify attribute data values SHALL be supported. This quality
SHALL only be defined for cluster attribute data definitions. This quality SHALL NOT be defined for
cluster event and command definitions.

A cluster specification SHALL define the conditions when write access attribute data is not
writable, and SHALL define normative or recommended behavior to follow when this occurs.

An implementation that does not support write access for a field with optional write access SHALL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 385

have this declared in its product Declaration of Conformity.

7.6.3. Invoke Access

Invoke access means that a request to execute a command SHALL be supported. This quality SHALL
only be defined for cluster command definitions, by defining an appropriate privilege level for the
command. This quality SHALL NOT be defined for cluster event and attribute data definitions.

7.6.4. Fabric-Scoped Quality

This defines fabric-scoped data that is scoped to an associated fabric.

This quality acts as an additional constraint over those imposed by the existing Read and Write
qualities, namely:

• Fabric-scoped attribute data SHALL NOT be writable unless the accessing fabric is the associ
ated fabric of the data.

• A cluster command SHALL NOT alter fabric-scoped data if the associated fabric is not the
accessing fabric.

7.6.5. Fabric-Sensitive Quality

This further restricts access to data that is sensitive to the associated fabric.

This quality acts as an additional constraint over those imposed by the fabric-scoped quality,
namely:

• Fabric-sensitive data SHALL NOT be readable unless the accessing fabric is the associated fabric
of the data. See fabric-scoped data.

Data that is fabric-sensitive SHALL always be fabric-scoped.

Only event definitions and the fields of a fabric-scoped struct MAY be fabric-sensitive.

7.6.6. View Privilege

An element with the View privilege SHALL support Read (if readable) and Invoke (if invocable)
access if the source of the request is granted the View privilege.

A command with the View privilege defined SHALL NOT alter data that is part of its function (e.g.
settings, configuration), but MAY alter data that is internal or diagnostic in nature (e.g. usage statis
tics).

7.6.7. Operate Privilege

An element with the Operate privilege defined SHALL support Read (if readable), Write (if
writable), and Invoke (if invocable) access if the source of the request is granted the Operate privi
lege.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 386 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.6.8. Manage Privilege

An element with the Manage privilege defined SHALL support Read (if readable), Write (if
writable), and Invoke (if invocable) access if the source of the request is granted the Manage privi
lege.

7.6.9. Administer Privilege

An element with the Administer privilege defined SHALL support Read (if readable), Write (if
writable), and Invoke (if invocable) access if the source of the request is granted the Administer
privilege.

7.6.10. Timed Interaction

This quality requires the use of a timed interaction.

Timed interactions are used to limit the amount of time an action message is valid and can interact
with a node. They are used to prevent a timing attack on the system. For example, a malicious
attacker could perform an "intercept, interfere, and replay" procedure whereby a legitimate mes
sage is intercepted, receipt by the intended destination is jammed, and the attacker sends the mes
sage at a later time to cause a malicious action such as unlocking a door at an unintended time.
While the practical difficulties of such an attack are high, and the malicious eavesdropper cannot
decrypt the action message, the timed interaction provides further mitigation of risk for critical
actions.

The timed interaction can be thought of as a 2-phase commit. A precursor action (Timed Request
Action) is sent to indicate the valid time window for arrival of some subsequent, primary action.
Since the timed request requires a response, an attacker cannot do the store-and-forward timing
attack anymore. The lack of an authenticated response from the intended destination will prevent
the subsequent primary action from being sent.

A command with this quality SHALL require a timed invoke interaction. A writable attribute with
this quality SHALL require a timed write interaction.

An attempted untimed write interaction to a writable attribute with this quality SHALL generate an
error response.

An untimed invoke interaction for a request command with this quality SHALL generate an error
response.

7.7. Other Qualities
A Quality column defines other qualities not covered in other columns. Some qualities are limited
to a specific set of elements. If an element does not have designated qualities, then it SHALL inherit
qualities from the next highest element in the model hierarchy. For example: A data field in a struct
attribute inherits its access qualities from attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 387

Quality Column Name Elements Description

C Changes Omitted attribute data Fast changing data or
data where deltas are
meaningless to report,
and which will not
cause delta changes on
subscriptions

F Fixed attribute data The read only value is a
fixed value that never
changes, unless the
program image
changes

I Singleton cluster The cluster is a single
ton on the node for the
device type

K Diagnostics cluster The cluster is a verbose
diagnostics cluster,
which could be omitted
from wildcard expan
sion

L Large Message command The command payload
can be large, resulting
in the message exceed
ing the minimum IPv6
MTU of 1280 bytes.

N Non-Volatile attribute data The attribute data
value is non-volatile
and is persistent across
restarts

P Reportable attribute If best effort reporting
is supported then the
attribute supports a
reporting configuration

Q Quieter Reporting attribute data Data with fluctuating
data rate or where
some deltas are mean
ingless or undesirable
to report.

S Scene attribute The attribute is part of
a scene

X Nullable data fields The data type of the
data field is nullable

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 388 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.7.1. Changes Omitted Quality

This quality MAY be given to attribute data that is deemed to have a high rate of change or where
changes are not meaningful or too large to convey as part of Subscribe interaction.

Attribute data with this quality SHALL support Read Access, but SHALL NOT have delta changes
published as part of a Subscribe interaction.

7.7.2. Fixed Quality

Data with this quality is read only and has a fixed value that never changes, unless the program
image changes.

7.7.3. Singleton Quality

This quality indicates that a cluster is a singleton on the node, representing the entire node.

7.7.4. Diagnostics Quality

This quality is given to Clusters which contain very large amounts of seldom-consulted attributes.

Such a cluster SHALL be omitted from Request Path Expansion when the WildcardSkipDiagnostic
sClusters bit in WildcardPathFlags is set.

7.7.5. Large Message Quality

Command messages with this quality are typically larger than the minimum IPv6 MTU of 1280
bytes and cannot be transported over MRP. They would require other transports, such as TCP, for
communication.

7.7.6. Non-Volatile Quality

See Persistence.

7.7.7. Reportable Quality

The Subscribe interaction supports all attribute data. This quality is supported by other interactions
that only require attribute data with this quality to support interval or change reporting.

7.7.8. Quieter Reporting Quality

This quality MAY be given to attribute data that changes in a way where some of the changes are
considered to have a high rate of change or where changes are not meaningful or desirable to
report.

This quality can be used for fast changing attributes, where the majority of reports have little to no
value for the client (e.g. the countdown of a timer) but where some reports may be important, (e.g.
when a countdown starts, stops or is changed).

Attributes with this quality SHALL specify, in the attribute description, the details of the conditions

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 389

under which:

• The attribute value might change without being reported.

• Changes to the attribute value will definitely be reported.

To ensure clients can understand the parameters related to specifics of that attribute’s reporting.

Attribute data with this quality SHALL support Read Access.

7.7.9. Scene Quality

This quality is supported and described in the Scenes Management cluster. It relates to the ability of
a field to be settable by Scenes. This quality SHALL only apply to attributes having unsigned integer
or boolean data types of size at most 4 bytes from the Base Data Types list (e.g. bool, uint8, uint16,
uint32), or derived types thereof (e.g. enum8, map8). This quality has no effect in contexts unrelated
to the Scenes Management cluster.

7.7.10. Nullable Quality

See Nullable.

7.8. Node
A Node encapsulates an addressable, unique resource on the network that has a set of functions
and capabilities that a user recognizes distinctly as a functional whole.

This distinction is usually physical, such as the physical device itself, or a logical instance of a physi
cal device.

A node is the highest or outermost first order element in the data model. A node is the outermost
unique addressable element of the data model.

A node MAY have multiple node IDs, each ID scoped to a particular fabric. When a node ID is used
as the target address of an interaction, the fabric under which the node ID is scoped, is the access
ing fabric for the interaction.

The lower layers in a communication stack supporting this data model SHALL support interactions
between nodes on a logical inter-network of nodes. Please see the Interaction Model and System
Model specifications that describe relationships and interactions between nodes and data model
elements on each node.

It is possible for parts of a node to reside on different processors (e.g. separate application and net
work processors).

A single physical product may support more than one node.

7.9. Endpoint
A node is composed of one or more endpoints. An endpoint is an instance of something that could

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 390 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

be a service or virtual device as indicated by a device type.

Each endpoint conforms to one or more device type definitions that define the clusters supported
on the endpoint. Clusters are object classes that are instantiated on an endpoint.

The word 'device', depending on the context, may be used as shorthand to denote the device type
definition as represented by a device type ID, a device type implementation, or an endpoint (device
type instance).

There are also many examples in specification text where 'device' is used, when it would be better,
and more accurate to use 'node', 'physical device', or 'product'.

The word 'device' may also be used in cluster specifications to describe application software that is
supporting an instance of a cluster server or client. In this case, it would be better, and more accu
rate to use either 'client' or 'server'.

One must be careful to make sure there is no ambiguity when using the word 'device' in specifica
tion text, or better yet, use another word.

7.10. Cluster
Clusters are the functional building block elements of the data model. A cluster specification
defines both a client and server side that correspond with each other through interactions. A clus
ter may be considered an interface, service, or object class and is the lowest independent functional
element in the data model. Each cluster is defined by a cluster specification that defines elements of
a cluster including attributes, events, commands, as well as behavior associated with interactions
with these elements. Cluster attributes, events, commands and behaviors are mandatory or
optional depending on the definition of the cluster. Optional items may have dependencies.

A cluster specification SHALL list one or more Cluster Identifiers. A Cluster Identifier SHALL refer
ence a single cluster specification and SHALL define conformance to that specification. A cluster
instance SHALL be indicated and discovered by a Cluster Identifier on an endpoint. A Cluster Iden
tifier also defines the purpose of the instance.

The server cluster supports attribute data, events and cluster commands. The client cluster initiates
interactions, including invocation of cluster commands.

7.10.1. Cluster Revision

The revision of a cluster is to enforce backward and forward compatibility, but still allow clusters to
be enhanced, fixed, or updated, without changing the cluster’s basic function.

A cluster revision SHALL be associated with an approved revision and release of a cluster specifica
tion. The revision of an instance of a cluster SHALL be represented by the global, mandatory, and
read only ClusterRevision attribute. Please see ClusterRevision attribute.

Changes to a cluster specification SHALL only augment, not modify the primary function of the
cluster. Changes to a cluster specification SHALL be represented by incrementing the cluster revi
sion. New revisions of a client cluster SHALL interoperate with older revisions of the server cluster
and vice versa. Interoperability between corresponding cluster instances MAY require reading the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 391

cluster revision.

For example: If a new product client application supporting revision 3 of cluster X wishes to
take advantage of the new behavior that is mandated by revision 3, then the application can
read the revision of the corresponding server cluster X in each remote endpoint. If a corre
sponding cluster X supports revision 3 or greater, then the behavior is supported.

Examples of changes to a cluster that require incrementing the revision:

• Changing the behavior of the cluster

• Changing a read only attribute to become writable

• Adding new attributes (e.g. min and max of an existing attribute value)

• Adding new commands, actions, or behavior

• Adding one or more fields to an existing command

• Adding a new enumerated value to an attribute

• Changing anything that is optional to mandatory

• Changing dependencies of optional items

• Deprecating parts of the cluster specification

• Any non-editorial specification text change

7.10.2. Cluster Optional Features

In general, as the number of optional elements in a cluster specification increases, the number of
possible combinations increases, which could decrease the interoperability of that cluster.

Each cluster has a mandatory feature set that consists of mandatory elements such as attributes,
commands, fields, values, dependencies, behavior, etc.

A cluster specification MAY have optional feature sets, each supported by a set of elements (see Fea
tureMap).

There is no requirement that each cluster instance supports the same set of optional elements.

If an application knows the ClusterRevision and FeatureMap supported by a cluster instance, then it
knows the exact specification text required to be implemented by that instance.

7.10.3. Cluster Data Version

A cluster data version is a metadata increment-only counter value, maintained for each cluster
instance. A cluster data version represents an exact & coherent state of cluster attribute data at
present. An application may externally hold a data version (called a held data version) published by
a cluster instance which then represents a cluster instance state at some time in the past. An appli
cation may use a held data version to optimize future interactions, by indicating the held data ver
sion. A cluster data version is surfaced in the Interaction Model when data is requested. It is used to
optimize data read transactions by reducing the need to send the same data. Write interactions may

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 392 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

also be qualified with a held data version to disallow changes, unless the cluster instance has the
same data version (see Interaction Model). A cluster data version is published as information in
some interactions (See Interaction Model). An externally held data version may be included as
information in some interactions (See Interaction Model).

A cluster data version SHALL increment or be set (wrap) to zero if incrementing would exceed its
maximum value. A cluster data version SHALL be maintained for each cluster instance. A cluster
data version SHALL be initialized randomly when it is first published. A cluster data version SHALL
be incremented if any attribute data changes.

7.10.4. New Cluster

When considering the creation of a new cluster specification, it is recommended to consider
reusing and extending an existing cluster specification. These are the mechanisms to consider, in
order, to extend a cluster:

1. Optional elements: attribute data, commands, events, enumerations, etc.

2. Optional feature(s) in the FeatureMap Attribute attribute for a set of elements (see 1)

3. Cluster Aliasing to reuse a cluster specification as a whole, but with a different semantic

4. Cluster Inheritance

5. A new cluster specification

7.10.5. Cluster Aliasing

Cluster aliasing allows the reuse of approved and validated specifications and derived documents,
such as test plans, scripts, etc.

• More than one Cluster Identifier, each with unique purpose and semantic content, MAY map to
a single cluster specification.

For example: A Concentration Measurement cluster specification may be quite abstract but
have many mapped Cluster Identifiers each with a more concrete purpose, such as CO2 or O2

concentration measurement.

7.10.6. Cluster Inheritance

Cluster inheritance allows the reuse of approved and validated specifications and derived docu
ments, such as test plans, scripts, etc. This allows a new cluster specification to be defined as
extending or reducing the requirements of an existing cluster specification, called the base cluster.
This also allows an existing cluster specification to be defined as a derived cluster, by creating a
new base cluster that is more generic, allowing potential new clusters to be derived from the new
base cluster.

• A derived cluster specification MAY have mandatory requirements that are optional in the base
specification.

• A derived cluster specification MAY remove requirements that are optional in the base specifi

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 393

cation.

• A derived cluster specification MAY remove or make optional a requirement that is mandatory
in the base specification, if the resulting specification is deemed useful in its reduced form, and
logically a subset of the base clusters.

For example: The Bridged Device Basic Information cluster is derived as a reduced form of
the base Basic Information cluster, where many informational attributes are not mandatory,
because the information is not available from devices behind the bridge. However, the
derived cluster provides the same, but reduced, function as the base cluster.

• It is RECOMMENDED that a derived cluster makes changes to the base cluster by extending or
reducing one or more features or independent elements, and not by modifying features, ele
ments or cluster behavior.

Such modifications SHOULD be defined as a feature, which can be used to extend or reduce.

• All new features, elements or behavior introduced by the derived cluster that may be useful
across other derivations SHOULD be defined in the base cluster specification and made optional
(in that base cluster specification), to maintain the entire set of requirements and identifier
namespace in one place.

• A range of ID values SHALL be reserved for the base clusters. The remaining values SHALL be
reserved for use by the derived clusters. The ranges reserved for base clusters are as follows:

◦ Feature bits: 0-19

◦ Attribute IDs: 0x0000-0x7FFF

◦ Command IDs: 0x00-0x7F

◦ Event IDs: 0x00-0x7F

• A derived cluster specification SHALL define its own revision (ClusterRevision attribute) that is
independent of the base specification.

• A base cluster specification MAY be created from an original base cluster, which then becomes a
derived cluster to the newly created base cluster.

If an endpoint supports multiple server clusters that derive or map to the same base cluster specifi
cation, then each SHALL represent a single implementation and operate as a single entity or
instance. This makes it possible to deploy a new device endpoint with both a base and a derived
cluster identifier, which SHALL remain backward compatible to legacy devices that support only
the original cluster identifier. Cluster identifiers that are mapped to a single base cluster specifica
tion, but are defined for distinctly different purposes, MAY exist together on a device endpoint. If
there is no base cluster identifier defined, or no base cluster identifier exists on the same endpoint,
then each cluster identifier SHALL represent a separate instance.

It is a good practice to explore the possibility of either deriving a cluster from an existing cluster or
creating a base cluster to map or derive new and existing cluster identifiers. See New Cluster for
other options.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 394 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.10.7. Status Codes

A cluster specification defines status code responses to actions depending on the cluster instance
state. A status code is either a global Interaction Model status code, or a cluster specific status code
that is unique to the cluster specification. A global status code is either scoped to the entire action,
or to a cluster request path. A cluster specific status code scoped to a cluster instance is indicated by
a cluster path. When an interaction defines a Status Response response, the responder SHALL
return a global Interaction Model status code. When an interaction response needs to communicate
a cluster specific status code, the responder SHALL return the path to the cluster instance, the
global status code SUCCESS or FAILURE, and the cluster specific status code. Each cluster specific
status code SHALL be associated with either SUCCESS or FAILURE, not both. A cluster specific status
code SHALL be, by default, associated with FAILURE unless it is defined as associated with SUCCESS.
The global SUCCESS status code means the action was executed for the request path; the global
FAILURE status code means that it was not executed.

• Cluster-specific status code SHALL be defined using the status type.

• Cluster-specific status codes MAY have the same numeric values as global status codes. Interac
tion model messages SHALL make it clear whether a particular message field is a global status
code or a cluster-specific status code.

• Cluster-specific status codes SHALL communicate more information than just a generic success
or failure condition. Global status codes SHALL be used to communicate such conditions.

• A server cluster SHALL NOT return a cluster-specific code from another cluster.

7.10.8. Cluster Classification

A cluster SHALL be defined as either a utility cluster or an application cluster.

7.10.8.1. Utility Cluster

A utility cluster is not part of the primary application operation of an endpoint. It may be used for
configuration, discovery, addressing, diagnostics, monitoring device health, software update, etc. It
may have a temporary relationship with its cluster counterpart.

Utility cluster examples scoped to an endpoint: Identify, Descriptor, Binding, Groups, etc. Util
ity cluster examples scoped to the node: Basic Information, various Diagnostics clusters, OTA
update related clusters, etc.

7.10.8.2. Application Cluster

An application cluster supports the primary operation of the endpoint. An application cluster sup
ports one or more persistent application interactions between client and server.

Example application cluster transactions:

• On/Off cluster - client sends command to server

• Temperature Measurement cluster - server reports data to client

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 395

An application cluster is not a utility cluster even though it may support utility functions for itself,
such as calibration, modes of operation, etc. An application cluster specification SHALL be agnostic
about layers and processes outside of its application domain.

Example: A particular temperature measurement cluster may exist on different devices, or in
different networks, each with different security & commissioning mechanisms and/or poli
cies.

Example: A commissioning cluster’s domain is commissioning, but not temperature measure
ment.

7.11. Command
A cluster command is a set of data fields, each of a data type that is conveyed between client and
server cluster instances to invoke a behavior on the receiver of the command.

Each command SHALL be listed in a table with data quality columns: ID, Name, Direction,
Response, Access, Conformance.

The command table SHALL define the direction of the command as either client to server or server
to client. The command table SHALL define the access privileges for each request command or omit
the privileges for the default (see default access privileges). The command table SHALL NOT define
privileges for a response command. The command table SHALL define a possible response to the
command, if any. The command table SHALL define conformance for each command.

A command that is not a response (in the Response column) is a request command. Conformance
for a client to server command means the server SHALL recognize and support the client to server
command and generate responses as defined. Conformance for a server to client command means
the server SHALL send the command as cluster behavior defines, such as in response to a client to
server command. Conformance for a command can depend on supported server features. A client
SHALL NOT be required to support optional commands or commands depending on an optional
feature.

A command description SHALL define when a command is generated. A command description
SHALL define the effect upon receipt of a command which may be:

• a response command

• a success status response

• an error status response

• no response

A command definition SHALL clearly define any side-effects on fabric-scoped data, if applicable.

A command is identified and indicated with a command ID that SHALL be unique to the cluster*.

NOTE Some legacy clusters have reused the same command ID twice to indicate one

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 396 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

command from the client and another from the server. Moving forward, com
mand IDs SHALL NOT be reused in that fashion.

A cluster command table SHALL have a Response column with the following values:

Response Column Description

N no response is returned for this command

Y status only is returned for this command

command name of the response command to this com
mand

A cluster command table SHALL have a Direction column with the following values:

Direction Column Description

client ⇒ server command is conveyed from the client to the
server cluster

client ⇐ server command is conveyed from the server to the
client cluster

Each command SHALL be described in its own section with a table defining command fields (if
any).

7.11.1. Command Fields

A command MAY indicate zero or more fields that are defined in a table. Each command field is
defined as a row in the table with these columns:

Column Description

ID This is the unique field ID of the field

Name This is the unique name of the field

Type This is the data type of the field

Constraint see Constraint

Quality see qualities

Default see Default

Conformance see Conformance

Command field conformance defines the sender requirements to include the field in a well-formed
command for the revision of the cluster. A new command field or a newly made-mandatory com
mand field in a newly revised cluster specification may be omitted by a legacy sender. The cluster
specification SHALL define clear behavior upon receipt of any possible well-formed command with
fields that are not present. The cluster specification SHALL take into consideration the revision his
tory of possible well-formed commands from legacy implementations. To allow deprecation, it is
recommended that command fields have a well-defined default value (such as null), and associated

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 397

default behavior, that is equivalent to omitting the field. Well-defined behavior, for a field that is
not present, may be no behavior at all.

For example

A newly revised Noise cluster adds a new mandatory Volume field to the MakeNoise com
mand. Legacy receivers will ignore the Volume field, and legacy senders will not include
the field.

Another example

The Volume field is mandatory for the original cluster and there is a proposal to make it
optional. The Volume field null value has the semantic of ignoring the field, so instead of
making it optional, the default value is used. This would make the receiver logic simpler.

7.12. Attribute
An attribute is cluster data. Each attribute SHALL be listed in a table with data quality columns: ID,
Name, (Data) Type, Constraint, other Quality, Access, Default (value), and Conformance. An
attribute SHALL also define its associated semantics and behavior. Attributes reflect queryable/set
table state, configuration and capabilities of a device. If no privileges are explicitly defined for an
attribute, then default access privileges take effect. Attribute data MAY also have these other quali
ties:

Quality Short Description

Scene S indicates that the data is part of
a scene

Persistent N indicates that the data value is
persistent across restarts

Fixed F indicates that the read only
data value will never change

Nullable X indicates that the data may
have a value of null

Fabric-scoped attribute data SHALL be defined as a fabric-scoped list.

7.12.1. Persistence

Persistent data retains its value across a restart.

A restart is:

• a program restart or reboot

• power cycle reboot

• user-initiated reboot

• reboot initiated from a program image upgrade

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 398 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

A factory reset is not such a restart. A factory reset is a deliberate behavior to reset persistent data
back to its original state when the product left the factory.

Cluster attributes that represent configuration data SHALL be persistent data unless otherwise
specified.

For example: a writable attribute that persistently changes the behavior (or mode) of the clus
ter.

Examples of non-configuration data: device state data, data that is calculated or comes from
an external source, such as a sensor value, a time value, etc.

Many clusters define persistent data that is not surfaced as attributes, but is managed by com
mands. Commissioning or configuration data that is created to allow the cluster to perform its func
tion is persistent data. A group table entry and binding entries are both persistent data across a
restart.

When a persistent cluster attribute represents controlled state of the device, the device SHALL
restore the attribute value to the value before the restart was initiated, and put the device in the
state that is represented by the restored value.

For example: After an OTA cluster restart, clusters that have visible state attributes, such as
the state of a light, or a window shade SHALL be persistent and define these attributes as per
sistent.

Some cluster specifications add a dependency with a persistent configuration attribute A that con
tains a value to use to restore persistent state attribute B after a restart. This is perfectly valid but
cluster specific.

Cluster state data that is not controlled, such as sensor data, is not considered persistent.

The cluster specification may put dependencies and limitations on persistent data.

7.13. Global Elements
Below is a list of global elements. These are used for self-description of the server.

ID Name Element Type Con
straint

Quality Access Default Confor
mance

0xFFFD Cluster
Revision

attribute uint16 min 1 F R V M

0xFFFC Fea
tureMap

attribute map32 F R V 0 M

0xFFFB Attribut
eList

attribute list[attrib-
id]

F R V M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 399

ID Name Element Type Con
straint

Quality Access Default Confor
mance

0xFFFA EventList attribute list[event-
id]

F R V P, M

0xFFF9 Accept
edCom
mandList

attribute list[com
mand-id]

F R V M

0xFFF8 Generat
edCom
mandList

attribute list[com
mand-id]

F R V M

0xFE FabricIn
dex

struct or
event
field

fabric-idx 1 to 254 R V F fabric-
scoped

7.13.1. ClusterRevision Attribute

The ClusterRevision attribute indicates the revision of the server cluster specification supported by
the cluster instance. An implementation of a cluster specification before the ClusterRevision
attribute was added SHALL have an assumed cluster revision of 0 (zero). For a new cluster specifi
cation, the initial value for the ClusterRevision attribute SHALL be 1 (not zero).

A history of revision numbers for a cluster specification release is listed in the Revision History sec
tion for a cluster specification. Each new revision of a cluster specification SHALL specify a new
revision number incremented (by 1) from the last. The highest revision number in a cluster specifi
cation’s Revision History is the revision number for the cluster specification. Therefore, a Cluster
Revision attribute value SHALL be the (highest) revision number of the cluster specification that
has been implemented.

7.13.2. FeatureMap Attribute

Each instance of a cluster SHALL support this attribute.

The FeatureMap attribute SHALL indicate whether the server supports zero or more optional clus
ter features. A cluster feature is a set of cluster elements that are mandatory or optional for a
defined feature of the cluster. If a cluster feature is supported by the cluster instance, then the cor
responding bit SHALL be set to 1, otherwise the bit SHALL be set to 0 (zero). All undefined bits in
this attribute SHALL be set to 0 (zero).

The set of cluster elements that are designated as mandatory (M) are implicitly part of the manda
tory cluster feature set, and do not have a bit in the FeatureMap attribute.

A cluster specification SHALL support this attribute if the cluster supports features. If a cluster
specification is revised to support features (and so this attribute), each bit in the FeatureMap
attribute SHALL have a defined default value (1 or 0), to conform with the previous revision of the
cluster specification, that did not support the FeatureMap attribute. The value of 1 means the fea
ture elements were mandatory (M) in the previous revision. The value of 0 (zero) means the ele
ments were optional in the previous revision.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 400 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Any newly created feature set of a cluster SHALL be dependent on that cluster.

Feature sets are revision controlled as part of a cluster using the ClusterRevision attribute. The clus
ter specification is the independent element that is revision controlled. A remote application read
ing the FeatureMap Attribute and ClusterRevision Attribute will then know exactly what features
are supported in the cluster instance.

Each feature set SHALL be well defined within the cluster specification. Each feature SHALL be
mapped to a short capitalized code name for the feature set to be referenced as a conformance tag
in the cluster specification text, including the Conformance columns defining the elements of the
cluster.

If a cluster defines more than 32 feature sets, then it will be necessary to add another feature
bitmap attribute. Any client trying to reference the new feature set will know about the new
bitmap, because it knows about the new feature set(s). Legacy products will not know about the
new feature set nor the new bitmap.

For a cluster whose definition which does not define a FeatureMap, the server SHALL set this
attribute to 0 (zero).

Please see Feature Conformance for details on conformance.

7.13.3. AttributeList Attribute

Each instance of a cluster SHALL support this attribute. This attribute SHALL be a list of the
attribute IDs of the attributes supported by the cluster instance.

7.13.4. AcceptedCommandList Attribute

This attribute is a list of client generated commands which are supported by this cluster server
instance.

Each instance of a cluster SHALL support this attribute.

This attribute SHALL be a list of the command IDs for client generated commands that are sup
ported and processed by the server.

For each client request command in this list that mandates a response from the server, the
response command SHALL be indicated in the GeneratedCommandList attribute.

7.13.5. GeneratedCommandList Attribute

This attribute is a list of server generated commands. A server generated command is a server to
client command.

Each instance of a cluster SHALL support this attribute.

This attribute SHALL be a list of the command IDs for server generated commands.

For each command in this list that is a response to a client command request, the request command
SHALL be indicated in the AcceptedCommandList attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 401

7.13.6. EventList Attribute

Each instance of a cluster SHALL support this attribute. This attribute SHALL be a list of the event
IDs of the events supported by the cluster instance.

7.13.7. FabricIndex Field

This field SHALL be present for fabric-scoped data. This field does not have to be defined explicitly
in the field table for fabric-scoped data.

This field SHALL NOT be present in a write interaction. For a write interaction, the server SHALL
provide the value of the accessing fabric-index as the FabricIndex field value to processing logic,
after receipt of the interaction. For a read interaction this field SHALL be included in all reported
data that is defined as fabric-scoped.

7.14. Event
An event defines a record of something that occurred in the past. In this regard, an event record
can be thought of as a log entry, with an event record stream providing a chronological view of the
events on the node.

Unlike attributes, which do not provide any edge-preserving capabilities (i.e. no guarantees that
every attribute change will be conveyed to observers), events permit capturing every single edge or
change and conveying it reliably to an observer. This is critical for safety and security applications
that rely upon such guarantees for correct behavior.

Each cluster event is listed in a table that defines: ID, Priority, Access, Quality, Conformance.

Absence of a Quality column implies that the event does not support any qualities.

Event records are readable, and do not require the read access quality to be explicitly defined.

Each generated event record SHALL have an event priority that MAY override the defined priority
for that event.

Each event SHALL be described in a section that defines the purpose of the event and the data
fields of the event (if any).

7.14.1. Event Record

An event record is created by the node at the time the event happens. That record SHALL have the
following data fields associated with it that are common to all events:

Name Type Conformance

Number event-no M

Timestamp system-time-ms O.a

Timestamp posix-ms O.a

Priority priority M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 402 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Name Type Conformance

Data struct O

7.14.1.1. Number Field

This is an event number value that is scoped to the node. This number SHALL be monotonically
increasing for the life of the node. This monotonicity guarantee SHALL be preserved across
restarts.

Between restarts, each event record SHALL be assigned a number that is exactly 1 greater than the
last created event record on that Node.

When a node restarts, the event number MAY increase by a larger step than 1. Rationale: Nodes do
not need to write every new value of the event number counter to permanent storage each time it
is increased (e.g. to prevent flash wear due to many write operations). One example strategy to
achieve reduction of non-volatile storage updates is described below:

1. Read the counter value at start-up.

2. Before processing any message, write counter + N to storage, where N is a carefully chosen
number (e.g. 1000). This number N should be chosen carefully in order not to exhaust the life
time 64-bit counter space.

3. Process messages normally until the counter has a value one less than the counter in storage.
When this happens, store counter + N to storage.

7.14.1.2. Timestamp Field

Each event record SHALL have a timestamp at the time it was created (and not when it is reported
to a client). This timestamp SHALL either be System Time in milliseconds or POSIX Time in millisec
onds.

7.14.1.3. Priority Field

Each event record has an associated priority. This priority describes the usage semantics of the
event.

7.14.1.4. Data Field

Event data fields SHALL be defined in the form of a struct in a table with the following columns for
each field: ID, Name, Type, Constraint, Quality, Default, Conformance.

7.14.2. Buffering

Event records SHALL be buffered on the Node, with priority given to events of a higher priority
level over a lower priority level. Within a priority level, newer event records SHALL overwrite
older event records. The Node SHOULD only overwrite older events if there are newer events cre
ated and there is insufficient space to retain both.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 403

7.14.3. Event Filtering

Interactions that report event records MAY be filtered by event ID and/or event number.

7.14.4. Fabric-Sensitive Event

An entire event MAY be defined as having the fabric-sensitive quality; otherwise, it SHALL NOT be
associated with a fabric.

A read interaction SHALL NOT filter event records, based on fabric, for event records that are not
associated with a fabric.

A read interaction SHALL NOT report fabric-sensitive event records that are associated with a fab
ric different than the accessing fabric.

A fabric-sensitive event SHALL include the global FabricIndex field. For a fabric-sensitive event it is
not required to define the FabricIndex field in the event field table.

7.15. Device Type
In this architecture model, a device type is the highest semantic element. A device type defines con
formance for a set of one or more endpoints. A device type defines a set of requirements for the
node or endpoint in the market.

A device type SHALL define the cluster support for an endpoint. A composed device type MAY
define one or more other device types as part of the composed device type.

A device type definition MAY define or use predefined conditions from requirements, limitations
and/or capabilities of the node. A device type definition MAY define or use predefined conditions on
one or more underlying stack standard(s).

A device type MAY define support of a cluster as dependent upon a condition. A device type defini
tion MAY specify optional clusters that are recommended as enhancements.

A device type definition MAY refine cluster conformance:

• Support of optional cluster elements or features MAY be changed to mandatory depending on
device type conditions.

• Support of optional cluster elements or features MAY depend on device type conditions.

A device type definition SHALL specify a device type ID, device revision, and a set of one or more
mandatory clusters including each cluster’s minimum revision.

A device type definition MAY be generic and allow many similar clusters, where at least one
instance SHALL be required.

For example: a simple sensor device.

If all sensor devices are common in cluster requirements (except the clusters that perform the sens

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 404 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ing), then there is no reason to create a device type for each sensor cluster.

A device type definition MAY be very specific and list particular clusters as mandatory.

For example: a door lock device or thermostat.

7.15.1. Device Type Revision

A device type revision is an unsigned integer that is associated with an approved revision and
release of a device type definition. The initial value for a device type revision SHALL be 1. The ini
tial revision (1) of a device type definition SHALL require the latest (at the time of definition the
cluster) certifiable revisions of the clusters it mandates. Device type implementations MAY support
later revisions of the mandatory clusters as they become certifiable. Any mandatory changes to the
device type definition SHALL only augment, not modify, the function of the device. Any changes
SHALL increment the version of the device. Newer versions of the device SHALL interoperate with
older revisions at the older revision’s level of functionality.

Examples of changes to a device type definition that require incrementing the revision:

• Mandating a higher revision of one or more mandatory clusters

• Changing an item from optional to mandatory

• Deprecating parts of the device type definition

7.15.2. Device Type Composition

A device type definition MAY be a composed device type and therefore require other device types
for its composition. A device type instance MAY be composed of other endpoints that support extra
cluster instances. Please see the System Model specification for more details.

7.15.3. Device Type Classification

Each device type definition SHALL specify the endpoint as being either a Utility, or Application.
Each device type definition SHALL specify the scope as either endpoint or node. Each Application
device type definition SHALL specify the endpoint as being either Simple or Dynamic.

7.15.3.1. Utility Device Type

A Utility device type supports configuration and settings. A utility device type definition SHALL
define requirements for utility clusters. A utility device type MAY also represent the physical device
or product. There MAY be more than one endpoint supporting a utility device type on a node.

Examples of utility device types: Root Node, Power Source, Bridged Node.

7.15.3.2. Application Device Type

Application devices types are typically the most common endpoints on a node and in the network.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 405

An endpoint supporting an application device type is an application endpoint. An Application
device type SHALL be scoped to the endpoint. An application endpoint SHALL support clusters the
primary application function of the endpoint.

Examples of application device type categories: HVAC, lighting, sensing, etc.

7.15.3.3. Simple Device Type

A Simple device type supports local control that is persistent, independent, and unsupervised. A
Simple device type is an Application device type. Simple devices types are typically the most com
mon endpoints in the network. Simple device type examples: sensors, actuators, lights, on/off
switches, on/off power outlets, etc. Simple endpoints support independent operation without cen
tral control or gateways. An endpoint supporting a simple device type is a simple endpoint. Simple
endpoints SHALL support relationships through bindings.

7.15.3.4. Dynamic Device Type

A Dynamic device type supports intelligent and supervisory services, such as commissioning, moni
toring, trend analysis, scheduling and central management. A dynamic device type is an application
device type. An endpoint supporting a dynamic device type is a dynamic endpoint. A dynamic end
point is typically found on a central controller where there exists an intelligent supervisory applica
tion that manages simple device control applications. Typically, a dynamic endpoint supports client
clusters for central control, management, monitoring or supervisory functions. Typically, the prod
uct supporting a dynamic endpoint has visibility into the entire network (or part thereof) of simple
endpoints.

A dynamic endpoint client cluster instance MAY be used to multiplex transactions to or from multi
ple simple device server clusters in the network. A dynamic endpoint client cluster MAY initiate
interactions to many server clusters in the network. A dynamic endpoint client cluster MAY receive
data from many server clusters in the network. Dynamic endpoints MAY support relationships
through bindings. A dynamic device endpoint MAY support one or more external agents, outside
the node stack, that manage relationships. External agents include, but are not limited to, a cloud
application, a smartphone, an in-home display, or a configuration tool.

7.15.3.5. Device Type Scope

A node device type is a utility device type scoped to a node. A node device type definition SHALL
support clusters that represent the entire node. An endpoint supporting a node device type is a
node endpoint. A node endpoint MAY also represent the physical device or product. There MAY be
more than one node endpoint on a node.

Other classes of device types are endpoint scoped device types.

7.15.4. Extra Clusters on an Endpoint

An endpoint MAY support later revisions of a cluster mandated by the device type definition. An
endpoint MAY support extra clusters not mandated by the device type definition. An endpoint MAY
support optional features or cluster items (attributes, commands, events, etc.), that are not man
dated by the device type definition. Extra clusters, features, or cluster items, SHALL only augment,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 406 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

not modify, the function of the device type or clusters.

A device type definition MAY list clusters as optional, which implies they can augment the device
type. Clients MAY use those clusters to augment the operation of the other clusters for the device
type.

In case of clusters appearing on an endpoint which are not listed in the Cluster Requirements table
of a device type definition, there may not be a well-defined standard interpretation with respect to
the context of that device type, so clients MAY ambiguously interpret how, or when, the extra clus
ters are intended to be used. Clients MAY ignore any clusters which are not listed in the Cluster
Requirements table of a device type definition when interacting with the endpoint. This is true even
for clusters that would otherwise appear to a client’s or server’s implementer as "obvious".

7.16. Non-Standard
This architecture model provides mechanisms for non-standard or manufacturer specific items
such as clusters, commands, events, attributes and attribute data fields. These items MAY be sup
ported on a certified product. Such vendor specific items SHALL NOT change the standard behavior
of the standard items. The specific function of a vendor specific item cannot be tested as part of cer
tification. They can only be tested to verify that they do no harm, and conform to proper behavior
with regard to identification, discovery, error processing, etc. A non-standard item SHOULD NOT
take the place of a standard item that provides the same function. It is up to the certification
authority to make a judgment call that is in keeping with the spirit of these requirements. Imple
menters are encouraged to develop and certify standard items, not non-standard items.

7.17. Data Field
A data field is any attribute, field or entry that is not a collection data type, or data that is not sur
faced as an attribute, but defined in a cluster specification.

Optional attribute data MAY be referenced as data fields in other attribute specifications within the
same cluster specification. Cluster specifications also define data fields that are not surfaced, such
as temporary calculated values, or persistent state values. Any defined data value in a cluster speci
fication is a data field.

Each cluster data field SHALL be defined with a table including these columns for data qualities:

• Data Type

• Constraint

• Quality

• Access

• Default

• Conformance

A data field SHALL inherit (if possible) the qualities from the cluster first-order element of which it
is part, unless overridden. It SHOULD be rare to override inherited qualities.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 407

For example: If an attribute is a struct data type, that is readable and writable, then all fields
of the struct are readable and writable.

New or optional data fields MAY not be recognized by a receiver, such as a legacy receiver. The data
field description SHALL define default behavior (such as absence of behavior) when a new or
optional data field is not present. It is recommended to define or use a feature when adding new or
optional data fields, to better indicate conformance. It is recommended to define a default value,
such as a null value, that indicates such default behavior.

7.17.1. Nullable

When a data field value is required to designate an unknown, invalid, or undefined data value, and
there is no obvious data value (e.g. zero), that is within the valid range to indicate this, the data field
MAY be designated as nullable, so that an implemented instance of data MAY have the value of null.

In this context, these wordings have the same meaning:

• The data field has the value of null.

• The data field has the null value.

• The data field is the null value.

• The data field is null.

Representation of null for the implementation of the Data Model is a consideration of the underly
ing encoding specification. The encoding layer SHALL have the capability to indicate null for any
nullable data field. How the encoding layer indicates null is outside the scope of the Data Model
specification.

All data fields MAY be defined to be nullable, regardless of data type.

A cluster specification SHALL define whether a data field is nullable. A cluster specification SHALL
define the meaning of the null value.

Composite data types that have a length (i.e. octet string and list), and derived types that have those
as the base type, SHALL NOT differentiate semantically between the null value and the empty (zero
length) value. In particular a zero-length value SHALL be allowed for nullable values of these types
no matter what other length constraints are imposed on the value, and SHALL have the same
semantics as the null value.

7.17.2. Optional or Deprecated

An optional or deprecated data field that is not implemented, and therefore does not exist, SHALL
NOT be indicated as the null value. How the encoding layer encodes non-existent data is outside the
scope of the Data Model specification.

The Conformance column SHALL define if a data field is optional or deprecated. To manage the
data identifier namespace, a deprecated data field SHALL NOT be removed from text that lists its
identifier and default value. The description text of a deprecated data field SHALL be removed for

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 408 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

new revisions of specification text.

If the specification text of a cluster depends on the value of an optional or deprecated data field of
the same cluster, then the data field SHALL have a well-defined default value that SHALL be used
when the data field is not implemented.

7.17.3. Constraint & Value

The tables below describe the nomenclature for describing constraints and default data values. This
nomenclature is used in the cluster specifications for data value constraints, defaults, and other
definitions.

7.17.3.1. Common Literal Values

These values are commonly used in cluster text and Default columns in cluster data definition
tables.

Value Description

0 The numeral zero is used to indicate the zero
value for analog data. This is equivalent to the
boolean value FALSE.

1 This is used for any analog data type to mean
that the value is 1. This is equivalent to the
boolean value TRUE.

FALSE "FALSE", "false" or "False" is a boolean value and
is equivalent to 0 (zero).

TRUE "TRUE", "true" or "True" is a boolean value and
is equivalent to 1.

NaN Not a Number defined for any floating point val
ues.

null This indicates the value of null.

empty This indicates empty list or string data.

min The minimum possible data value for the data
type.

max The maximum possible data value for the data
type.

numeric units Some number in some well-defined units as
described in the data type (e.g. 100o C)

7.17.3.2. Constraint

The Constraint column is valid for any composed device type, attribute or data field of an attribute,
event, command or struct. It is RECOMMENDED to always define a constraint for any data field.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 409

Constraint Description

desc Defines the constraint is defined in the descrip
tion section

Composed Device Type Constraints

x* Defines the exact number of endpoints, greater
than zero, supporting this device type as a part
of the composed device type

x to y Defines the allowed number of endpoints,
greater than zero, supporting this device type as
a part of the composed device

max y Defines the maximum number of endpoints,
greater than zero, supporting this device type as
a part of the composed device

min x Defines the minimum number of endpoints,
greater than zero, supporting this device type as
a part of the composed device

Numeric Data Type Constraints

x Defines a value that is supported.

x to y Defines a supported value range.

max y Defines the value range from min to y

min x Defines the value range from x to max.

all Defines that all values are supported. Same as
"min to max".

constraint, constraint… Defines support of a union of two or more value
and value range constraints

Octet String Data Type Constraints

x* Defines the size range in bytes to be exactly x

x to y Defines the size range in bytes from x to y

min x Defines that the size limit supported is a mini
mum of x bytes

max y Defines the size limit supported is a maximum
of x bytes

all Defines no constraint on size of the string. Same
as "min to max".

constraint, constraint… Defines support of a union of two or more size
range or size limit constraints

List Data Type Constraints

x* Defines the range of entries to be exactly x

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 410 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Constraint Description

x to y Defines the range of entries from x to y

min x defines the limit supported is a minimum of x
entries

max y Defines the limit supported is a maximum of x
entries

all Defines no constraint on the number of entries
in the list. Same as "min to max".

constraint, constraint… Defines support of a union of two or more list
range or limit constraints

list_constraint[entry_constraint] Defines list_constraint as a list constraint and
entry_constraint as a constraint on the entry
data type. See also list entry qualities

Character String Data Type Constraints

char_constraint[z] Defines char_constraint as the string constraint
in bytes and z as the maximum number of Uni
code codepoints.

* x, y, or z are literal values of the data type or from the Common Literal Values.

7.17.3.3. List and String Constraint

The minimum number of entries for list or size of a string SHALL be 0 (zero), unless redefined
using the above notation.

A comma delimited set of constraints for a list or string defines a union constraint. A union con
straint SHALL only have one minimum (min x) constraint and one maximum (max y) constraint. A
union constraint SHALL NOT define a range below the minimum constraint or range greater than
the maximum constraint, including the defined minimum (min) and maximum (max) for the data
type.

A constraint on a list or string data means that the data SHALL always be indicated within that con
straint. A constraint on a writeable list or string data means that the data SHALL support writing
within the constraint, and SHALL NOT support writing outside the constraint.

7.17.3.4. Read Only vs Write Access

7.17.3.5. Effective Maximum for Character String Data Type

A server SHALL support up to the maximum in char_constraint for a character string data type. The
character string data SHALL NOT contain more than z Unicode codepoints.

Example: A string with a constraint of "max 128 [32]" dictates that the server provide for a
128 byte string, but the string may contain up to 32 Unicode codepoints

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 411

7.17.3.6. Nullable in Range

If data is nullable then null SHALL be a valid value.

If the data type is a list or derived from a list, and the list is nullable, then a length of 0 (zero) SHALL
be supported, and defined in the constraint column.

If the data type is an octet string, or derived from an octet string (e.g. character string), and the data
is nullable, then a length of 0 (zero) SHALL be supported, and defined in the constraint column.

7.17.4. Default Column

A default value defined in the Default column is not meant to be the value used when the server
returns to factory fresh settings. Specified conformance for data fields may be optional or change
over time. A default value is defined to complete dependencies when the actual data field value is
not present.

A data field SHALL have a defined default value when:

• the data field is new, and a default is required for backwards compatibility with legacy
instances

• the data field is optional, deprecated, or obsolete and therefore is not always present

• an initial value is needed before the application starts

• the value cannot be determined by the application for the instance

• there is a dependency on the attribute value to formulate other data or affect behavior

If a default value is not defined for a data field, the default value is determined by the following
conditions:

• If the data field is nullable then the default value SHALL be null

• Else the default value SHALL be one of the following, depending on type:

◦ Boolean: false

◦ Analog: 0 or 0.0, depending on range

◦ Bitmaps: 0

◦ Enumeration: MS

◦ Composite:

▪ String: empty

▪ List: empty

▪ Struct: default is recursively composited from the defaults of its member fields

◦ Derived types: use the default value of the base type

These are the options for the Default column used for attributes or attribute, command or event
data:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 412 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Default Column Description

x a literal value x of the data type, or as defined in Common Literal Values

MS a manufacturer or implementation specific value

If the default value of a data field is specified as manufacturer specific, then there SHALL be no
defined default value and the application SHALL support a manufacturer specific value that is in
the valid range.

7.18. Data Types
Each data field in a cluster specification SHALL have a well-defined data type. Each attribute in a
cluster specification SHALL map to a single data type.

The table indicates for each data type whether it defines an analog or discrete value. Values of ana
log types MAY be added to or subtracted from other values of the same type and are typically used
to measure the value of physical properties that can vary continuously over a range. Values of dis
crete data types only have meaning as individual values and SHALL NOT be added or subtracted.

Some data types specify bit-widths for future potential growth in range (analog) or number of val
ues (discrete).

Cluster specifications SHALL use the unique data type short name to reduce the text size of the
specification.

7.18.1. Base Data Types

Class Data Type Short ID Size

Discrete

Boolean

Boolean bool 0x10 1 byte

Bitmap

8-bit bitmap map8 0x18 1 byte

16-bit bitmap map16 0x19 2 bytes

32-bit bitmap map32 0x1B 4 bytes

64-bit bitmap map64 0x1F 8 bytes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 413

Class Data Type Short ID Size

Analog

Unsigned Integer

Unsigned 8-bit
integer

uint8 0x20 1 byte

Unsigned 16-bit
integer

uint16 0x21 2 bytes

Unsigned 24-bit
integer

uint24 0x22 3 bytes

Unsigned 32-bit
integer

uint32 0x23 4 bytes

Unsigned 40-bit
integer

uint40 0x24 5 bytes

Unsigned 48-bit
integer

uint48 0x25 6 bytes

Unsigned 56-bit
integer

uint56 0x26 7 bytes

Unsigned 64-bit
integer

uint64 0x27 8 bytes

Signed Integer

Signed 8-bit inte
ger

int8 0x28 1 byte

Signed 16-bit inte
ger

int16 0x29 2 bytes

Signed 24-bit inte
ger

int24 0x2A 3 bytes

Signed 32-bit inte
ger

int32 0x2B 4 bytes

Signed 40-bit inte
ger

int40 0x2C 5 bytes

Signed 48-bit inte
ger

int48 0x2D 6 bytes

Signed 56-bit inte
ger

int56 0x2E 7 bytes

Signed 64-bit inte
ger

int64 0x2F 8 bytes

Analog

Floating Point

Single precision single 0x39 4 bytes

Double precision double 0x3A 8 bytes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 414 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Class Data Type Short ID Size

Composite

String

Octet string octstr 0x41 desc

Collection

List list 0x48 desc

Struct struct 0x4C desc

7.18.1.1. Boolean

The Boolean type represents a logical value, either FALSE or TRUE.

• FALSE SHALL be equivalent to the value 0 (zero).

• TRUE SHALL be equivalent to the value 1 (one).

7.18.1.2. Bitmap (8, 16, 32 and 64-bit)

This data type is typically used to represent simple cluster settings or state that are treated as
whole.

The Reserved Bit Fields conventions define reserved bitmap data.

• It is RECOMMENDED to define more bits than initially needed to be able to support more values
for later revisions.

• The Bitmap type MAY be used to support up to 8, 16, 32 or 64 boolean values.

• Bits MAY be combined to enumerate other values.

• Bits SHOULD be combined as contiguous bit fields.

• Future revisions MAY require non-contiguous bit fields.

• The conformance for a bit in a bitmap SHALL be mandatory or dependent upon an existing dis
coverable element, and therefore SHALL NOT be purely optional.

Allowable Conformance for a bit in a bitmap:

• Mandatory

• Dependent upon a Feature supported in the FeatureMap attribute.

• Dependent upon the support of an attribute.

A nullable bitmap SHALL NOT permit use of the most significant bit.

7.18.1.3. Unsigned Integer (8, 16, 24, 32, 40, 48, 56 and 64-bit)

This type represents an unsigned integer with length of N bits and a usable range of:

• [0..2N-1] if not nullable OR

• [0..2N-2] if nullable.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 415

The following table presents the representable values following the above rules:

Width N (bits) Minimum value Maximum value
if nullable

Maximum value
if not nullable

8 0
(0x00)

254
(0xFE)

255
(0xFF)

16 0
(0x0000)

65534
(0xFFFE)

65535
(0xFFFF)

24 0
(0x000000)

16777214
(0xFFFFFE)

16777215
(0xFFFFFF)

32 0
(0x00000000)

4294967294
(0xFFFFFFFE)

4294967295
(0xFFFFFFFF)

40 0
(0x0000000000)

1099511627774
(0xFFFFFFFFFE)

1099511627775
(0xFFFFFFFFFF)

48 0
(0x000000000000)

281474976710654
(0xFFFFFFFFFFFE)

281474976710655
(0xFFFFFFFFFFFF)

56 0
(0x00000000000000)

72057594037927934
(0xFFFFFFFFFFFFFE)

72057594037927935
(0xFFFFFFFFFFFFFF)

64 0
(0x0000000000000000)

18446744073709551614
(0xFFFFFFFFFFFFFFFE)

18446744073709551615
(0xFFFFFFFFFFFFFFFF)

7.18.1.4. Signed Integer (8, 16, 24, 32, 40, 48, 56 and 64-bit)

This type represents an signed integer with length of N bits and a usable range of:

• [-(2(N-1))..2(N-1)-1] if not nullable OR

• [-(2(N-1)-1)..2(N-1)-1] if nullable.

Whether to use two’s complement or another representation for the implementation of the Data
Model is a consideration of the underlying encoding specification.

The following table presents the representable values in base-10 following the above rules:

Width N (bits) Minimum value
if nullable

Minimum value
if not nullable

Maximum value

8 -127 -128 127

16 -32767 -32768 32767

24 -8388607 -8388608 8388607

32 -2147483647 -2147483648 2147483647

40 -549755813887 -549755813888 549755813887

48 -140737488355327 -140737488355328 140737488355327

56 -36028797018963967 -36028797018963968 36028797018963967

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 416 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Width N (bits) Minimum value
if nullable

Minimum value
if not nullable

Maximum value

64 -9223372036854775807 -9223372036854775808 9223372036854775807

7.18.1.5. Single-Precision

The single precision number format is based on the IEEE 754-2019 single precision (32-bit) format
for binary floating-point arithmetic.

See IEEE 754-2019 for more details on the representable values.

7.18.1.6. Double Precision

The double precision number format is based on the IEEE 754-2019 double precision (64-bit) format
for binary floating-point arithmetic.

The format and interpretation of values of this data type follow the same rules as given for the sin
gle precision data type, but with wider mantissa and exponent ranges.

See IEEE 754-2019 for more details on the representable values.

7.18.1.7. Octet String

The octet string data type defines a sequence of octets with a finite octet count from 0 to 65534. It is
RECOMMENDED to define a constraint on the maximum possible count.

7.18.1.8. List

A list is defined as a collection of entries of the same data type, with a finite count from 0 to 65534.
A cluster specification may define further constraints on the maximum possible count. The list
entry data type SHALL be any defined data type, except a list data type, or any data type derived
from a list.

The quality columns for a list definition are for the list.

The list entries are indicated with an index that is an unsigned integer starting at 0 (zero). The
maintained order of entries, by index, is defined in the cluster specification, or undefined. Data that
is defined as a list is indicated with "list[X]" where X is the entry type. The data type of the list entry
has its own qualities, constraints, and conformance.

To define qualities for the list entry data type, make the list entry data type a defined local derived
data type, with a table including the columns required to define and constrain the data type.

For example: Derived data types defined here:

Name Type Constraint Quality …

Month
NameString

string 3 F …

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 417

MonthNumber uint8 1 to 12 …

SummerStruct defined here:

ID Name Type Constraint Quality …

0 Year int16 -1000 to 3000 …

1 Summer
Months

list[Month
Number]

max 12 N …

Used Here:

ID Name Type Constraint Quality …

0 MonthNames list[Month
NameString]

12 N …

1 SummerYears list[Summer
Struct]

max 50 …

There is an inline shortcut to define the list entry data type constraints. See List Constraints.

For example:

ID Name Type Constraint Quality …

0 MonthNames list[string] 12[3] N … .

It is RECOMMENDED to put a maximum constraint on the list and list entry data types.

It is RECOMMENDED that a list entry data type be a struct, to enable the addition of new fields to
the list’s entries in the future.

• The cluster data version SHALL be incremented when the list order or entries change.

• An entry SHALL NOT be null.

• The list SHALL support reading and reporting all entries.

• The list SHALL support reporting, updates, and/or deletion of one or more entries.

• If the list is writable, it SHALL support writing or deleting the entire list.

• If the list is writable, it SHALL support updating one or more individual entries by indicating an
index per updated entry.

• If the list is writable, it SHALL support deleting one or more individual entries by indicating an
index per deleted entry.

• If the list is writable, it SHALL support adding one or more individual entries.

• A list MAY define an entry that is a struct that is fabric-scoped (see Fabric-Scoped Quality).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 418 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Fabric-Scoped List

• A fabric-scoped list SHALL define an entry data type that is a struct, which SHALL also be fab
ric-scoped (see Fabric-Scoped Struct).

Each entry in a fabric-scoped list SHALL be fabric-scoped to a particular fabric or no fabric.

A fabric-scoped list supports a fabric-filter that filters the view of the list for read and write interac
tions. This filter simplifies client side logic that does not want to read or write fabric data that is not
associated with the accessing fabric.

• An interaction upon a list with fabric-filtering SHALL only indicate and access entries where the
associated fabric matches the accessing fabric, and all other entries SHALL be ignored.

• Fabric-filtered list entries SHALL be in the same order as the full list.

• Fabric-filtered list entries SHALL be indexed from 0 with no gaps, as if the other entries did not
exist.

• For a write interaction, fabric-filtering SHALL be enabled.

• When writing to a fabric-scoped list, the write interaction SHALL be on an accessing fabric, oth
erwise, the write interaction SHALL fail (see Interaction Model).

• For a read interaction on a list, fabric-filtering MAY be enabled.

• For a read interaction on a list, with fabric-filtering disabled, the list SHALL be reported as a full
list with all entries.

For example: A fabric-scoped full list with each entry having an associated FabricIndex and
Value field:

list = [{ FabricIndex = A, Value = 20 },
 { FabricIndex = B, Value = 30 },
 { FabricIndex = A, Value = 40 },
 { FabricIndex = B, Value = 50 },
 { FabricIndex = B, Value = 60 }]

would be a fabric-filtered list when accessed with fabric B:

list = [{ FabricIndex = B, Value = 30 },
 { FabricIndex = B, Value = 50 },
 { FabricIndex = B, Value = 60 }]

Reading a fabric-filtered list entry index 2 accessed with fabric B reports:

list[2] = [{ FabricIndex = B, Value = 60 }]

Writing fabric-filtered list entry index 1 when accessed with fabric B:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 419

list[1] = [{ FabricIndex = B, Value = 55 }]

changes the full list to:

list = [{ FabricIndex = A, Value = 20 },
 { FabricIndex = B, Value = 30 },
 { FabricIndex = A, Value = 40 },
 { FabricIndex = B, Value = 55 },
 { FabricIndex = B, Value = 60 }]

7.18.1.9. Struct

A struct is a sequence of fields of any data type. Individual fields are identified by a field ID of
unsigned integer, starting at 0 (zero), for the first field.

• A struct itself SHALL have no constraint qualities.

• Each struct field SHALL have its own qualities.

• Access, conformance and persistence qualities, when not explicitly defined, SHALL be inherited
from the instance of the struct itself.

• Struct fields MAY have optional conformance.

• A struct SHALL support reading and reporting of all fields.

• A struct SHALL support reporting changes to one or more fields.

• If the struct is writable, it SHALL support writing the entire struct.

• If a field of the struct is writable, the struct SHALL support updating the field.

• Because of optional struct field conformance, instances of the same struct MAY support multiple
'flavors' of the same struct data type, but with a different set of optional fields.

Fabric-Scoped Struct

• A fabric-scoped struct SHALL only be defined and occur as an entry in a fabric-scoped list.

• A fabric-scoped struct SHALL support the global FabricIndex field of type fabric-index, which
indicates the associated fabric of the struct, or indicates that there is no associated fabric.

• The table that defines fields of a fabric-scoped struct SHALL NOT list the global FabricIndex
field, which is a global field and defined implicitly.

• The global FabricIndex field of a fabric-scoped struct SHOULD NOT be indicated in a write inter
action.

• The global FabricIndex field of a fabric-scoped struct SHALL be ignored in a write interaction.

• The global FabricIndex field SHOULD NOT be indicated on a fabric-scoped struct contained in
the payload of a command request.

• The global FabricIndex field SHALL be ignored on a fabric-scoped struct contained in the pay
load of a command request.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 420 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• When a write interaction creates a fabric-scoped struct entry (in a fabric-scoped list), the server
SHALL implicitly load the accessing fabric-index into the global FabricIndex field of the struct.

• When the payload of a command request contains a fabric-scoped struct, the server SHALL
implicitly load the accessing fabric-index into the global FabricIndex field of the struct.

• A fabric-scoped struct MAY be defined with some fields that are fabric-sensitive.

• For interactions on a fabric-scoped struct that report back data, fabric-sensitive struct fields
SHALL NOT be indicated when reporting data back to the client, when the struct has an associ
ated fabric, and it is not the accessing fabric.

7.18.2. Derived Data Types

These data types are commonly used and derived from the base data types. If a data type is used by
more than one cluster specification, then it SHALL be listed here as a derived data type. Such com
mon data types can then be reused instead of redefined in each cluster specification.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 421

Class Data Type Short Base Type ID Size

Analog

Relative

Percentage
units 1%

percent uint8 0xE6 1 bytes

Percentage
units 0.01%

percent100ths uint16 0xE7 2 bytes

Time

Time of day tod struct 0xE0 4 bytes

Date date struct 0xE1 4 bytes

Epoch Time in
microseconds

epoch-us uint64 0xE3 8 bytes

Epoch Time in
seconds

epoch-s uint32 0xE4 4 bytes

UTC Time utc same as Epoch Time in Seconds but Deprecated

POSIX Time in
milliseconds

posix-ms uint64 0xE5 8 bytes

System Time in
microseconds

systime-us uint64 0xD0 8 bytes

System Time in
milliseconds

systime-ms uint64 0xD1 8 bytes

Elapsed Time
in seconds

elapsed-s uint32 0xD2 4 bytes

Physical Quantities

Temperature temperature int16 0xD8 2 bytes

Power power-mW int64 0xD9 8 bytes

Amperage amperage-mA int64 0xDA 8 bytes

Voltage voltage-mW int64 0xDB 8 bytes

Energy energy-mWh int64 0xDC 8 bytes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 422 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Class Data Type Short Base Type ID Size

Discrete

Enumeration

8-bit enumera
tion

enum8 uint8 0x30 1 byte

16-bit enumer
ation

enum16 uint16 0x31 2 bytes

Priority priority enum8 0x32 1 byte

Status Code status enum8 0x33 1 byte

Identifier

Group ID group-id uint16 0xC0 2 bytes

Endpoint Num
ber

endpoint-no uint16 0xC1 2 bytes

Vendor ID vendor-id uint16 0xC2 2 bytes

Device Type ID devtype-id uint32 0xC3 4 bytes

Fabric ID fabric-id uint64 0xC4 8 bytes

Fabric Index fabric-idx uint8 0xC5 1 byte

Cluster ID cluster-id uint32 0xE8 4 bytes

Attribute ID attrib-id uint32 0xE9 4 bytes

Field ID field-id uint32 0xEB 4 bytes

Event ID event-id uint32 0xEC 4 bytes

Command ID command-id uint32 0xED 4 bytes

Action ID action-id uint8 0xEE 1 bytes

Transaction ID trans-id uint32 0xEF 4 bytes

Node ID node-id uint64 0xF0 8 bytes

IEEE Address EUI64 same as Node ID but Deprecated

Index

Entry Index entry-idx uint16 0xC6 2 bytes

Counter

Data Version data-ver uint32 0xC7 4 bytes

Event Number event-no uint64 0xC8 8 bytes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 423

Class Data Type Short Base Type ID Size

Composite

String

Character
String

string octstr 0x42 desc

Address

IP Address ipadr octstr 0xF2 4 or 16 bytes

IPv4 Address ipv4adr octstr 0xF3 4 bytes

IPv6 Address ipv6adr octstr 0xF4 16 bytes

IPv6 Prefix ipv6pre octstr 0xF5 1 to 17 bytes

Hardware
Address

hwadr octstr 0xF6 6 or 8 bytes

Tag

Semantic Tag semtag struct 0xC9 4 bytes

Namespace namespace enum8 0xCA 1 byte

Tag tag enum8 0xCB 1 byte

7.18.2.1. Percentage units 1%

A Percentage is an unsigned 8-bit value representing percent with a resolution of 1%. The range is
from 0 (0%) to 100 (100%).

7.18.2.2. Percentage100ths: Percentage in units of 0.01%

A Percentage 100ths is an unsigned 16-bit value representing percent with a resolution of 0.01%.
The range is from 0 (0.00%) to 10000 (100.00%).

7.18.2.3. Time of Day

The Time of Day data type SHALL be a struct with these fields: Hours, Minutes, Seconds, and Hun
dredths.

The hours field represents hours according to a 24-hour clock. The range is from 0 to 23. The min
utes field represents minutes of the current hour. The range is from 0 to 59. The seconds field repre
sents seconds of the current minute. The range is from 0 to 59. The hundredths field represents
100ths of the current second. The range is from 0 to 99. A value of null in any subfield indicates an
unused subfield. If all subfields have a value of null, this indicates a null time of day.

7.18.2.4. Date

This data type SHALL be a struct as defined below.

ID Name Type Constraint Quality Default Access Confor
mance

0 Year uint8 all X null M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 424 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

1 Month uint8 1 to 12 X null M

2 Day uint8 1 to 31 X null M

3 Day
OfWeek

uint8 1 to 7 X null M

Valid combinations using null fields are shown below:

Year Month Day DayOfWeek Meaning

2023 6 9 5 2023-June-09
which is a Friday

2023 6 null null 2023-June

2023 null null null 2023

null 6 9 null June-09 if this year

null null 9 null the 9th of this
month

null null null 5 Friday of this
week

null null null null no date

Year Field

The year subfield represents years from 1900 (0) to 2155 (255).

Month Field

This field represents months January (1) to December (12).

Day Field

This field represents the day of the month. Note that values in the range 29 to 31 may be invalid,
depending on the month and year.

DayOfWeek Field

This represents the day of the week from Monday (1) to Sunday (7).

7.18.2.5. Epoch Time in Microseconds

This type represents an offset, in microseconds, from 0 hours, 0 minutes, 0 seconds, on the 1st of
January, 2000 UTC (the Epoch), encoded as an unsigned 64-bit scalar value.

This offset is the sum of two parts: time elapsed, not counting leap-seconds, and a local time offset.
The local time offset MAY include a timezone offset and a MAY include a DST offset.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 425

Any use of this type SHALL indicate how the associated local time offset is determined in the spe
cific context of that use. This MAY be done, for example, by simply saying the time is a UTC time, in
which case the local time offset is 0.

A given Epoch Time value MAY be interpreted in at least two ways:

1. The value can be converted to a local clock date/time (year, month, day, hours, minutes, sec
onds, microseconds) by treating the local time offset as 0 and finding the UTC (year, month, day,
hours, minutes, seconds, microseconds) tuple that corresponds to an elapsed time since the
epoch time equal to the given value. The value then represents that tuple, but interpreted in the
specific timezone and DST situation associated with the value. This procedure does not require
knowing the local time offset of the value.

2. The value can be converted to a UTC time by subtracting the associated local time offset from
the Epoch Time value and then treating the resulting value as an elapsed count of microseconds
since the epoch time.

For example, an Epoch Time value of 0x0000_0BF1_B7E1_0000 corresponds to an offset of exactly
152 days. This can be interpreted as "00:00:00 on June 1, 2000" in whatever local time zone is associ
ated with the value. That corresponds to the following times in ISO 8601 notation:

• 2000-06-01T00:00Z if the associated local time offset is 0 (i.e. the value is in UTC).

• 2000-05-31T23:00Z if the associated local time offset is +1 hour (e.g. the CET timezone, without
daylight savings).

• 2000-06-01T00:00+02 if the associated local time offset is +1 hour.

• 2000-06-01T04:00Z if the associated local time offset is -4 hours (e.g. the EDT time zone, which
includes daylight savings).

• 2000-06-01T00:00-04 if the associated local time offset is -4 hours.

Conversion from NTP timestamps

Timestamps from NTP also do not count leap seconds, but have a different epoch. NTP 128-bit time
stamps consist of a 64-bit seconds portion (NTP(s)) and a 64-bit fractional seconds portion
(NTP(frac)). NTP(s) at 00:00:00 can be calculated from the Modified Julian Day (MJD) as follows:

NTP(s) = (MJD-15020) * (24*60*60)

where 15020 is the MJD on January 1, 1900 (the NTP epoch)

NTP(s) on January 1, 2000 00:00:00 UTC (MJD = 51544) is 3155673600 (0xBC17C200)

Epoch Time has a microsecond precision, and this precision can be achieved by using the most sig
nificant 32 bits of the fractional portion (NTP(frac32)). Conversion between the 128-bit NTP time
stamps and a UTC Epoch Time in Microseconds is as follows:

UTC Epoch Time = (NTP(s) - 0xBC17C200)*10^6 + ((NTP(frac32)*10^6) / 2^32) where all numbers are
treated as unsigned 64-bit integers and the division is integer division.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 426 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.18.2.6. Epoch Time in Seconds

This type has the same semantics as Epoch Time in Microseconds, except that:

• the value encodes an offset in seconds, rather than microseconds;

• the value is encoded as an unsigned 32-bit scalar, rather than 64-bit.

This type is employed where compactness of representation is important and where the resolution
of seconds is still satisfactory.

7.18.2.7. POSIX Time in milliseconds

This type represents an offset, in milliseconds, from the UNIX epoch (1970-01-01 00:00:00 UTC),
encoded as an unsigned 64-bit scalar value.

This type is employed for compatibility reasons.

7.18.2.8. System Time in microseconds

System time in microseconds is an unsigned 64-bit value representing the number of microseconds
since boot.

7.18.2.9. System Time in milliseconds

System time in milliseconds is an unsigned 64-bit value representing the number of milliseconds
since boot.

This type is employed for compatibility reasons.

7.18.2.10. Elapsed Time in seconds

Elapsed time in seconds is an unsigned 32-bit value representing the time that has elapsed for an
operation or other activity, as determined by the definition of the attribute using this type.

7.18.2.11. Temperature

This type, derived from int16, represents a temperature on the Celsius scale with a resolution of
0.01°C.

• value = (temperature in °C) x 100

• -4°C ⇒ -400

• 123.45°C ⇒ 12345

The range is constrained by absolute zero: -273.15°C to 327.67°C.

Conversion of Temperature Values for Display

When converting temperature values for display manufacturers SHOULD ensure that calculations
round to the nearest representable value. Particular care is needed when using integer arithmetic.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 427

For example, assuming a display resolution of 0.5:

Attribute value Temperature Display as

°C/100 °C °F °C °F

1965 19.65 67.37 19.5 67.5

-545 -5.45 22.19 -5.5 22

-1823 -18.23 -0.81 -18 -1

Sample Conversion Code

Sample code provided to ensure consistent Fahrenheit to Celsius and vice-versa conversion
between devices and across vendors.

For degF: the value is a int8u representing 2x temperature
value in Fahrenheit (to get 0.5 resolution).

For degC: the value is a int16s representing Celsius in
0.01 resolution as expected by the ZCL format.

/*
 * Function : translateZclTemp()
 * Description : Converts the temperature setpoints in ZCL
 * to the half degF format.
 * The half degF format is 8-bit unsigned,
 * and represents 2x temperature value in
 * Fahrenheit (to get 0.5 resolution).
 * The format used in ZCL is 16-bit signed
 * in Celsius and multiplied by 100
 * to get 0.01 resolution.
 * e.g. 2500 (25.00 deg C) ---> 0x9A (77 deg F)
 * Input Para : Temperature in ZCL (degC) format
 * Output Para: Temperature in half DegF format
 */
int8u translateZclTemp(int16s temperature)
{
 int32s x = temperature;
 // rearrangement of
 // = (x * (9/5) / 100 + 32) * 2;
 // the added 250 is for proper rounding.
 // a rounding technique that only works
 // with positive numbers

 return (int8u) ((x*9*2 + 250)/ (5*100) + 64);
}

/*
 * Function : translateDegFTemp

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 428 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 * Description : Converts the temperature in DegF
 * protocol to the format
 * expected by the cluster attribute
 * Measured Value in the
 * Temperature Measurement
 * Information Attribute Set.
 * The half deg F format is 8-bit
 * unsigned, and represents
 * 2x temperature value in
 * Fahrenheit (to get 0.5 resolution).
 * The format expected by cluster
 * is 16-bit signed in Celsius and
 * multiplied by 100 to get
 * 0.01 resolution.
 * e.g. 0x9A (77 deg F) ---> 2500 (25.00 deg C)
 * Input Para : temperature in DegF format
 * Output Para: temperature in ZCL format
 */
int16s translateDegFTemp(int8u temperature)
{
 int32s x = temperature;

 // rearrangement of
 // = 100 * (x/2 - 32) * 5/9
 // *1000 (should be 100), +90, then /10,
 // is for rounding.

 return (int16s) (((x - 64)*5*1000 + 90) / (10*2*9));
}

7.18.2.12. Power

This type, derived from int64, represents power measured in milliwatts.

7.18.2.13. Amperage

This type, derived from int64, represents amperage measured in milliamps.

7.18.2.14. Voltage

This type, derived from int64, represents voltage measured in millivolts.

7.18.2.15. Energy

This type, derived from int64, represents energy measured in milliwatt-hours.

7.18.2.16. Enumeration (8-bit, 16-bit)

This data type employs scalars to represent context-specific values available from an enumerated
set. This data type is nullable.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 429

A data field of this type SHALL have well-defined values with well-defined conformance for imple
mentation. A base cluster that requires derivation MAY defer the definition of all or some enumer
ated values to the derivation that can be implemented. Such a base cluster MAY also define con
straints, such as ranges and semantics of those ranges for the enumeration.

Values for an enumeration MAY be defined directly in a cluster specification, in a derived cluster
specification, or in a separate namespace defined in the cluster specification. For examples, please
see uses of the SemanticTagStruct data type that supports many (and any) standard namespaces.

Undefined values or ranges SHALL be considered reserved and SHALL NOT be implemented.

External standards may be referenced as well as listing the values for the external standard. If the
external standard adds values after a specification is adopted, those new values are allowed, but
optional.

Enumeration values are defined in a table with a Conformance column. When the definition of an
enumeration is missing a Conformance column, all values SHALL be considered to have mandatory
conformance.

All mandatory readable enumeration values SHALL be understood by the client. All mandatory
writable enumeration values SHALL be understood by the server.

If a client indicates an enumeration value to the server, that is not supported by the server, because
it is optional, deprecated, or a new value unrecognized by a legacy server, then the server SHALL
respond with the status code CONSTRAINT_ERROR, unless the cluster defines alternate behavior,
such as:

• convert the value to a mandatory value

• ignore the value

• generate a cluster specific error

With regard to revising a cluster specification:

• It is RECOMMENDED that a client be as strict as possible by indicating only values that a server
supports.

• It is RECOMMENDED that the server be as forgiving as possible when processing unsupported
values.

Note that indicated enumerations MAY comprise only a strict subset of the required enumerations.

For example: If a server implementation can never enter an enumerated state XYZ, then the
value XYZ would never be indicated, therefore the server would not have to support XYZ.

8-bit Enumeration

This type is used for enumeration types that need no more than 256 possible values.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 430 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

16-bit Enumeration

This type is used for enumeration types that need more than 256 (but less than 65,536) possible val
ues.

7.18.2.17. Priority

This is an enumeration of priority used to tag events and possibly other data. The data type does
not define any particular ordering among the values. Specific uses of the data type may assign
semantics to the values that imply an ordering relationship.

Value Priority Description

0 DEBUG Information for engineering
debugging/troubleshooting

1 INFO Information that either drives
customer facing features or pro
vides insights into device func
tions that are used to drive ana
lytics use cases

2 CRITICAL Information or notification that
impacts safety, a critical func
tion, or ongoing reliable opera
tion of the node or application
supported on an endpoint.

7.18.2.18. Status Code

An enumeration value that means a success or error status. A status code is indicated as a response
to an action in an interaction (see Interaction Model).

A status code SHALL be one of:

• a common status code from the set defined in the Interaction Model status code table;

• a cluster status code that is scoped to a particular cluster.

The following table defines the enumeration ranges for status codes.

Status Code Range Description

0x00 common status code: SUCCESS

0x01 common status code: FAILURE

0x02 to 0x10 cluster scoped status codes

0x70 to 0xCF other common status codes defined in Interac
tion Model Status Code Table.

Status codes in an undefined range, or status codes undefined within a range are reserved and
SHALL NOT be indicated.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 431

7.18.2.19. Fabric ID

A value to identify a fabric.

7.18.2.20. Fabric Index

This is an index that maps to a particular fabric on the node, see Fabric-Index. It is used for:

• the accessing fabric index of an interaction

• the FabricIndex global field in fabric-scoped data

7.18.2.21. Node ID

A 64-bit ID for a node scoped and unique to a particular fabric as indicated by an accompanying
fabric-index adjacent instantiation.

7.18.2.22. Group ID

A 16-bit ID for a group scoped to a particular fabric as indicated by an accompanying fabric index
adjacent instantiation.

7.18.2.23. Endpoint Number

An unsigned number that indicates an instance of a device type.

7.18.2.24. Vendor ID

A Vendor ID.

Vendor IDs MAY be used as a prefix in a Manufacturer Extensible Identifier format.

7.18.2.25. Device Type ID

An identifier that indicates conformance to a device type.

Device Type IDs SHALL be a Manufacturer Extensible Identifier. The specifics of its representation
are described in Data Model Types.

7.18.2.26. Cluster ID

An identifier that indicates conformance to a cluster specification.

Cluster IDs SHALL be a Manufacturer Extensible Identifier. The specifics of its representation are
described in Data Model Types.

7.18.2.27. Attribute ID

An identifier that indicates an attribute defined in a cluster specification.

Attribute IDs SHALL be a Manufacturer Extensible Identifier. The specifics of its representation are
described in Data Model Types.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 432 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

7.18.2.28. Field ID

An identifier that indicates a field defined in a struct.

Field IDs SHALL be a Manufacturer Extensible Identifier. The specifics of its representation are
described in Data Model Types.

7.18.2.29. Event ID

An identifier that indicates an Event defined in a cluster specification.

Event IDs SHALL be a Manufacturer Extensible Identifier. The specifics of its representation are
described in Data Model Types.

7.18.2.30. Command ID

An identifier that indicates a command defined in a cluster specification.

Command IDs SHALL be a Manufacturer Extensible Identifier. The specifics of its representation
are described in Data Model Types.

7.18.2.31. Action ID

An identifier that indicates an action as defined in the Interaction Model specification.

7.18.2.32. Transaction ID

An identifier for a transaction as defined in the Interaction Model specification, see Transaction ID.

7.18.2.33. Entry Index

This is an index for a list data type.

7.18.2.34. Data Version

An unsigned number that indicates a Data Version.

7.18.2.35. Event Number

An unsigned number that indicates an Event instance.

7.18.2.36. Character String

The character string data type is derived from an octet string. The octets SHALL be characters with
UTF-8 encoding. An instance of this data type SHALL NOT contain truncated code points.

Note that the character string type is a bounded sequence of characters whose size bound format is
not specified in the data model, but rather a property of the underlying encoding. Therefore, no
assumptions are to be made about the presence or absence of a length prefix or null-terminator
byte, or other implementation considerations.

It is RECOMMENDED to define constraints on the maximum possible string length.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 433

If at least one of the code points within the string has value 31 (0x1F), which is Unicode INFORMATION
SEPARATOR 1 and ASCII Unit Separator, then any client making use of the string SHALL only consider
the code points that appear before the first INFORMATION SEPARATOR 1 as being the textual informa
tion carried by the string. Any comparison between such a string and other strings SHALL use the
textual component before the first INFORMATION SEPARATOR 1. The remainder of the character string
after a first INFORMATION SEPARATOR 1 is reserved for future use by this specification. Implementa
tions of this version of the specification SHALL NOT produce character strings containing INFORMA
TION SEPARATOR 1.

7.18.2.37. IP Address

Either an IPv4 or an IPv6 address as defined below.

7.18.2.38. IPv4 Address

The IPv4 address data type is derived from an octet string. The octets SHALL correspond to the four
octets in network byte order that comprise an IPv4 address represented utilizing quad-dotted nota
tion.

Examples of encoding:

• Address 192.168.2.235 → C0A802EB

• Address 10.4.200.75 → 0A04C84B

7.18.2.39. IPv6 Address

The IPv6 address data type is derived from an octet string. The octets SHALL correspond to the full
16 octets that comprise an IPv6 address as defined by RFC 4291. The octets SHALL be presented in
network byte order.

Examples of encoding:

• Address 2001:DB8:0:0:8:800:200C:417A → 20010DB80000000000080800200C417A

• Address 2001:0DB8:1122:3344:5566:7788:99AA:BBCC → 20010DB8112233445566778899AABBCC

7.18.2.40. IPv6 Prefix

The IPv6 prefix data type is derived from an octet string. The octets SHALL be encoded such that:

• The first octet SHALL encode the prefix length, in bits, in the range of 0 to 128.

◦ A value of 0 indicates an absent/invalid prefix.

• The subsequent octets SHALL encode the contiguous leftmost bits of the prefix, in network byte
order, with left justification, such that the first bit of the prefix is in the most significant bit of
the first octet. Encoding SHOULD use the least number of bytes to encode the prefix but MAY
include unused trailing zeroes.

Examples of encoding:

• Preferred minimal encoding: Prefix 2001:0DB8:0:CD30::/60 → 9 octets → 3C20010DB80000CD30

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 434 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Preferred minimal encoding: Prefix 2001:0DB8:BB00::/40 → 6 octets → 2820010DB8BB

• Allowed non-minimal encoding: Prefix 2001:0DB8:BB00::/40 → 7 octets → 2820010DB8BB00

7.18.2.41. Hardware Address

The Hardware Address data type SHALL be either a 48-bit IEEE MAC Address or a 64-bit IEEE MAC
Address (e.g. EUI-64). The order of bytes is Big-Endian or display mode, where the first byte in the
string is the left most or highest order byte.

7.18.2.42. SemanticTagStruct

This data type SHALL be represented by the following structure:

ID Name Type Constraint Quality Access Default Confor
mance

0 MfgCode vendor-id X null M

1 Name
spaceID

namespace M

2 Tag tag M

3 Label string max 64 X null MfgCode !=
null, O

MfgCode Field

If the MfgCode field is not null, it SHALL be the Vendor ID of the manufacturer who has defined a
certain namespace and the NamespaceID field SHALL be the ID of a namespace defined by the
manufacturer identified in the MfgCode field.

If a manufacturer specific Tag field is indicated in a list of SemanticTagStruct entries, the list SHALL
include at least one standard tag which is not from any manufacturer’s namespace. A standard tag
is a tag from a common namespace, a derived cluster namespace, or an applicable device-specific
namespace.

If MfgCode is null, the NamespaceID field SHALL indicate a standard namespace.

NamespaceID Field

The NamespaceID field SHALL identify a namespace.

The common and device-specific semantic tag namespaces are listed in StandardNamespaces.

Tag Field

The Tag field SHALL be the ID of a semantic tag located within the namespace indicated by Name
spaceID.

A device MAY expose tags from the common or device-specific namespaces and from manufac
turer-specific namespaces in a single TagList.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 435

Label Field

The Label field, if present, SHALL contain human-readable text suitable for display on a client. The
content of the Label field is defined by the manufacturer.

This field SHALL be present when the MfgCode is not null. This field SHOULD NOT be used if the
Tag is from a standard namespace, unless the Tag requires further qualification. For example: A
Tag that has the meaning of "room" in a location namespace, would require the a label string to
qualify the type of room, such as "1", "2b", "Bathroom", etc.

7.18.2.43. Namespace

The Namespace type identifies the namespace used for a semantic tag.

7.18.2.44. Tag

The Tag type SHALL identify a semantic tag located within a namespace.

7.19. Manufacturer Specific Extensions
This section covers Manufacturer Specific (MS) extensions and how they are supported by identi
fiers, paths, wildcards, discoverability, etc.

7.19.1. Manufacturer Extensible Identifiers

A Manufacturer Extensible Context (MEC) contains a collection of items which MAY be extended by
manufacturers. Each item in a MEC has a source which is either Standard, Scoped or a particular
Manufacturer Code (MC).

• A Standard source references definitions described in Matter standard clusters.

• A Scoped source adopts the same source as that of the cluster that contains its definition.

• An MC-based source references manufacturer-specific definitions.

Table 64. MEC Example

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 436 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Context Source Items

MEC

Standard

Item 0

Item 1

Item 2

Scoped

Item 0

Item 1

Item 2

MC 1

Item 0

Item 1

Item 2

MC 2

Item 0

Item 1

Item 2

A Manufacturer Extensible Identifier (MEI) identifies an item in an MEC and has no meaning
beyond the context of that MEC.

7.19.2. Manufacturer Extensible Identifier (MEI)

An MEI has the following format:

Table 65. MEI Format

Field Prefix Suffix

Description Encodes a source
(standard, scoped or a particu

lar MC)

Encodes an item’s key
(in context of MEC + source)

Width 16-bit 16-bit

Bit Positions 31..16 15..0

The MEI permits encoding of ~65K keys in the suffix.

A specific MEI MAY only permit certain combinations of the above.

7.19.2.1. Encoding

The MEI prefix encodes the source Vendor ID and follows the same rules as outlined in Table 1,
“Vendor ID Allocations”, with the exception that a Scoped source is encoded using the same prefix
as a Standard source. Consequently, a given MEI SHALL NOT permit both Standard and Scoped
source types given the ambiguity in telling them apart.

Given the above, the encoding is as follows:

Table 66. MEI Prefix

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 437

Prefix Source

0x0000 Standard OR Scoped

0x0001 - 0xFFF0 Manufacturer Code as per CSA Manufacturer
Code Database

0xFFF1 - 0xFFF4 Test Vendor MC

The MEI suffix encodes a key as follows:

Table 67. MEI Suffix

Suffix Item

0x0000 - 0xFFFE Item 0 to 65534

7.19.2.2. Data Model Types

The following data model types SHALL be represented as MEIs:

Table 68. MEI Suffix

Type Permitted Source Types Suffix Range

Device Type ID Standard or MC 0x0000 - 0xBFFF

Cluster ID Standard or MC Standard Cluster: 0x0000 -
0x7FFF

Manufacturer-Specific Cluster:
0xFC00 - 0xFFFE

Attribute ID (Global) Standard 0xF000 - 0xFFFE

Attribute ID (Non-Global) Scoped or MC 0x0000 - 0x4FFF

Event ID Scoped or MC 0x00 - 0xFF

Command ID Scoped or MC 0x00 - 0xFF

Field ID (Global) Standard 0xE0 - 0xFE

Field ID (Non-Global) Scoped or MC 0x00 - 0xDF

For those types which are listed with an 8 bit suffix range in this table (i.e. Event ID, Command ID
and Field ID), the 16-bit MEI Suffix SHALL be constructed by padding the 8-bit data with a most sig
nificant byte set to zero.

For example:

Table 69. MEI Decoding Example

MEI Description

0x0000_0000 Standard/Scoped item 0

0x0000_0001 Standard/Scoped item 1

0x0000_0002 Standard/Scoped item 2

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 438 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

MEI Description

0x0000_FFFE Standard/Scoped item 65534

0x0001_0000 MC 1 item 0

0x0001_0001 MC 1 item 1

0x0001_0002 MC 1 item 2

0x0001_FFFE MC 1 item 65534

0x0002_0000 MC 2 item 0

0x0002_0001 MC 2 item 1

0x0002_0002 MC 2 item 2

0x0002_FFFE MC 2 item 65534

0xFFFF_0000 Invalid

7.19.3. Manufacturer Extensions

A manufacturer extensible context MAY be extended with items from any manufacturer. Such
extensions SHALL be identified using an MEI with prefix for that particular manufacturer, and
SHALL NOT use a standard/scoped prefix.

There are further constraints:

• MS extensions SHALL only be permitted on standard clusters or another existing MS extension
of a standard cluster from another manufacturer.

• An extended cluster MAY instantiate a struct definition defined in the standard cluster.

• A struct that has been extended with new fields SHALL have the same definition in all instances
of that struct within a given cluster definition.

• A defined element (struct, command, event) SHALL NOT be re-used or instantiable in a different
cluster (except in extended clusters)

This is illustrated by the following hypothetical scenario.

Suppose the standard provides cluster ABCD which contains related counters and their recent statis
tics. The counter values are available as attributes 1 and 2, which are reset daily. The statistics are
grouped into a SummarizedStats struct, available as attributes 3 and 4, and track summary statistics
for each counter over a recent period (last month). Each instance of the statistics struct has fields 1,
2, and 3, for minimum, maximum, and mean values for that period.

Suppose manufacturer A extends the standard cluster with additional statistics (marked with 1

below). A adds lifetime counts as attributes 0x000A_0001 and 0x000A_0002, which are never reset. A
also adds quartiles Q1, Q2, and Q3 to the standard SummarizedStats struct, as fields 0x000A_0001,
0x000A_0002, and 0x000A_0003. These quartiles are available for all existing instances of the standard
struct, such as standard attributes 3 and 4.

Suppose manufacturer B, a partner of manufacturer A, extends the standard cluster further
(marked with 2 below). B wishes to add instances of the standard statistics struct, as attributes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 439

0x000B_0001 and 0x000B_0002, to track summary statistics for each counter, over a different recent
period (last year instead of last month). Since manufacturer A had already extended the standard
statistics struct, the instantiation of that struct will contain both standard and A’s fields. If B desires
to create a new version of that statistics struct without A’s changes, it would have to declare a new
definition of that struct with new fields in it.

Suppose manufacturer C, a partner of manufacturers B and A, adds a MS cluster 0x000C_FC01
(marked with 3 below) that doesn’t extend an existing standard cluster. This cluster has a sensor
available as attribute 0x0000_0001 of type SensorStats, which has fields 0x0000_0001, 0x0000_0002, and
0x0000_0003, for the sensor’s value, precision, and accuracy. Since Attribute and Field IDs are
defined using the 'Scoped' source type, the prefix of '0000' implicitly equates to the same source as
the cluster it is defined in, i.e Manufacturer C. C also wishes to add an instance of the Summarized
Stats struct as attribute 0x000C_0002, to track summary statistics for the sensor over a recent period
(last hour). Since this cluster does not extend any previous cluster, it cannot instantiate any of the
extended versions of the SummarizedStats struct as defined previously. Instead, C will have re-define
that structure definition within its cluster definition and use it.

Table 70. Hypothetical Standard Cluster

Endpoint Cluster Attribute Attribute Description Struct Field Field
Description

0x0001 0x0000_ABCD 0x0000_0001 Counter 1 current value (reset daily) - -

0x0000_0002 Counter 2 current value (reset daily) - -

0x0000_0003 Counter 1 (period = month) 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x0000_0004 Counter 2 (period = month) 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

Table 71. Hypothetical Manufacturer A Extension Scenario

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 440 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Endpoint Cluster Attribute Attribute Description Struct Field Field
Description

0x0001 0x0000_ABCD 0x0000_0001 Counter 1 current value (reset daily) - -

0x0000_0002 Counter 2 current value (reset daily) - -

0x0000_0003 Counter 1 (period = month) 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x000A_0001
1

Q1 count
1

0x000A_0002
1

Q2 count
1

0x000A_0003
1

Q3 count
1

0x0000_0004 Counter 2 (period = month) 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x000A_0001
1

Q1 count
1

0x000A_0002
1

Q2 count
1

0x000A_0003
1

Q3 count
1

Table 72. Hypothetical Manufacturer B Extension of A Scenario

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 441

Endpoint Cluster Attribute Attribute Description Struct Field

^

Field
Description

0x0001 0x0000_ABCD 0x0000_0001 Counter 1 current value (reset daily) - -

0x0000_0002 Counter 2 current value (reset daily) - -

0x0000_0003 Counter 1 (period = month) 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x000A_0001
1

Q1 count
1

0x000A_0002
1

Q2 count
1

0x000A_0003
1

Q3 count
1

0x0000_0004 Counter 2 (period = month) 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x000A_0001
1

Q1 count
1

0x000A_0002
1

Q2 count
1

0x000A_0003
1

Q3 count
1

0x000B_0001
2

Counter 1 (period = month)
2 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x000A_0001
1

Q1 count
1

0x000A_0002
1

Q2 count
1

0x000A_0003
1

Q3 count
1

0x000B_0002
2

Counter 2 (period = month)
2 0x0000_0001 Min count

0x0000_0002 Max count

0x0000_0003 Mean count

0x000A_0001
1

Q1 count
1

0x000A_0002
1

Q2 count
1

0x000A_0003
1

Q3 count
1

Table 73. Hypothetical Manufacturer C Custom Cluster

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 442 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Endpoint Cluster Attribute Attribute Description Struct Field Field
Description

0x0001 0x000C_FC01
3

0x0000_0001
3

Sensor 1 Stats
3 0x0000_0001

3
Value

3

0x0000_0002
3

Precision
3

0x0000_0003
3

Accuracy
3

0x0000_0002
3

Counter 1 (period = hour)
3 0x0000_0001

3
Min daily
count

3

0x0000_0002
3

Max daily
count

3

0x0000_0003
3

Mean daily
count

3

Note the following potential combinations of path components:

Table 74. Hypothetical Manufacturer Extension Path Examples

Description

0x0001/0x0000_ABCD/0x0000_0003/0x0000_0001 Cluster ID = Standard, Attribute ID = Scoped,
Field ID = Scoped:
Counter 1 min value

0x0001/0x0000_ABCD/0x0000_0003/0x000A_0001 Cluster ID = Standard, Attribute ID = Scoped,
Field ID = MS(A):
Counter 1 Q1 daily count over last month

0x0001/0x0000_ABCD/0x000B_0001/0x0000_0001 Cluster ID = Standard, Attribute ID = MS(B),
Field ID = Scoped:
Counter 1 Q1 daily count over last year

0x0001/0x0000_ABCD/0x000B_0001/0x000A_0001 Cluster ID = Standard, Attribute ID = MS(B),
Field ID = MS(A):
Counter 1 Q1 daily count over last year

0x0001/0x000C_FC01/0x0000_0001/0x0000_0002 Cluster ID = MS(C), Attribute ID = Scoped, Field
ID = Scoped:
Sensor 1 precision

0x0001/0x000C_FC01/0x0000_0002/0x0000_0003 Cluster ID = MS(C), Attribute ID = Scoped, Field
ID = Scoped:
Counter 1 (period = hour) Mean

0x0001/0x000C_FC01/0x0000_FFFD Cluster ID = MS(C), Attribute ID = Standard:
Cluster revision

7.19.4. Discoverability

The Descriptor Cluster reports the device types and clusters on a node’s endpoints, whether they
are standard or from a particular manufacturer.

For example, if a node supports cluster 0x000C_ABCD on endpoints 1 and 2, that information is avail
able in the Descriptor Cluster.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 443

The Read Interaction provides a means to read the contents of all or part of a cluster.

For example, reading cluster 0x0000_ABCD on endpoint 1 might return mandatory attribute
0x0000_0001, optional attribute 0x0000_0009, and MS attributes 0x000A_0001 and 0x000A_0002.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 444 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 8. Interaction Model Specification

8.1. Practical Information

8.1.1. Revision History

Please note that Matter revision 1.0 SHALL be considered equivalent to revision 10.

Revision Description

1 Equivalent to revision 10 (1st Matter release of
the Interaction Model)

2-9 Released as versions of the Zigbee Cluster
Library chapter 2 which combined the interac
tion model with encoding

10 Initial Release of this specification (Matter 1.0)

11 Updated Event error processing (Matter 1.2)

12 Added WildcardPathFlags to AttributeDataIB,
and associated behavior; added support for mul
tiple CommandDataIB in one Invoke Request
(Matter 1.3)

8.1.2. Scope & Purpose

This is part of a package of Data Model specifications that are agnostic to underlying layers (encod
ing, message, network, transport, etc.). Each specification below may be independently maintained.
This package, as a whole, SHALL be independently maintained as agnostic and decoupled from
lower layers. This package may be referenced by inclusion in vertical protocol stack specifications.

Data Model Defines first order elements and namespace for endpoints, clusters,
attributes, data types, etc.

Interaction Model Defines interactions, transactions and actions between nodes.

System Model Defines relationships that are managed between endpoints and clusters.

Cluster Library Reference library of cluster specifications.

Device Library Reference library of devices type definitions.

8.1.3. Origin Story

The original baseline for this section comes from the Zigbee Cluster Library [ZCL] Chapter 2 relat
ing to ZCL commands and interactions. This specification addresses these gaps determined by the
Data Model Tiger Team:

• Multi-Element Message support

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 445

• Synchronized Reporting

• Reduce message types (commands & actions)

• Complex data type support in all messages

• Events

• Interception attack

8.1.4. Purpose

The purpose is to define a layer that abstracts interactions from other layers, including security,
transport, message format & encoding. The intent is that this document will align with current clus
ter specifications in the ZCL (revision 8 at this time), and still support cluster evolution over time.

8.1.5. Glossary

Term Short Spec Details Description

Wildcardable A this spec able to indicate all cur
rent instances of the
data

Optional O Data Model only required for some
action behavior

Quality Qual, Q Data Model quality of information
in an information block

Action Flow this spec direction flow of
actions

Path this spec a path to an element
(see Path)

Group Path this spec a path with a group ID
instead of node ID and
endpoint number (see
Group Path)

Wildcard Path this spec a path with one or
more elements that are
wildcards (see Wild
card Path)

Attribute Path this spec a path to an attribute
data field path for
attribute data (see
Attribute Path)

Request Path this spec a path that may be a
group or wildcard path
(see Request Path)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 446 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Term Short Spec Details Description

Concrete Path this spec a path that is not a
group or wildcard path
(see Concrete Path)

Existent Path this spec a concrete path that
exists on a server clus
ter (see Existent Path)

Supported Data Model the indicated element is
supported by the imple
mented instance

Unsupported Data Model the indicated element is
not supported by the
implemented instance

8.1.6. Conventions & Conformance

Please see the Data Model specification.

8.2. Concepts
Relationships between devices are established using data model elements and interactions defined
here. Please see the System Model specification for more information.

An interaction is a sequence of transactions. A transaction is a sequence of actions.

An action is a single logical communication from a source node to one or more destination nodes.
An action is conveyed by one or more messages.

The actual construction and encoding of messages is left to the message layer, which is the layer
below this layer.

• The protocol layers below this layer MAY have constraints that only support a subset of the
functionality described here.

Examples:

• A client may choose Read interactions instead of Subscribe interactions.

• A client may choose to not Write or Invoke commands.

8.2.1. Path

A path is used to indicate one or more element instances in the data model. The path has the form
as described in Augmented Backus–Naur:

<path> ::= <target> <cluster> <cluster element>

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 447

<target> ::= <group target> | <endpoint target>
<group target> ::= <group ID>
<endpoint target> ::= <node> <endpoint>
<endpoint> ::= <wildcard endpoint> | <concrete endpoint>
<cluster> ::= <wildcard cluster> | <concrete cluster>
<cluster element> ::= <attribute> | <event> | <command>

An Attribute Path is a path indicating an <attribute>.

A Command Path is a path indicating a <command>.

An Event Path is a path indicating an <event>.

8.2.1.1. Concrete Path

• A concrete path SHALL NOT have group IDs or wildcards.

• A concrete path SHALL indicate a single element instance that is either:

◦ an event with the path ending in an event ID

◦ a command with the path ending in a command ID

◦ an attribute with the path ending in an attribute ID

◦ a struct field with the path ending in a field ID

◦ a list entry with the path ending in a list entry index.

8.2.1.2. Existent Path

• An existent path is a concrete path that indicates a single existing instance on the node indi
cated in the path.

8.2.1.3. Group Path

A group path is a path that targets endpoints that are members of a group, using group ID, instead
of indicating a node and endpoint.

• A group path SHALL resolve into zero or more paths.

• A group path SHALL include a group ID that indicates zero or more endpoints that are members
of the group.

• A group path MAY include a wildcard cluster indication and therefore also be a Wildcard Path.

8.2.1.4. Wildcard Path

A wildcard path is a path with a wildcard endpoint indication and/or wildcard cluster indication.

• A wildcard path SHALL resolve into zero or more paths.

• A wildcard path SHALL indicate zero or more element instances.

• A wildcard path MAY include a group ID and therefore also be a Group Path.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 448 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

8.2.1.5. Request Path

A request path is used in actions that request data model elements.

• A request path SHALL be either a concrete path, a group path or a wildcard path.

8.2.1.6. Request Path Expansion

Many actions specify this process step to expand a request path into a list of existent paths. This
process does not check access qualities, such as read or write access, privileges, or fabric qualities.

• If the path is a Group Path, it SHALL be replaced with a list of paths, one for each endpoint that
is a member of the group on the target node.

• Else the list SHALL be the path.

• Each path in the list that is a Wildcard Path SHALL be replaced with a complete list of existent
paths, which are the permutations from substituting the wildcarded elements with existent ele
ments, but excluding the paths that must be omitted due to processing of the Attribute Wildcard
Path Flags.

This process produces zero or more existent paths.

8.2.1.7. Attribute Path

An attribute path is used to indicate all or part of a cluster attribute. An attribute path may indicate
deeper parts of collection type data.

Associated Information Block: AttributePathIB

If the attribute data type is a collection data type, such as a struct or list, then the path may indicate
deeper nested parts of the data.

The nesting of collection data is conceptually unlimited, but the actual structure of the data is well-
defined in the cluster specification. Attribute data structures are similar to data structures sup
ported in a programming language (see Data Types in the Data Model specification). An attribute
path is conceptually similar to the path or dot notation used to reference programming language
data structures.

A field ID for structure data or an entry index for list data are currently the only options in an
attribute path, after the attribute ID itself.

• The <attribute> component of an attribute path SHALL have the following form:

<attribute> ::= <attribute ID> <nesting level>*
<nesting level> ::= <struct field ID> | <list entry index>

* <nesting level> occurs zero or more times as defined in a cluster specification.

The endpoint component is subject to wildcard expansion, as constrained in particular actions and
contexts.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 449

Attribute Wildcard Path Flags

Processing wildcard expansion of an Attribute Path MAY be affected by the associated Wildcard
PathFlags field.

When expanding a wildcard path indicated in an AttributePathIB into one or more concrete paths,
paths SHALL be omitted from the result set if they satisfy any of the conditions below, each of
which depends on the value of WildcardPathFlags and the path being considered:

• if the WildcardSkipRootNode bit is set and the concrete path targets endpoint 0;

• if the WildcardSkipGlobalAttributes bit is set and the concrete path refers to one of the following
attribute IDs:

◦ GeneratedCommandList/0xFFF8

◦ AcceptedCommandList/0xFFF9

◦ EventList/0xFFFA

◦ AttributeList/0xFFFB

• if the WildcardSkipAttributeList bit is set and the concrete path refers to the AttributeList (ID
0xFFFB) attribute;

• if the WildcardSkipEventList bit is set and the concrete path refers to the EventList (ID 0xFFFA)
attribute;

• if the WildcardSkipCommandLists bit is set and the concrete path refers to the either the Generat
edCommandList (ID 0xFFF8) or AcceptedCommandList (ID 0xFFF9) attributes;

• if the WildcardSkipCustomElements bit is set, and the concrete path targets:

◦ any element whose Cluster ID has an MEI prefix not equal to zero;

◦ any attribute whose ID has an MEI prefix not equal to zero, even if included in a standard
cluster;

• if the WildcardSkipFixedAttributes bit is set and the concrete path refers to an attribute with the
Fixed (F) quality;

• if the WildcardSkipChangesOmittedAttributes bit is set and the concrete path refers to an attribute
with the Changes Omitted (C) quality;

• if the WildcardSkipDiagnosticsClusters bit is set and the concrete path refers to a cluster with
the Diagnostics (K) quality.

If the client is including WildcardPathFlags in an AttributePathIB destined to a server that pre-dates
the introduction of WildcardPathFlags (Interaction Model revision 12), the client SHALL tolerate
the inclusion of reports for paths that would otherwise be omitted by servers compliant with this
feature.

8.2.1.8. Command Path

A command path is used to indicate a cluster command.

Associated Information Block: CommandPathIB

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 450 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• The <command> component of a command path SHALL have the following form:

<command> ::= <command ID>

• The endpoint field is wildcardable, though this may be disallowed in the various uses of the
Command Path in different actions and contexts.

8.2.1.9. Event Path

A event path is used to indicate a cluster event.

Associated Information Block: EventPathIB

• The <event> component of an event path SHALL have the following form:

<event> ::= <event ID>

Please see Event for a description of a cluster event and event data fields.

The endpoint, cluster and event ID fields are wildcardable. These are further constrained in the
various uses of the Event Path in different actions and contexts.

• An event path SHALL NOT be a group path.

8.2.2. Interaction

An interaction is a sequence of one or more transactions between nodes, that occurs in the context
of an accessing fabric, or no fabric.

How a fabric, or no fabric, context is established for an interaction, is not defined here.

The first transaction (of an interaction) starts with the first action from the node called the initia
tor. The first action destination is called the target, which is either a node or group. For the remain
der of the interaction, the initiator remains the same.

An interaction may be a single transaction (e.g. Read). An interaction may be an unbounded num
ber of transactions (e.g. Subscribe).

Interaction Transactions Description

Read Interaction Read This interaction is a request for
cluster attributes and/or event
data.

Subscribe Interaction Subscribe, Report This interaction subscribes to
cluster attributes and/or event
data.

Write Interaction Write This interaction modifies clus
ter attributes.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 451

Interaction Transactions Description

Invoke Interaction Invoke This interaction invokes cluster
commands.

8.2.3. Transaction

A transaction is either the whole, or part of an interaction. A transaction is a sequence of one or
more actions. Actions in a transaction are defined as first or following, to better describe dependen
cies in this specification.

• The first action of a transaction SHALL be initiated by a single node.

• An action in a transaction SHALL have a target destination that is either a single node, called a
unicast action or a group of nodes, called groupcast action.

8.2.3.1. Transaction ID

The transaction ID is a field present in all actions (see Common Action Information) that indicates
the logical grouping of those actions.

• All following actions in a transaction SHALL have the same transaction ID as the first action.

• A groupcast action SHALL end a transaction and any subsequent action in the interaction
SHALL NOT use the same transaction ID.

The table below lists all transactions.

Transaction Description

Read Transaction This transaction is a request for cluster attribute
and/or event data.

Subscribe Transaction This transaction creates a subscription to cluster
attributes and/or events.

Report Transaction This transaction maintains a subscription for the
Subscribe interaction.

Write Transaction This transaction modifies cluster attributes.

Invoke Transaction This transaction invokes cluster commands.

8.2.4. Action

The table below lists all actions.

Action Description Outgoing Message

Status Response Action This action is a success or error
response.

Unicast

Read Request Action This action is a request for clus
ter attribute data and/or events.

Unicast

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 452 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Action Description Outgoing Message

Report Data Action This action responds to a Read
Request Action or Subscribe
Request Action.

Unicast

Subscribe Request Action This action is a request for a
subscription to cluster attribute
data and/or events.

Unicast

Subscribe Response Action This action is a response to a
Subscribe Request Action.

Unicast

Write Request Action This action is a request to mod
ify cluster attribute data.

Unicast | Groupcast

Write Response Action This action responds to a Write
Request Action.

Unicast

Invoke Request Action This action executes a cluster
command.

Unicast | Groupcast

Invoke Response Action This action is used to respond to
an Invoke Request Action with
cluster defined responses.

Unicast

Timed Request Action This action indicates that
another action will take place
within a Timed interval.

Unicast

8.2.5. Common Action Behavior

The message layer below this interaction layer encodes an action into one or more messages and
delivers the messages to a destination. This interaction layer delivers action information to the mes
sage layer by passing action information, through some interface (not defined here). The message
layer delivers action information, from an incoming message, to this interaction layer.

In all action descriptions in this specification, action information (or information blocks), refers to
the information that is transferred to and from the message layer.

There is no designation of mandatory or optional for such information because the implementation
is undefined. However, some information fields may be omitted, meaning the information may not
be needed for all actions.

8.2.5.1. Common Action Information

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 453

Action Field Type Conformance Description

InteractionModelRevi
sion

uint8 M the revision number of
the implemented Inter
action Model specifica
tion under which the
sending node was certi
fied

Action action-id M the action

TransactionID trans-id M the transaction ID

FabricIndex fabric-idx M the accessing fabric
index, based on the ses
sion used to deliver the
action

SourceNode node-id M the node ID of the node
that generates the
action

DestinationNode node-id O.a the node ID of the desti
nation where the action
is sent

DestinationGroup group-id O.a the group ID of the des
tination where the
action is sent

action specific variable M specific action informa
tion described in each
action section

8.2.5.2. Outgoing Action

• Each generated action SHALL provide the action information above to the message layer.

• If the action is the first action of a transaction, the TransactionID SHALL be a value that
uniquely identifies the transaction on the source of the action.

• If the action is a following action, the TransactionID SHALL be the same as the TransactionID in
the first action of the transaction.

• If the action is a unicast following action the DestinationNode SHALL be the SourceNode of the
previous action in the transaction.

• The generated action information SHALL be submitted to the message layer.

◦ Upon receipt of this action information, the message layer SHALL construct and convey one
or more messages for this action to the target.

◦ If the message layer encounters an error that prevents the complete construction, encoding
and/or conveyance of the action, then the message layer SHALL inform this layer of the
error.

◦ If the action is not completely conveyed, the action, with the associated transaction and

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 454 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

interaction, SHALL terminate.

▪ If the failed action is NOT a Status Response action, this layer SHOULD, if possible, sub
mit a Status Response action to the message layer, with a status code of FAILURE and the
same TransactionID.

8.2.5.3. Incoming Action

• If the message layer receives a valid message for an action, it SHALL be delivered to this layer
with the action information above.

• If this layer receives a message for an action that is not expected semantically, has invalid action
information, or has an error not described in this specification, a Status Response action with
an INVALID_ACTION Status Code SHALL be generated as defined in Status Response Action, and
the associated transaction and interaction SHALL terminate.

• If during the receipt and decoding of messages for an action by the message layer, an error
occurs that prevents a complete receipt of a valid action, then the message layer SHALL inform
this layer of the error.

◦ When informed of an error from a message layer, the action, with the associated transaction
and interaction, SHALL terminate.

• If the action is not able to be executed due to insufficient resources, a Status Response SHALL be
sent to the initiator with a status code of either:

◦ PATHS_EXHAUSTED if there are not enough resources to support the number of paths in the
action information,

◦ and the number of paths in the action exceeds the number of paths that is guaranteed to be
supported for the action (see Interaction Model Limits),

◦ BUSY in all other recoverable resource exhausted situations (e.g. if too many Read interac
tions are already in progress),

◦ or RESOURCE_EXHAUSTED for any other resource insufficiency,

◦ and the interaction SHALL be terminated.

It is implementation specific whether the message layer submits logical parts of an action to this
layer as it receives and processes each message. The only requirement above is that all the informa
tion, or an error, be submitted to this layer.

Global common interaction Status Codes are defined in this document in Status Codes. Cluster spe
cific Status Codes are defined in each cluster specification.

8.3. Status and Interaction
There is no Status interaction, but an error status may be generated as part of any interaction.

8.3.1. Status Response Action

This action is defined as a following action for some actions, or is generated when there is an
unspecified transaction or interaction error. This action conveys status to this layer or conveys sta

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 455

tus from this layer to another node. The status indicates success or an error as part of a transaction
or interaction.

Please see Common Action Behavior for behavior common to all actions. The specific action infor
mation for this action is shown below.

8.3.1.1. Status Response Information

Action Field Type Conformance Description

Status status M a status code (see Status
Codes)

8.3.1.2. Outgoing Status Response Action

• This action SHALL be unicast.

• This action SHALL NOT be generated in response to a groupcast.

• This action SHALL be generated as specified in interactions defined here.

• If this action is generated with an error Status, the current transaction and interaction SHALL
be terminated.

• This action SHALL only be generated with an error Status when an error occurs as a result of
the immediate previous received action in the current transaction.

• This action’s DestinationNode field SHALL be the immediate previous received action’s
SourceNode.

• This action’s TransactionID field SHALL be the immediate previous received action’s Transac
tionID.

• If there is no well-defined Status Code for an error or exception, the Status Code of FAILURE
SHALL be used.

8.3.1.3. Incoming Status Response Action

• Upon receipt of this action with a success Status Code, this layer SHALL consume the status and
continue the current transaction and interaction.

• Upon receipt of this action with an error Status, this layer SHALL terminate the current transac
tion and interaction.

• Upon receipt of this action with an error Status, this layer SHALL submit the error to the layer
above.

8.4. Read Interaction
This interaction is generated when an initiator wishes to determine the value of one or more attrib
utes or events located on a node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 456 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

8.4.1. Read Transaction

Action Action Flow Description

Read Request Initiator ⇒ Target data report request

Report Data Initiator ⇐ Target response report with data

8.4.2. Read Request Action

Read Request action is the first action of a Read transaction (and interaction). Please see Common
Action Behavior for behavior common to all actions. The specific action information for this action
is shown below.

8.4.2.1. Read Request Action Information

Action Field Type Conformance Description

AttributeRequests list[AttributePathIB] M a list of zero or more
request paths to cluster
attribute data

DataVersionFilters list[DataVersionFil
terIB]

AttributeRequests a list of zero or more
cluster instance data
versions

EventRequests list[EventPathIB] M a list of zero or more
request paths to cluster
events

EventFilters list[EventFilterIB] EventRequests a list of zero or more
minimum event num
bers per specific node

FabricFiltered bool M limits the data read
within fabric-scoped
lists to the accessing
fabric

8.4.2.2. Outgoing Read Request Action

• This action SHALL be unicast.

• This action SHALL be generated as the first action in a Read transaction.

• A valid AttributePathIB for attribute data SHALL be one in the table Valid Read Attribute Paths.

• A valid EventPathIB for an event SHALL be one in the table Valid Event Paths.

• A path indicated in AttributeRequests or EventRequests SHALL NOT target a group.

8.4.2.3. Incoming Read Request Action

• Upon receipt of this action, this layer SHALL generate a Report Data action to the subscriber, as
defined in Incoming Read Request and Subscribe Request Action Processing.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 457

• If the Report Data was generated successfully, it SHALL be submitted to the message layer.

8.4.3. Report Data Action

This action is either a first action in a Report transaction (as part of a Subscribe interaction), or a
following action to a Read Request action or Subscribe Request action.

Please see Common Action Behavior for behavior common to all actions. The specific action infor
mation for this action is shown below.

8.4.3.1. Report Data Action Information

Action Field Type Conformance Description

SuppressResponse bool M do not send a response
to this action

SubscriptionId uint32 O a SubscriptionId only
used in a Subscribe
interaction

AttributeReports list[AttributeReportIB] O a list of zero or more
attribute data reports

EventReports list[EventReportIB] O a list of zero or more
event reports

8.4.3.2. Incoming Read Request and Subscribe Request Action Processing

• Each path indicated by the Report Data action SHALL be a Concrete Path.

• Upon receipt of a Read Request action or Subscribe Request action, this process SHALL be fol
lowed:

• Each request path in the AttributeRequests field SHALL be processed as follows:

◦ If the path does not conform to Valid Read Attribute Paths then:

▪ a Status Response with the INVALID_ACTION Status Code SHALL be generated as defined
in Status Response Action,

▪ a Report Data action SHALL NOT be generated,

▪ and this interaction and process SHALL terminate.

◦ Else if the path is a concrete path:

▪ If the path indicates a node that is unsupported, an AttributeStatusIB SHALL be gener
ated with the UNSUPPORTED_NODE Status Code.

▪ Else if reading from the attribute in the path requires a privilege that is not granted to
access the cluster in the path, an AttributeStatusIB SHALL be generated with the UNSUP
PORTED_ACCESS Status Code.

▪ Else if the path indicates an endpoint that is unsupported, an AttributeStatusIB SHALL
be generated with the UNSUPPORTED_ENDPOINT Status Code.

▪ Else if the path indicates a cluster that is unsupported, an AttributeStatusIB SHALL be

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 458 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

generated with the UNSUPPORTED_CLUSTER Status Code.

▪ Else if the path indicates an attribute or attribute data field that is unsupported, an
AttributeStatusIB SHALL be generated with the UNSUPPORTED_ATTRIBUTE Status Code
with the Path field indicating the first unsupported data field (not the entire attribute
data path).

▪ Else if the path indicates attribute data that is not readable, an AttributeStatusIB SHALL
be generated with the UNSUPPORTED_READ Status Code.

▪ If an AttributeStatusIB was generated, the path SHALL be discarded.

◦ Else perform Request Path Expansion and process each expanded existent path as follows:

▪ If the path indicates attribute data that is not readable, then the path SHALL be dis
carded.

▪ Else if reading from the attribute in the path requires a privilege that is not granted to
access the cluster in the path, then the path SHALL be discarded.

• If no error free existent paths remain, then AttributeRequests are considered empty.

• Else each remaining error free existent path is processed as follows:

◦ If the DataVersionFilters field indicates DataVersionFilterIB entries with a Path field that
matches the path, where all matching entries have a DataVersion field that matches the data
version of the cluster instance in the path, then the path SHALL be ignored

◦ Else an AttributeDataIB SHALL be generated with the Data and Path as indicated by the path
being processed. If the attribute indicated by the path or any struct field nested inside that
attribute (at any level of nesting) is a fabric-scoped list, then any such list within the gener
ated Data shall be filtered based on the value of the FabricFiltered parameter:

▪ If the FabricFiltered parameter is true, any such list SHALL be generated as a fabric-fil
tered list of entries.

▪ Else if the FabricFiltered parameter is false, any such list SHALL be generated as an
unfiltered list of entries, with each entry indicated as a fabric-sensitive struct.

◦ Each AttributeDataIB or AttributeStatusIB generated from processing AttributeRequests
SHALL be added to the AttributeReports action field in the Report Data action.

• Each request path in the EventRequests field SHALL be processed as follows:

◦ If the path is a concrete path:

▪ If the path indicates a node that is unsupported, an EventStatusIB SHALL be generated
with the UNSUPPORTED_NODE Status Code.

▪ Else if reading the event in the path requires a privilege that is not granted to access the
cluster in the path, an EventStatusIB SHALL be generated with the UNSUPPORTED_AC
CESS Status Code.

▪ Else if the path indicates an endpoint that is unsupported, an EventStatusIB SHALL be
generated with the UNSUPPORTED_ENDPOINT Status Code.

▪ Else if the path indicates a cluster that is unsupported, an EventStatusIB SHALL be gen
erated with the UNSUPPORTED_CLUSTER Status Code.

▪ Else if the path indicates a cluster event that is not supported, an EventStatusIB SHALL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 459

be generated with the UNSUPPORTED_EVENT Status Code.

▪ If an EventStatusIB was generated, the path SHALL be discarded.

◦ Else if the path does not conform to Valid Event Paths then:

▪ a Status Response with the INVALID_ACTION Status Code SHALL be generated as defined
in Status Response Action,

▪ a Report Data action SHALL NOT be generated,

▪ and this interaction and process SHALL terminate.

◦ Else perform Request Path Expansion and process each expanded existent path as follows:

▪ If reading the event in the path requires a privilege that is not granted to access the clus
ter in the path, then the path SHALL be discarded.

• If no error free existent paths remain, then EventRequests are considered empty.

• Else for each unique node indicated in the remaining existent paths:

◦ Each event record currently queued in the node, in order from lowest to highest event num
ber, SHALL generate an EventDataIB except for any of the following:

▪ If the node indicated matches the Node information field of an EventFilterIB from Event
Filters, and the event number is less than the EventMin field in the EventFilterIB.

▪ If the event record path does not match a path in the remaining existent event paths.

▪ If the event record path is fabric-sensitive, and the associated fabric does not match the
accessing fabric.

◦ Each information block generated from processing EventRequests SHALL be added to the
EventReports action field in the Report Data action.

• If this action is in response to a Subscribe Request action,

◦ If both AttributeRequests and EventRequests are empty

▪ a Status Response Action with the INVALID_ACTION Status Code SHALL be sent to the
initiator,

▪ a Report Data action SHALL NOT be generated,

▪ and the interaction and process SHALL terminate.

◦ Else a SubscriptionId which uniquely identifies this subscription on the publisher SHALL be
indicated in the Report Data action

• Else the SubscriptionId SHALL be omitted.

8.4.3.3. Outgoing Report Data Action

• This action SHALL be unicast.

• This action MAY have an empty list of AttributeReports and/or EventReports.

• This action SHALL NOT include any nested attribute data field or nested event data field that is
defined as fabric-sensitive, if the associated fabric for that field does not match the accessing
fabric for the interaction.

• SuppressResponse MAY be set to TRUE for a Report Data action that initiates a Report transac

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 460 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

tion that conveys an empty list of AttributeReports and EventReports, otherwise:

◦ SuppressResponse SHALL be set to TRUE for a Report Data action that is part of a Read
transaction.

◦ SuppressResponse SHALL be set to FALSE for a Report Data action that is part of a Subscribe
transaction.

• This action SHALL be generated as either:

◦ part of a Read transaction in direct response to a Read Request action.

◦ part of a Subscribe transaction in direct response to a Subscribe Request action.

◦ part of a Subscribe interaction as the first action of each synchronized Report Transaction.

8.4.3.4. Incoming Report Data Action

• Upon receipt of this action, if SuppressResponse is TRUE, a response SHALL NOT be generated;

• Otherwise a Status Response Action SHALL be generated with a status code of

◦ SUCCESS to continue the interaction,

◦ INVALID_SUBSCRIPTION if the action is part of a Subscribe interaction and the Subscrip
tionID is invalid,

◦ FAILURE to terminate the interaction,

◦ The Status Response Action SHALL be submitted to the message layer to deliver to the
source of this action.

8.5. Subscribe Interaction
The Subscribe interaction is composed of these transactions:

Transaction Description

Subscribe start and prime a reporting session

Report synchronized Report transaction

more reports continuous Report transactions for the life of the
subscription

This interaction allows a subscriber to create a subscription with a publisher on another node for
the purposes of receiving data reports from that publisher thereafter, for the duration of the sub
scription. This allows the subscriber to maintain a coherent snapshot, or twin, of the subscription
data as it currently exists on the publisher. The session itself is kept synchronized on both sides
through the receipt of timely data reports with the intervals defined by a negotiated maximum
interval subscription parameter.

This interaction is started when the initiator (or subscriber), wishes to subscribe to one or more
attributes or events located on a target node (the publisher). The attribute data and events
requested in the Subscribe transaction are the subscription data.

This interaction starts by creating a subscription with a Subscribe transaction, which primes the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 461

subscriber with initial subscription data. The rest of the subscription is a sequence of Report trans
actions initiated by the publisher as defined by parameters of the subscription. Each Report trans
action in a subscription reports changes to the subscription data.

To keep the subscription alive, a Report transaction is sent from the publisher every maximum
interval, or possibly more frequently.

Report transactions from the publisher are rate limited by the minimum interval subscription para
meter, as negotiated between the subscriber and publisher.

The Subscribe Request action provides boundary values (floor or ceiling) for the publisher to deter
mine the final minimum and maximum interval parameters of the subscription. The time units for
these intervals are seconds.

Each Subscribe interaction is a subscription that is identified by a Subscription ID as generated by
the publisher.

• The Subscribe interaction SHALL start with one Subscribe transaction followed by a periodic
sequence of Report transactions (see Report Transaction).

• A Report transaction SHALL be initiated by a Report Data action as part of an active subscrip
tion for a Subscribe interaction.

• All Report Data actions in a Subscribe interaction SHALL have the same SubscriptionId parame
ter value that uniquely identifies the interaction among all subscriptions on the publisher.

• Each Report transaction in a subscription SHALL report the path for each delta change in the
subscription data, including the attribute data that has changed and/or the event that has
occurred, since the last Report transaction, with the exception of attribute data with the
Changes Omitted (C) quality.

• Each Report transaction initiated by the publisher SHALL complete successfully before another
Report transaction is initiated by the publisher.

• Each Report transaction SHALL NOT be initiated by the publisher until the minimum interval
has expired since the last Report transaction in the subscription.

• Attribute changes SHALL be delivered as soon as possible, taking into account the minimum
interval.

• Events SHALL always be queued and buffered. Each Report containing events SHALL deliver
queued events without reordering the queue. Queued events MAY be opportunistically deliv
ered whenever some other activity triggers a Report transaction. Absent any such triggers,
queued events SHALL be delivered in a Report transaction generated at the maximum interval.

• When the IsUrgent flag is FALSE or absent for a subscription’s event path in the EventPathIB,
event queueing does not automatically trigger a Report transaction.

• When the IsUrgent flag is TRUE for a subscription’s event path in the EventPathIB, the queueing
of such an event SHALL trigger a Report transaction for the subscription, subject to all Report
transaction rules. This Report transaction will report the events that have been queued by the
time the Report transaction happens.

• If the subscriber does not receive a Report transaction within the maximum interval from the
last Report Data, the subscriber SHALL terminate the Subscribe interaction.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 462 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• If a node receives a Report Data action with an inactive SubscriptionId, a Status Response action
SHALL be sent with an INVALID_SUBSCRIPTION Status Code.

• If, in response to a Report Data action, the publisher receives a Status Response action with a
status code that is not SUCCESS, the publisher SHALL terminate the Subscribe interaction.

• If the publisher does not receive a Status Response action in response to a Report Data action
with SuppressResponse set to FALSE, the publisher MAY terminate the Subscribe interaction or
SHALL re-synchronize the subscription in the next Report Data transaction by:

◦ Including all subscription data to re-prime the subscription, or

◦ Including all deltas since the last successful Report Data transaction.

• The subscriber MAY terminate the subscription and interaction by responding with a Status
Response action with an INVALID_SUBSCRIPTION Status Code.

• The publisher MAY terminate the subscription and interaction by not generating a Report trans
action within the maximum interval.

• When a Subscribe interaction is terminated on the publisher or subscriber, the subscription,
identified by a SubscriptionId, SHALL also be terminated.

8.5.1. Subscribe Transaction

Action Action Flow Description

Subscribe Request Initiator ⇒ Target list of event and attribute data
identifiers supported on a
server cluster

Report Data Initiator ⇐ Target primed published data

Status Response Initiator ⇒ Target success, or otherwise an error
to terminate the subscription

Subscribe Response Initiator ⇐ Target provides subscription parame
ters

8.5.2. Subscribe Request Action

Subscribe Request action is a first action. Please see Common Action Behavior for behavior com
mon to all actions. The specific action information for this action is shown below.

8.5.2.1. Subscribe Request Action Information

Action Field Type Conformance Description

KeepSubscriptions bool M false to terminate exist
ing subscriptions from
initiator

MinIntervalFloor uint16 M the requested mini
mum interval bound
ary floor in seconds

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 463

Action Field Type Conformance Description

MaxIntervalCeiling uint16 M the requested maxi
mum interval bound
ary ceiling in seconds

AttributeRequests list[AttributePathIB] O a list of zero or more
request paths to cluster
attribute data

DataVersionFilters list[DataVersionFil
terIB]

AttributeRequests a list of zero or more
cluster instance data
versions

EventRequests list[EventPathIB] O a list of zero or more
request paths to cluster
events

EventFilters list[EventFilterIB] EventRequests a list of zero or more
minimum event num
bers per specific node

FabricFiltered bool M limits the data read
within fabric-scoped
lists to the accessing
fabric

8.5.2.2. Outgoing Subscribe Request Action

• This action SHALL initiate a Subscribe interaction.

• A Subscribe Request action SHALL be unicast from the subscriber to the publisher.

• This action SHALL be generated to initiate a Subscribe interaction (see Subscribe Interaction).

• This action SHALL include a requested ceiling (highest) maximum interval value as MaxInter
valCeiling.

• This action SHALL include a requested floor (lowest) minimum interval value as MinInter
valFloor.

NOTE

If the publisher is an intermittently connected device, the MinIntervalFloor
SHOULD be 0. To avoid needing to switch to Active Mode to process the event and a
second time to send the information, an ICD MAY try to synchronize its updates
towards various subscribers so that it only needs to go to Active Mode once and can
stay idle for a full idle interval. If the MinIntervalFloor is too high, this limits the
freedom for an ICD to synchronize its updates. The higher the MinIntervalFloor is,
the higher the likelihood an ICD will not be able to send updates to various sub
scribers in a synchronized pattern, which might negatively impact energy usage
(e.g. battery life).

• At least one attribute or event SHALL be indicated in the action.

• A valid AttributePathIB SHALL be one in the table Valid Read Attribute Paths.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 464 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• A valid EventPathIB SHALL be one in the table Valid Event Paths.

• A path indicated in AttributeRequests or EventRequests SHALL NOT target a group.

8.5.2.3. Incoming Subscribe Request Action

• If KeepSubscriptions is FALSE, all existing or pending subscriptions on the publisher for this
subscriber SHALL be terminated.

• This layer SHALL process the Subscribe Request action as defined in Incoming Read Request
and Subscribe Request Action Processing.

8.5.3. Subscribe Response Action

Subscribe Response action is the last following action in a Subscribe Transaction. This action acti
vates the subscription. Please see Common Action Behavior for behavior common to all actions. The
specific action information for this action is shown below (see Subscribe Interaction).

8.5.3.1. Subscribe Response Action Information

Action Field Type Conformance Description

SubscriptionId uint32 M identifies the subscrip
tion

MaxInterval uint16 M the final maximum
interval for the sub
scription in seconds

8.5.3.2. Outgoing Subscribe Response Action

• Upon receipt of a successful Status Response action from the subscriber for the Report Data
action that primes the subscription, this action SHALL be generated and submitted to the mes
sage layer to send to the subscriber.

• This action SHALL be unicast.

• The SubscriptionId value SHALL be the same as the one used in Report Data generated to prime
this subscription.

• The publisher SHALL compute an appropriate value for the MaxInterval field in the action. This
SHALL respect the following constraint: MinIntervalFloor ≤ MaxInterval ≤ MAX(SUBSCRIPTION_
MAX_INTERVAL_PUBLISHER_LIMIT, MaxIntervalCeiling)

• Upon sending a Subscribe Response action, the subscription, as indicated by the SubscriptionId,
SHALL become active on the publisher with a min interval equal to the requested MinInter
valFloor and a max interval equal to the MaxInterval field in the response.

8.5.3.3. Incoming Subscribe Response Action

• Upon receipt of a Subscribe Response action, the subscription, as indicated by the Subscrip
tionId, SHALL become active to the subscriber.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 465

8.5.3.4. Subscription Activation

• The paths to the subscription data SHALL only be error free existent paths generated from pro
cessing the Subscribe Request.

The EventFilters and DataVersionFilters fields in the Subscribe Request are one time parameters for
the priming of the subscription.

• Subsequent ReportData actions, as part of the subscription, SHALL include the latest:

◦ EventNo associated with each node generating new events.

◦ DataVersion associated with each cluster where there are data changes.

• The FabricFiltered parameter from the Subscribe Request SHALL remain in effect for all data
reported during the interaction.

• Upon subscription activation, the minimum and maximum interval parameters SHALL take
effect to determine the timing and expectation of subsequent Report transactions.

8.6. Report Transaction
There is no Report interaction. A Report transaction is part of a Subscribe interaction. Please see
Subscribe Interaction for details.

The valid Report transactions are:

8.6.1. Report Transaction Non-Empty

Action Action Flow Description

Report Data Initiator ⇐ Target report of data and/or events
with SuppressResponse set to
FALSE

Status Response Initiator ⇒ Target an error ends the interaction

8.6.2. Report Transaction Empty

Action Action Flow Description

Report Data Initiator ⇐ Target report with no data or events
with SuppressResponse set to
TRUE

8.7. Write Interaction
This interaction is started when an initiator wishes to modify the values of one or more attributes
located on one or more nodes. An optional Timed Request action defines a Timeout interval that
starts at the sending of the Status Response action.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 466 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

8.7.1. Write Transaction

• A Write interaction SHALL consist of one of the transactions shown below.

8.7.1.1. Timed Write Transaction

Action Action Flow Description

Timed Request Initiator ⇒ Target time interval defined to send
Write Request action

Status Response Initiator ⇐ Target confirmation

Write Request Initiator ⇒ Target data to modify

Write Response Initiator ⇐ Target with errors or success from
Write Request action

8.7.1.2. Untimed Write Transaction

Action Action Flow Description

Write Request Initiator ⇒ Target data to modify

Write Response Initiator ⇐ Target with errors or success from
Write Request action

• If there is a preceding successful Timed Request action, the following Write Request action
SHALL be received before the end of the Timeout interval.

• If there is a preceding successful Timed Request action, the Timeout interval SHALL start when
the Status Response action acknowledging the Timed Request action with a success code is sent.

• If there is a preceding successful Timed Request action, the Write Request action SHALL be uni
cast.

• If there is not a preceding successful Timed Request action, the Write Request action MAY be
groupcast.

• A client MAY choose to use a Timed Write transaction even if the attribute does not have the
Timed Interaction quality.

• The server SHALL support a Timed Write transaction for all writeable attributes.

8.7.2. Write Request Action

This action is either the first action of the Write transaction or it follows a successful Timed Request
action. Please see Common Action Behavior for behavior common to all actions. The specific action
information for this action is shown below.

8.7.2.1. Write Request Action Information

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 467

Action Field Type Conformance Description

SuppressResponse bool M do not send a response
to this action

TimedRequest bool M flag action as part of a
timed write transaction

WriteRequests list[AttributeDataIB] M a list of one or more
path and data tuples.

8.7.2.2. Outgoing Write Request Action

• This action SHALL be generated as the first action in a Write transaction, or following a Timed
Request action and successful Status Response action.

• If this action is part of a Timed Write transaction, TimedRequest SHALL be TRUE, else FALSE.

• If not part of a Timed Write transaction, this action MAY be groupcast.

• If this action is groupcast, SuppressResponse SHALL be TRUE.

8.7.2.3. Incoming Write Request Action

• If this action is not able to be executed because the maximum supported number of Write inter
actions is already in progress, then a Status Response action with the BUSY Status Code SHALL
be submitted to the message layer and this interaction SHALL terminate.

• If this action is part of a Timed Write transaction, and the Timeout has expired from the preced
ing Timed Request action, then a Status Response action with the TIMEOUT Status Code SHALL
be submitted to the message layer and this interaction SHALL terminate.

• If this action is part of a Timed Write transaction, and this action has TimedRequest set to
FALSE, then a Status Response action with the TIMED_REQUEST_MISMATCH Status Code SHALL
be submitted to the message layer and this interaction SHALL terminate.

• If this action is marked with TimedRequest as TRUE but this action is not part of a Timed Write
transaction (i.e. there was no corresponding Timed Request action prior to it matching the same
TransactionID), then a Status Response action with the TIMED_REQUEST_MISMATCH Status
Code SHALL be submitted to the message layer and this interaction SHALL terminate.

See Outgoing Write Response Action for building a Write Response action and executing the Write
Request action.

• If this action was unicast and SuppressResponse is FALSE, a Write Response action SHALL be
generated and submitted to the message layer to send to the initiator, otherwise no Write
Response SHALL be sent.

8.7.3. Write Response Action

This action is a following action for a Write Request action. Please see Common Action Behavior for
behavior common to all actions. The specific action information for this action is shown below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 468 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

8.7.3.1. Write Response Action Information

Action Field Type Conformance Description

WriteResponses list[AttributeStatusIB] O a list of zero or more
concrete paths indicat
ing errors or successes

8.7.3.2. Outgoing Write Response Action

• This action SHALL be unicast.

• Each request path in the WriteRequests field of a Write Request SHALL be processed as follows:

◦ If the path does not conform to Valid Write Attribute Paths then:

▪ a Status Response with the INVALID_ACTION Status Code SHALL be generated as defined
in Status Response Action,

▪ a Write Response action SHALL NOT be generated,

▪ and this interaction and process SHALL terminate.

◦ Else if the path is a concrete path:

▪ If the path indicates a specific node that is unsupported, an AttributeStatusIB SHALL be
generated with the UNSUPPORTED_NODE Status Code.

▪ Else if writing to the attribute in the path requires a privilege that is not granted to
access the cluster in the path, an AttributeStatusIB SHALL be generated with the UNSUP
PORTED_ACCESS Status Code.

▪ Else if the path indicates a specific endpoint that is unsupported, an AttributeStatusIB
SHALL be generated with the UNSUPPORTED_ENDPOINT Status Code.

▪ Else if the path indicates a specific cluster that is unsupported, an AttributeStatusIB
SHALL be generated with the UNSUPPORTED_CLUSTER Status Code.

▪ Else if the path indicates an attribute or attribute data field that is unsupported, an
AttributeStatusIB SHALL be generated with the UNSUPPORTED_ATTRIBUTE Status Code
with the Path field indicating only the path to the first unsupported data field (not the
entire attribute data path).

▪ Else if the path indicates a specific attribute data that is not writable, an AttributeSta
tusIB SHALL be generated with the UNSUPPORTED_WRITE Status Code.

▪ Else if the path indicates specific attribute data that requires a Timed Write transaction
to write and this action is not part of a Timed Write transaction, an AttributeStatusIB
SHALL be generated with the NEEDS_TIMED_INTERACTION Status Code.

▪ Else if the attribute in the path indicates a fabric-scoped list and there is no accessing
fabric, an AttributeStatusIB SHALL be generated with the UNSUPPORTED_ACCESS Status
Code, with the Path field indicating only the path to the attribute.

▪ Else if the DataVersion field of the AttributeDataIB is present and does not match the
data version of the indicated cluster instance, an AttributeStatusIB SHALL be generated
with the DATA_VERSION_MISMATCH Status Code.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 469

▪ If the above processing generated an AttributeStatusIB, the path SHALL be discarded.

▪ Else perform Write Path Data Process

◦ Else perform Request Path Expansion and process each expanded existent path as follows:

▪ If the path indicates attribute data that is not writable, then the path SHALL be dis
carded.

▪ If writing to the attribute in the path requires a privilege that is not granted to access the
cluster in the path, then the path SHALL be discarded.

▪ Else if the path indicates specific attribute data that requires a Timed Write transaction
to write and this action is not part of a Timed Write transaction, then the path SHALL be
discarded.

▪ Else perform Write Path Data Process

8.7.3.3. Write Path Data Process

• If the path indicates a fabric-scoped list or list entry, it SHALL be processed as a fabric-filtered
list of fabric-scoped structs.

• Each data field indicated by the path, SHALL be processed in the order conveyed as follows:

◦ If a data field is not within the constraints defined by the cluster specification, an AttributeS
tatusIB SHALL be generated with the CONSTRAINT_ERROR Status Code, with the Path field
duplicating the path.

◦ Otherwise perform the following:

▪ The data field SHALL be changed to the data indicated with the path.

▪ An AttributeStatusIB SHALL be generated with the SUCCESS Status Code, with the Path
field duplicating the path.

8.7.3.4. Write Response Generation

• Each AttributeStatusIB generated from processing the WriteRequests field of the Write Request
action, SHALL be added to the WriteResponses action field of the Write Response action.

NOTE
An empty WriteResponses would occur if all paths were wildcard or group
paths that expand to non-accessible data.

8.7.3.5. Incoming Write Response Action

Upon receipt of this action, the action information SHALL be submitted to the layer above.

8.7.4. Timed Request Action

This action is a first action of a transaction. The specific action information for this action is shown
below.

This action informs the receiver that another action will be sent in the same direction, within the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 470 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

same transaction, and within a specified Timeout interval. The Timeout interval SHALL start when
the Status Response action acknowledging the Timed Request action with a success code is sent.

8.7.4.1. Timed Request Action Information

Action Field Type Conformance Description

Timeout uint16 M an interval, in millisec
onds, to expect a fol
lowing action

8.7.4.2. Outgoing Timed Request Action

• This action SHALL be generated as an optional first action in a Write or Invoke transaction.

• This action SHALL be unicast.

8.7.4.3. Incoming Timed Request Action

• Upon receipt of this action, this layer SHALL construct and send a Status Response action with
SUCCESS to the initiator.

• This layer SHALL expect a Write Request or Invoke Request action within Timeout milliseconds
of sending the Status Response action.

8.8. Invoke Interaction
This interaction is generated when a device wishes to invoke one or more cluster specific com
mands on one or more nodes. Cluster commands are defined as either client to server or server to
client. Invoke Request action SHALL support group paths and SHOULD support wildcard paths.
Invoke Response action does not support wildcard paths.

8.8.1. Invoke Transaction

• The Invoke interaction SHALL consist of one of the Invoke transactions shown below

8.8.1.1. Timed Invoke Transaction

Action Action Flow Description

Timed Request Initiator ⇒ Target time interval defined to send
Invoke Request action

Status Response Initiator ⇐ Target confirmation

Invoke Request Initiator ⇒ Target commands to invoke

Invoke Response Initiator ⇐ Target response(s) defined by the clus
ter specification

8.8.1.2. Untimed Invoke Transaction

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 471

Action Action Flow Description

Invoke Request Initiator ⇒ Target commands to invoke

Invoke Response Initiator ⇐ Target response(s) defined by the clus
ter specification

• A client MAY choose to use a Timed Invoke transaction even if the command does not have the
Timed Interaction quality.

• The server SHALL support a Timed Invoke transaction for all commands.

8.8.2. Invoke Request Action

• This action SHALL be generated as the first action in an Invoke transaction, or following a
Timed Request action and successful Status Response action.

• If there is a preceding successful Timed Request action, the following Invoke Request action
SHALL be received before the end of the Timeout interval.

• If there is a preceding successful Timed Request action, the Timeout interval SHALL start when
the Status Response action acknowledging the Timed Request action with a success code is sent.

• Each Invoke Request and Invoke Response action in a Timed Invoke transaction SHALL be uni
cast.

• If not part of a Timed Invoke transaction, this action MAY be groupcast.

• If a cluster command is defined to be invoked as the result of a groupcast, the command SHALL
be invoked with an Invoke Request action which SHALL start a new transaction.

• Each path in an Invoke Request or Invoke Response action SHALL indicate a server cluster.

Invoke Request action is either the first action of the Invoke transaction or it follows a successful
Timed Request action. Please see Common Action Behavior for behavior common to all actions. The
specific action information for this action is shown below.

8.8.2.1. Invoke Request Action Information

Action Field Type Constraint Conformance Description

SuppressRe
sponse

bool M do not send a
response to this
action

TimedRequest bool M flag action as part
of a timed invoke
transaction

InvokeRequests list[Command
DataIB]

desc M cluster com
mand(s)

8.8.2.2. Outgoing Invoke Request Action

• This action SHALL be generated as the first action in an Invoke transaction, or following a
Timed Request action and successful Status Response action.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 472 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• If this action is part of a Timed Invoke transaction, TimedRequest SHALL be TRUE, else FALSE.

• A valid CommandDataIB SHALL be one in the table Valid Command Paths.

• If InvokeRequests has 1 CommandDataIB,

◦ the path indicated in that CommandDataIB MAY target a group or a wildcard.

• Else (InvokeRequests has more than 1 CommandDataIB),

◦ each path indicated in InvokeRequests SHALL be a concrete (non-wildcard) path and SHALL
NOT target a group, and

◦ each path indicated in InvokeRequests SHALL be unique.

◦ The total number of CommandDataIB in InvokeRequests SHALL NOT exceed what the server
indicates it can handle (See MaxPathsPerInvoke).

◦ Care must be taken to avoid issuing a set of commands with some data dependencies
between them, since there is no guarantee of "happens-after" in the ordering.

NOTE
For InteractionModelRevision <= 11, having more than one command in Invok
eRequests was marked as provisional.

8.8.2.3. Incoming Invoke Request Action

• If this action is part of a Timed Invoke transaction, and the Timeout has expired from the pre
ceding Timed Request action, then a Status Response action with the TIMEOUT Status Code
SHALL be submitted to the message layer and this interaction SHALL terminate.

• If this action is part of a Timed Invoke transaction, and this action has TimedRequest set to
FALSE, then a Status Response action with the TIMED_REQUEST_MISMATCH Status Code SHALL
be submitted to the message layer and this interaction SHALL terminate.

• If this action is marked with TimedRequest as TRUE, but this action is not part of a Timed
Invoke transaction (i.e. there was no immediately previous Timed Invoke action), then a Status
Response action with the TIMED_REQUEST_MISMATCH Status Code SHALL be submitted to the
message layer and this interaction SHALL terminate.

• If this action contains more CommandDataIB elements in the InvokeRequests list than are sup
ported by the device (see MaxPathsPerInvoke), then a Status Response action with the
INVALID_ACTION Status Code SHALL be submitted to the message layer and this interaction
SHALL terminate.

• Each request path in the InvokeRequests field SHALL be processed as follows:

◦ If the path does not conform to Valid Command Paths then:

▪ a Status Response with the INVALID_ACTION Status Code SHALL be generated as defined
in Status Response Action,

▪ an Invoke Response action SHALL NOT be generated,

▪ and this interaction and process SHALL terminate.

◦ Else if the path is a concrete path:

▪ If the path indicates a node that is unsupported, a CommandStatusIB SHALL be gener
ated with the UNSUPPORTED_NODE Status Code.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 473

▪ Else if invoking the command in the path requires a privilege that is not granted to
access the cluster in the path, a CommandStatusIB SHALL be generated with the UNSUP
PORTED_ACCESS Status Code.

▪ Else if the command in the path is fabric-scoped and there is no accessing fabric, a Com
mandStatusIB SHALL be generated with the UNSUPPORTED_ACCESS Status Code.

▪ Else if the path indicates an endpoint that is unsupported, a CommandStatusIB SHALL be
generated with the UNSUPPORTED_ENDPOINT Status Code.

▪ Else if the path indicates a cluster that is unsupported, a CommandStatusIB SHALL be
generated with the UNSUPPORTED_CLUSTER Status Code.

▪ Else if the path indicates a command that is unsupported, a CommandStatusIB SHALL be
generated with the UNSUPPORTED_COMMAND Status Code.

▪ Else if the command in the path requires a Timed Invoke transaction to invoke and this
action is not part of a Timed Invoke transaction, a CommandStatusIB SHALL be gener
ated with the NEEDS_TIMED_INTERACTION Status Code.

▪ Each generated CommandStatusIB CommandPath field SHALL be a duplicate of the con
crete path processed, including the command ID of the original concrete path.

◦ Else perform Request Path Expansion and process each expanded existent path as follows:

▪ If invoking the command in the path requires a privilege that is not granted for the clus
ter in the path, then the path SHALL be discarded.

▪ Else if the command in the path is fabric-scoped and there is no accessing fabric, then
the path SHALL be discarded.

▪ Else if the command in the path requires a Timed Invoke transaction to invoke and this
action is not part of a Timed Invoke transaction, then the path SHALL be discarded.

• Each command in the remaining and error-free concrete command paths SHALL be executed,
as defined in Invoke Execution.

Invoke Execution

• The command SHALL be executed as defined in the cluster specification, and the following
applies:

◦ For each data field in CommandFields:

▪ If a mandatory data field is missing, or incoming data cannot be mapped to the expected
data type for a field, a CommandStatusIB SHALL be generated with an error status of
INVALID_COMMAND, even if the cluster defines another type of response.

▪ If a data field violates expected constraints, a CommandStatusIB SHOULD be generated
with an error status of CONSTRAINT_ERROR.

◦ If the cluster specification defines a following command in response to the command, a
CommandDataIB SHALL be generated for the following command with these fields:

▪ CommandFields defined for the following command

▪ ClusterPath field of the CommandPath field that is a duplicate of the command path
processed, up to the cluster ID

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 474 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

▪ Command field of the CommandPath field that is the command ID of the following com
mand

◦ Else if the cluster specification defines a success or error status as a response (sometimes
specified as a Default Response), a CommandStatusIB SHALL be generated with these fields:

▪ CommandPath that is a duplicate of the concrete command path processed

▪ Status as defined in the cluster specification

• If the InvokeRequest contains more than 1 CommandDataIB:

◦ If the InvokeRequest contains certain commands and endpoints for which the server has an
efficient way to process those commands:

▪ The server MAY do so, even if this would deviate from the general concept of "execution
started in order" for the commands which are grouped.

◦ Else:

▪ The Invoke Execution SHALL be started for each command in the same order as con
veyed and expanded.

◦ Actions MAY run concurrently, and the protocol offers no guarantees about completion of
one action preceding the start of another.

◦ In case one or more of these CommandDataIB triggers an asynchronous action, any given
Invoke Execution may not complete in the same order as the corresponding Command
DataIB in the request. As a consequence, the order of generated CommandDataIB and/or
CommandStatusIB MAY be different from the order of the corresponding CommandDataIB
in the InvokeRequest.

• An Invoke Response Generation SHALL be performed on completion of all valid commands. A
partial Invoke Response Generation MAY be performed at any time when processing multiple
commands, provided it carries at least a single response.

8.8.3. Invoke Response Action

Invoke Response action is a following action for an Invoke Request action. Please see Common
Action Behavior for behavior common to all actions. The specific action information for this action
is shown below.

8.8.3.1. Invoke Response Action Information

Action Field Type Conformance Description

SuppressResponse bool M Ignored by client

InvokeResponses list[InvokeResponseIB] M command response or
status

The SuppressResponse field is mandatory to maintain backwards compatibility with older clients.
However, as Matter does not support responses to InvokeResponse actions, this field has no effect.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 475

8.8.3.2. Outgoing Invoke Response Action

• This action SHALL be generated in response to an Invoke Request action, after all valid com
mands are executed.

• A valid InvokeResponseIB SHALL only indicate a concrete path.

Invoke Response Generation

• If the previous action in this transaction action is groupcast, this process and transaction termi
nate with no response.

• Else if SuppressResponse is FALSE, or a CommandDataIB was generated, an Invoke Response
action SHALL be generated as follows:

◦ Each generated CommandStatusIB and CommandDataIB SHALL be included in an InvokeRe
sponseIB in the InvokeResponses action field.

◦ An Invoke Response action SHALL be submitted to the message layer to send to the source of
the previous action.

8.8.3.3. Incoming Invoke Response Action

• Upon receipt of this action, each entry in InvokeResponses SHALL be processed, in order, as fol
lows:

◦ If the entry is a CommandStatusIB, it SHALL be submitted to the layer above.

◦ Else if the response is a CommandDataIB:

▪ If the ClusterPath field of the CommandPath field does not duplicate or match a wildcard
of one of the paths in the previous action of the interaction, the entry SHALL be dis
carded.

▪ Else if the command ID value of the Command field of the CommandPath field is not
expected by the cluster instance, the entry SHALL be discarded.

▪ Else it SHALL be submitted to the layer above.

• For each entry in the initial Invoke Request action that triggered this incoming Invoke Response
action, if there isn’t a corresponding entry in InvokeResponses, a CommandStatusIB with the
NO_COMMAND_RESPONSE status SHALL be submitted to the layer above.

8.9. Common Action Information Blocks and Paths
Shown below are common information blocks used to submit actions to, and receive actions from,
the message layer.

8.9.1. Path Information

• Logically for this specification, the Node or Group SHALL be present in all paths.

• When an outgoing path indicates the same Node or Group as the action target, the message
layer MAY optimize the path by removing Node or Group.

• When an incoming path does not indicate a Node or Group, the message layer SHALL add the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 476 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

action target (Node or Group) to the path.

See Path for more information.

8.9.1.1. ClusterPathIB

Path Field Type Quality Conformance

Group group-id !Endpoint

Node node-id !Group

Endpoint endpoint-no A !Group

Cluster cluster-id A M

8.9.2. Attribute Information Blocks

8.9.2.1. AttributePathIB

An attribute path supports nesting levels deeper than the attribute with the NestedPath field below.
The NestedPath indicates zero or more nesting levels to establish the nesting depth of the attribute
path.

• An attribute path MAY indicate data at any nesting depth in the attribute data.

• If the Attribute is indicated as a wildcard then the path SHALL indicate all attributes of the clus
ter.

• If the Attribute is indicated as a wildcard, then NestedPath SHALL be empty.

• If the final nesting level in an attribute path indicates a collection data type, then the path
SHALL indicate all collection data, plus any deeper nested data as part of the collection.

• If the WildcardPathFlags field is absent, it SHALL be considered to be an empty map with all
flags unset.

Path Field Type Quality Conformance

Cluster ClusterPathIB M

Attribute attrib-id A M

NestedPath list[NestingLevelIB] Attribute != wildcard

WildcardPathFlags WildcardPathFlags
Bitmap

O

8.9.2.2. NestingLevelIB

This defines a deeper nesting level of an attribute path to collection data, such as a struct field, or
list entry.

Path Field Type Quality Conformance

FieldID field-id A O.a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 477

Path Field Type Quality Conformance

ListIndex entry-idx A O.a

8.9.2.3. WildcardPathFlagsBitmap

The WildcardPathFlagsBitmap indicates flags that apply to the path, affecting wildcard expansion.

The following flags are defined:

Bit Name Summary

0 WildcardSkipRootNode Skip the Root Node endpoint
(endpoint 0) during wildcard
expansion.

1 WildcardSkipGlobalAttributes Skip several large global attrib
utes during wildcard expan
sion.

2 WildcardSkipAttributeList Skip the AttributeList global
attribute during wildcard
expansion.

3 WildcardSkipEventList Skip the EventList global
attribute during wildcard
expansion.

4 WildcardSkipCommandLists Skip the AcceptedCommandList
and GeneratedCommandList
global attributes during wild
card expansion.

5 WildcardSkipCustomElements Skip any manufacturer-specific
clusters or attributes during
wildcard expansion.

6 WildcardSkipFixedAttributes Skip any Fixed (F) quality attrib
utes during wildcard expan
sion.

7 WildcardSkipChangesOmitte
dAttributes

Skip any Changes Omitted (C)
quality attributes during wild
card expansion.

8 WildcardSkipDiagnosticsClus
ters

Skip all clusters with the Diag
nostics (K) quality during wild
card expansion.

8.9.2.4. Valid Read Attribute Paths

This table is valid for AttributePathIB for a Read Request action or a Subscribe Request action. See
AttributePathIB for more conformance restrictions.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 478 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The table defines valid attribute data path with wildcard and non-wildcard combinations.

Node Endpoint Cluster Attribute Attribute Data
Requested

Specific Wildcard Wildcard Wildcard all attribute data
from all clusters
on all endpoints
on a specific node

Specific Wildcard Wildcard Specific specific global
attribute data or
field for all clus
ters on all end
points on a spe
cific node (e.g.
ClusterRevision)

Specific Wildcard Specific Wildcard all attribute data
from a specific
cluster on all end
points on a spe
cific node (e.g.
Descriptor cluster)

Specific Wildcard Specific Specific a specific attribute
data or field from
a specific cluster
on all endpoints
on a specific node
(e.g. Descriptor
cluster)

Specific Specific Wildcard Wildcard all attribute data
from all clusters
on a specific end
point on a specific
node

Specific Specific Wildcard Specific a specific global
attribute data or
field for all clus
ters on a specific
endpoint on a spe
cific node (e.g.
ClusterRevision)

Specific Specific Specific Wildcard all attribute data
from a specific
cluster on a spe
cific endpoint a
specific node

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 479

Node Endpoint Cluster Attribute Attribute Data
Requested

Specific Specific Specific Specific a specific attribute
data or field from
a specific cluster
on a specific end
point on a specific
node

8.9.2.5. Valid Write Attribute Paths

This table is valid for Path field of a AttributeDataIB for a Write Request action. See AttributeDataIB
and AttributePathIB for more conformance restrictions.

The table defines valid attribute data paths including combinations with wildcards, non-group
(node & endpoint), and group paths. A blank entry means the element does not exist in the path.

Node Endpoint Group Cluster Attribute Attribute Data
Provided

Specific Wildcard Specific Specific a specific
attribute data
or field from a
specific cluster
on all end
points on a spe
cific node

Specific Specific Specific Specific a specific
attribute data
or field from a
specific cluster
on a specific
endpoint on a
specific node

Specific Specific Specific a specific
attribute data
or field from a
specific cluster
on a specific
group of zero
or more end
points on each
node

8.9.2.6. AttributeDataIB

This is used in Write Request and Report Data actions.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 480 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Info Field Type Quality Conformance

DataVersion data-ver desc

Change enum8 desc

Path AttributePathIB M

Data desc M

DataVersion

• This field SHALL NOT be present for a group or wildcard path.

• This field MAY be present for a path in a Write Request action.

• This field SHALL be present for a path in a Report Data action.

Change

This field indicates a change to a list for a write interaction, or as reported for a read or subscribe
interaction.

• This field SHALL only be present if the data type is a list entry index or list data type.

• The list change SHALL be in the context of a fabric-filtered list, if fabric-filtering is enabled or
required.

• This field SHALL be one of the values defined in the table below.

Name Description

REPLACE This indicates the entire list changing to another
list.

ADD This adds one or more entries without imposing
a specific order.

DELETE This deletes a particular entry.

MODIFY This modifies a particular entry.

REPLACE

• This Change value SHALL indicate replacing the entire list.

• This Change value SHALL only be used when the last nesting level of the Path field indicates a
list (Attribute or FieldID).

• The data type of the AttributeDataIB Data field SHALL be list.

• The Data field MAY be an empty list which effectively deletes all entries from the list.

ADD

• This Change value SHALL indicate adding one or more entries to the list, in an order deter
mined by the server.

• This Change value SHALL only be used when the last nesting level of the Path field indicates a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 481

list (Attribute or FieldID).

• The data type of the AttributeDataIB Data field SHALL be list.

DELETE

• This Change value SHALL indicate deleting one particular entry.

• This Change value SHALL only be used when the last nesting level of the Path field indicates a
list entry index (ListIndex).

• The data type of the AttributeDataIB Data field SHALL be the data type of the list entry.

MODIFY

• This Change value SHALL indicate modifying one particular entry.

• This Change value SHALL only be used when the last nesting level of the Path field indicates a
list entry index (ListIndex).

• The data type of the AttributeDataIB Data field SHALL be the data type of the list entry.

Path

See AttributePathIB.

Data

• The data type of this field SHALL be the data type of the data indicated by the Path field.

• If the final nesting level indicated by the Path is an list entry index, the data type SHALL be the
data type of the list.

8.9.2.7. AttributeReportIB

Info Field Type Quality Conformance

AttributeStatus AttributeStatusIB O.a

AttributeData AttributeDataIB O.a

• Only one of the above two fields SHALL be present.

8.9.2.8. DataVersionFilterIB

Info Field Type Quality Conformance

Path ClusterPathIB M

DataVersion data-ver M

• The Path field SHALL indicate a concrete path.

8.9.3. Event Information Blocks and Paths

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 482 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

8.9.3.1. EventFilterIB

Info Field Type Quality Conformance

Node node-id M

EventMin event-no M

8.9.3.2. EventPathIB

Path Field Type Quality Conformance

Path ClusterPathIB M

Event event-id O

IsUrgent bool O

8.9.3.3. Valid Event Paths

This table is valid for EventPathIB. The table defines valid event paths including combinations with
wildcards, but not group paths.

Node Endpoint Cluster Event Event(s)
Requested

Specific Wildcard Wildcard Wildcard all events from all
clusters on all end
points on a spe
cific node

Specific Wildcard Specific Wildcard all events from a
specific cluster on
all endpoints on a
specific node (e.g.
Descriptor cluster)

Specific Wildcard Specific Specific a specific event
from a specific
cluster on all end
points on a spe
cific node (e.g.
Descriptor cluster)

Specific Specific Wildcard Wildcard all events from all
clusters on a spe
cific endpoint on a
specific node

Specific Specific Specific Wildcard all events from a
specific cluster on
a specific endpoint
on a specific node

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 483

Node Endpoint Cluster Event Event(s)
Requested

Specific Specific Specific Specific a specific event
from a specific
cluster on a spe
cific endpoint on a
specific node

8.9.3.4. EventDataIB

Info Field Type Quality Conformance

Path EventPathIB M

EventNumber event-no M

Priority priority M

EpochTimeStamp posix-ms O.a

SystemTimeStamp systime-ms O.a

Data variable M

• The Path field SHALL indicate an existent path.

• The Path field SHALL NOT have an IsUrgent field present.

Data Field

The Data field SHALL contain the cluster-specific payload of the Event.

8.9.3.5. EventReportIB

Info Field Type Quality Conformance

EventStatus EventStatusIB O.a

EventData EventDataIB O.a

• Only one of the above fields SHALL be present.

8.9.4. Command Information Blocks and Paths

8.9.4.1. CommandPathIB

Path Field Type Quality Conformance

ClusterPath ClusterPathIB M

Command command-id M

8.9.4.2. Valid Command Paths

This table is valid for CommandPathIB. The table defines valid command paths including combina

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 484 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

tions with wildcards, non-group (node & endpoint), and group paths. A blank entry means the ele
ment does not exist in the path.

Node Endpoint Group Cluster Command Description Confor
mance

Specific Wildcard Specific Specific a specific
cluster com
mand to all
endpoints of
a node

P, M

Specific Specific Specific Specific a specific
cluster com
mand to a
specific end
point on a
node

M

Specific Specific Specific a specific
cluster com
mand to a
group of
endpoints

M

NOTE Support for commands paths involving wildcards is provisional.

8.9.4.3. CommandDataIB

Info Field Type Quality Conformance

CommandPath CommandPathIB M

CommandFields variable M

CommandRef uint16 O

CommandRef field

This field is used to provide a reference for a command.

• When used in an Invoke Request Action:

◦ This field MAY be omitted if InvokeRequests contains only a single CommandDataIB.

◦ When InvokeRequests contains multiple CommandDataIBs, the CommandRef field SHALL
contain a value unique within InvokeRequests.

▪ Implementations MAY choose to use the index of the CommandDataIB within the Invok
eRequests field as the value of this field.

• When used in an Invoke Response Action:

◦ CommandRef MAY be omitted from the CommandDataIB in InvokeResponses if the Invok
eRequests being responded to contains only a single CommandDataIB, even if CommandRef

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 485

was included in that CommandDataIB.

◦ CommandRef SHALL be included in the CommandDataIB in InvokeResponses if Invok
eRequests contained more than one CommandDataIB.

◦ When a CommandDataIB in InvokeResponses has a CommandRef field, its value SHALL be
equal to the CommandRef field from the CommandDataIB (in the InvokeRequests) that gen
erated this CommandDataIB.

▪ If InvokeRequests contained only a single CommandDataIB, and CommandRef was not
included in that CommandDataIB, then CommandRef for this CommandDataIB in Invok
eResponses SHALL NOT be included.

8.9.4.4. InvokeResponseIB

This is used in response to an invoked command.

Info Field Type Quality Conformance

Command CommandDataIB O.a

Status CommandStatusIB O.a

• Only one of the above fields SHALL be present.

• The Path field in CommandDataIB and CommandStatusIB SHALL indicate a concrete path.

8.9.5. Status Information Blocks and Paths

8.9.5.1. CommandStatusIB

This is used to indicate a command response that represents a status: an invalid command, an error
accessing the command, successful execution of a command without a following command, and so
on.

Info Field Type Quality Conformance

CommandPath CommandPathIB M

Status StatusIB M

CommandRef uint16 O

• The Path field SHALL indicate a concrete path.

CommandRef field

This field is used to provide a reference for a command.

• CommandRef MAY be omitted from the CommandStatusIB if InvokeRequests contains only a
single CommandDataIB, even if CommandRef was included in that CommandDataIB.

• CommandRef SHALL be included in the CommandStatusIB in InvokeResponses if Invok
eRequests contained more than one CommandDataIB.

• When a CommandStatusIB in InvokeResponses has a CommandRef field, its value SHALL be

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 486 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

equal to the CommandRef field from the CommandDataIB (in InvokeRequests) that generated
this CommandStatusIB.

◦ If InvokeRequests contained only a single CommandDataIB, and CommandRef was not
included in that CommandDataIB, then CommandRef for this CommandStatusIB in Invok
eResponses SHALL NOT be included.

8.9.5.2. EventStatusIB

This is used to indicate an invalid event, or an error accessing the event.

Info Field Type Quality Conformance

Path EventPathIB M

Status StatusIB M

• The Path field SHALL indicate a concrete path.

8.9.5.3. AttributeStatusIB

This is used to indicate an invalid attribute data request path, or an error accessing the data, or suc
cess writing to an attribute path.

Info Field Type Quality Conformance

Path AttributePathIB M

Status StatusIB M

• The Path field SHALL indicate a concrete path.

8.9.5.4. StatusIB

This is used to respond with errors or success to actions. A success Status field is valid for every
layer. A non-success Status field is either defined in this layer, or generated and recognized by
another layer. ClusterStatus is defined in a cluster specification.

Please see Status Codes for valid values for Status.

Info Field Type Quality Conformance

Status status M

ClusterStatus status O

Status Field

This is the one of the common status code values defined in Status Code Table.

ClusterStatus Field

ClusterStatus values are defined in a cluster specification.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 487

8.10. Status Codes
The table below lists global status codes for the Interaction Model. These MAY be used by interac
tion model processing of actions and as common status codes for cluster specifications. All values
not defined here SHALL be reserved (per general conventions). Cluster specifications that wish to
communicate a status not defined in this table MAY use a cluster-specific status code as described in
Status Codes.

8.10.1. Status Code Table

Status Code Value Summary

0x00 SUCCESS Operation was successful.

0x01 FAILURE Operation was not successful.

0x7D INVALID_SUBSCRIPTION Subscription ID is not active.

0x7E UNSUPPORTED_ACCESS

NOT_AUTHORIZED

The sender of the action or
command does not have autho
rization or access.
NOT_AUTHORIZED is an obso
lete name of this error code.

0x7F UNSUPPORTED_ENDPOINT The endpoint indicated is
unsupported on the node.

0x80 INVALID_ACTION The action is malformed, has
missing fields, or fields with
invalid values. Action not car
ried out.

0x81 UNSUPPORTED_COMMAND

UNSUP_COMMAND

The indicated command ID is
not supported on the cluster
instance. Command not carried
out.
UNSUP_COMMAND is an obso
lete name for this error code.

0x82 reserved Deprecated: use UNSUPPORT
ED_COMMAND

0x83 reserved Deprecated: use UNSUPPORT
ED_COMMAND

0x84 reserved Deprecated: use UNSUPPORT
ED_COMMAND

0x85 INVALID_COMMAND

INVALID_FIELD

The cluster command is mal
formed, has missing fields, or
fields with invalid values. Com
mand not carried out.
INVALID_FIELD is an obsolete
name for this error code.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 488 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Status Code Value Summary

0x86 UNSUPPORTED_ATTRIBUTE The indicated attribute ID, field
ID or list entry does not exist for
an attribute path.

0x87 CONSTRAINT_ERROR

INVALID_VALUE

Out of range error or set to a
reserved value. Attribute keeps
its old value. Note that an
attribute value may be out of
range if an attribute is related
to another, e.g. with minimum
and maximum attributes. See
the individual attribute descrip
tions for specific details.
INVALID_VALUE is an obsolete
name for this error code.

0x88 UNSUPPORTED_WRITE

READ_ONLY

Attempt to write a read-only
attribute.
READ_ONLY is an obsolete
name for this error code.

0x89 RESOURCE_EXHAUSTED

INSUFFICIENT_SPACE

An action or operation failed
due to insufficient available
resources.
INSUFFICIENT_SPACE is an
obsolete name for this error
code.

0x8A reserved Legacy cluster specification
error status code: use SUCCESS

0x8B NOT_FOUND The indicated data field or
entry could not be found.

0x8C UNREPORTABLE_ATTRIBUTE Reports cannot be issued for
this attribute.

0x8D INVALID_DATA_TYPE The data type indicated is unde
fined or invalid for the indi
cated data field. Command or
action not carried out.

0x8E reserved Legacy cluster specification
error status code: use UNSUP
PORTED_ATTRIBUTE.

0x8F UNSUPPORTED_READ Attempt to read a write-only
attribute.

0x90 reserved Deprecated: use FAILURE

0x91 reserved Deprecated: use FAILURE

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 489

Status Code Value Summary

0x92 DATA_VERSION_MISMATCH Cluster instance data version
did not match request path

0x93 reserved Legacy cluster specification
error status code: use FAILURE

0x94 TIMEOUT The transaction was aborted
due to time being exceeded.

0x95 reserved ZCL OTA Upgrade cluster spe
cific error status code

0x96 reserved ZCL OTA Upgrade cluster spe
cific error status code.

0x97 reserved ZCL OTA Upgrade cluster spe
cific error status code.

0x98 reserved ZCL OTA Upgrade cluster spe
cific error status code.

0x99 reserved ZCL OTA Upgrade cluster spe
cific error status code.

0x9A reserved ZCL OTA Upgrade cluster spe
cific error status code.

0x9B UNSUPPORTED_NODE The node ID indicated is not
supported on the node.

0x9C BUSY The receiver is busy processing
another action that prevents
the execution of the incoming
action.

0xC0 reserved Deprecated: use FAILURE

0xC1 reserved Deprecated: use FAILURE

0xC2 reserved Deprecated: use FAILURE

0xC3 UNSUPPORTED_CLUSTER The cluster indicated is not sup
ported on the endpoint.

0xC4 reserved Deprecated: use SUCCESS

0xC5 NO_UPSTREAM_SUBSCRIP
TION

Used by proxies to convey to
clients the lack of an upstream
subscription to a source.

0xC6 NEEDS_TIMED_INTERACTION A Untimed Write or Untimed
Invoke interaction was used for
an attribute or command that
requires a Timed Write or
Timed Invoke.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 490 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Status Code Value Summary

0xC7 UNSUPPORTED_EVENT The indicated event ID is not
supported on the cluster
instance.

0xC8 PATHS_EXHAUSTED The receiver has insufficient
resources to support the speci
fied number of paths in the
request

0xC9 TIMED_REQUEST_MISMATCH A request with TimedRequest
field set to TRUE was issued out
side a Timed transaction or a
request with TimedRequest set
to FALSE was issued inside a
Timed transaction.

0xCA FAILSAFE_REQUIRED A request requiring a Fail-safe
context was invoked without
the Fail-Safe context.

0xCB INVALID_IN_STATE The received request cannot be
handled due to the current
operational state of the device

0xCC NO_COMMAND_RESPONSE A CommandDataIB is missing a
response in the InvokeRe
sponses of an Invoke Response
action.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 491

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 492 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 9. System Model Specification

9.1. Practical Information

9.1.1. Revision History

Revision Description

1 Initial Release of this specification

2 Added usage description for TagList

9.1.2. Scope and Purpose

This is part of a package of Data Model specifications that are agnostic to underlying layers (encod
ing, message, network, transport, etc.). Each specification below may be independently maintained.
This package, as a whole, SHALL be independently maintained as agnostic and decoupled from
lower layers. This package may be referenced by inclusion in a set of protocol stack specifications
for a complete vertical standard.

Data Model Defines first order elements and namespace for endpoints, clusters,
attributes, data types, etc.

Interaction Model Defines interactions, transactions and actions between nodes.

System Model Defines relationships that are managed between endpoints and clusters.

Cluster Library Reference library of cluster specifications.

Device Library Reference library of devices type definitions.

9.1.3. Origin Story

The origin of this section is the Dotdot Architecture Model and parts of Chapter 2 of the Zigbee Clus
ter Library specification that define the data model.

The purpose is that this document will align with current cluster specifications in the ZCL and still
support cluster updates and evolution into a single set of data models.

9.1.4. Overview

This specification defines persistent relationships between local and remote instances of data
model elements, that support a system of operational communication between such instances. A
system is a set of nodes and persistent relationships that automate data flow and control based on
local or external stimulus.

9.2. Endpoint Composition
• Endpoint composition SHALL be indicated by these Descriptor cluster attributes:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 493

◦ DeviceTypeList SHALL list the device type(s) that the endpoint supports.

◦ PartsList SHALL indicate endpoints as required for each device type in the DeviceTypeList.

• The population of the PartsList of the various endpoints allows for the indication of a hierarchy
(composition) for which the following terms are defined:

◦ "Descendants" of an endpoint E are endpoints that are:

▪ in the PartsList of E, or

▪ descendants of an endpoint in the PartsList of E.

◦ "Children" of an endpoint E are endpoints that are descendants of E but not descendants of
any endpoint in the PartsList of E.

◦ "Sibling endpoints" are endpoints which are children of the same endpoint.

Example: in the figure below, endpoint 0 (Root Node, thus using full-family pattern) has a
PartsList containing endpoints 1 through 5. Endpoint 1 has a PartsList containing endpoints 2
and 4, endpoint 2 has a PartsList containing endpoint 3, and endpoint 4 has a PartsList con
taining endpoint 5. Therefore, endpoints 2, 3, 4 and 5 are not children of endpoint 0 and thus
do not qualify as siblings of endpoint 1 (which is the only child of endpoint 0).

Endpoint 1 has a PartsList containing endpoints 2 and 4, and endpoints 2 and 4 do not occur
in any other PartsList of a descendant of endpoint 1, so endpoints 2 and 4 are children of end
point 1, and they are sibling endpoints.

Endpoint 2 has a PartsList containing only endpoint 3, so endpoint 3 is a single child and does
not have any siblings.

Endpoint 4 has a PartsList containing only endpoint 5, so endpoint 5 is a single child and does
not have any siblings.

Endpoints 3 and 5 are not appearing together in any other PartsList (except that of endpoint
0), so they are not siblings.

• Each simple endpoint SHALL support exactly one Application device type with these exceptions:

◦ The endpoint MAY support additional device types which are subsets of the Application
device type (the superset). See Superset Device Types for cluster requirements of superset
devices.

◦ The endpoint MAY support additional device types (application, utility or node device types)
as defined by each additional device type.

For example: A Color Temperature Light device type may support device type IDs for both a
Dimmable Light and On/Off Light, because those are subsets of a Color Temperature Light
(the superset).

For example: A Room Temperature Sensor device type and a Room Humidity Sensor device
type must be on separate endpoints because they are both Simple device types and neither is
a subset of the other.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 494 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

For example: The Bridged Node device type (a utility device type) may be added to an end
point, which means this endpoint represents a node behind a bridge, and requires one or
more extra clusters.

• A leaf device type is not composed of other application device types (see above bullet on sub
sets).

For example: The Temperature Sensor device type mandates the Temperature Measurement
server cluster, and does not require additional device types or endpoints.

• Most device types define leaf endpoints without the need for composition.

For example: A Dimmer Switch device type mandates these clusters: On/Off, Level Control,
Identify, and does not require additional device types or endpoints.

• There can be situations where leaf endpoints have no application device types, and one or more
utility device types.

For example: a light with mains power and battery back-up. This needs two endpoints for the
two Power Source device types, each of which has a Power Source cluster, to describe both
power sources, and only one of those endpoints can host the lighting application device type.
The other endpoint will only have the Power Source cluster, and no application device type.

• A composed device type is composed of one or more other device types, which have their own
endpoints which are listed in the PartsList of the endpoint of the composed device type.

For example: An endpoint supporting a Temperature Controlled Cabinet device type inside a
Refrigerator device type which has 2 temperature sensors (one for freezer temperature, and
one for ice tray temperature) would have a PartsList containing 2 temperature sensor leaf
endpoints (one for each of the sensors). Those leaf endpoints would indicate and conform to
the temperature sensor device type, and have unique TagList attributes to disambiguate
them.

• Endpoint composition SHALL be defined in the device type specification.

9.2.1. Endpoint Composition Patterns

This specification defines two patterns for endpoint composition supported by a device type:
- Tree pattern of endpoints directly below the composed endpoint.
- Full-family list of all descendent endpoints below the composed endpoint.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 495

9.2.1.1. Tree Pattern

The tree pattern supports a general tree of endpoints, each of which supports the pattern defined
by the endpoint’s device type. The tree pattern is commonly used for composed application device
types. The tree pattern is commonly used for device types that support physical device composition
(e.g. a Refrigerator).

• The tree pattern of composition SHALL be defined in the device type specification, by a table of
device types, from which the specified device type is composed.

◦ Each device type from the table that is included in an implementation SHALL be repre
sented by one or more endpoints in the PartsList attribute of the Descriptor cluster on the
endpoint of the parent device type.

◦ An implementation MAY include other device types not listed in the table of device types in
its composition and each such additional device SHALL be represented by an endpoint in
the PartsList attribute of the Descriptor cluster on the endpoint of the parent device type.

For example: A Refrigerator/Freezer endpoint has a PartsList with the Refrigerator and
Freezer endpoint, but not the parts of the Refrigerator or Freezer. The Refrigerator and
Freezer endpoints each have a PartsList that includes temperature sensor and control end
points.

9.2.1.2. Full-Family Pattern

The full-family pattern is a list of all descendent endpoints, with no imposed hierarchy.

• The full-family pattern of endpoint composition SHALL be defined in the device type specifica
tion by stating that the device type supports the full-family pattern.

• The PartsList attribute of the Descriptor cluster on the endpoint SHALL contain all descendant
endpoints.

Example: The Root Node and Aggregator device types use the full-family pattern, as defined
in their device type specification.

9.2.1.3. No Cycles

• An endpoint SHALL NOT include itself in its PartsList attribute.

• Cycles where an endpoint is a (direct or indirect) ancestor of itself SHALL NOT occur.

9.2.2. Root Node Endpoint

A root node device type is a category of device type that is specified to be supported by all nodes in
a fabric. Its main function is to describe the node and what endpoints the node supports.

• A root node device type SHALL be a singleton on the root node endpoint.

• The PartsList of the Descriptor cluster on the root node endpoint SHALL list all endpoints on the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 496 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

node, except the root node endpoint.

• The root node endpoint SHALL NOT exist in any other endpoint’s PartsList on the node.

• The root node endpoint requirements are defined by a node scoped device type.

• There SHALL be only one root node endpoint for the node.

NOTE

The root node endpoint is currently under-specified for nodes which are not com
missionable. As a result, the root node endpoint on non-commissionable nodes MAY
be absent or otherwise limited in functionality. This specification gap is expected to
be addressed in a future revision.

9.2.3. Disambiguation

Using the terms and composition patterns described above, some endpoints will have sibling end
points with an overlap in application device type(s). For this case, the Duplicate condition has been
defined (see the Base Device Type in the Device Library).

• A device type definition MAY define a method for disambiguation when the Duplicate condition
applies to either the endpoint with that device type or to its children.

• If no disambiguation method is defined in the relevant device type definitions, an endpoint to
which the Duplicate condition applies SHALL have a TagList attribute in its Descriptor cluster
and its set of tags SHALL be distinct from the set of tags of any sibling endpoint with which it
has an overlap in application device type(s). When comparing sets of tags, ordering of the list
SHALL be ignored.

• The TagList feature and attribute MAY also be used in other cases to provide guidance to a client
and/or a user.

• When the Duplicate condition applies, clients SHOULD disambiguate the relevant sibling end
points in their user interfaces and client logic using the method defined in the device type or the
TagList attribute values if no other method is defined.

For example: If the Duplicate condition applies to child endpoints of an Aggregator endpoint
that represent multiple independent bridged devices, the endpoints make available metadata
to allow a client to disambiguate distinct bridged devices with an overlap in application
device types. Typically this is done using the NodeLabel attribute of the Bridged Device Basic
Information cluster - thus reusing the naming information which the bridge already has to
allow disambiguation to the user when using a direct user interface to the bridge.

For instance: The Aggregator in this example, exposes several Color Temperature Lights (end
points 13 and 22) which are disambiguated with their NodeLabel. Note that the composed
device at endpoints 24, 25 and 26 also uses a TagList since, for this case, the bridge knows the
lighting direction of both elements of the composed device.

Another example: The following diagram (copied from Chapter 10 of the Device Library)
shows a Video Player device containing 3 separate Content Apps on endpoints 21, 31 and 41
which are disambiguated using the ApplicationName attribute of the Application Basic clus

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 497

ter on these endpoints.

Figure 41. Endpoint Composition for Video Player Device

Note that these requirements related to disambiguation hold for non-composed as well as com
posed device types, as illustrated in the examples below.

Example of using TagList for disambiguation for a non-composed device type: A switch device
with two buttons.

• Endpoint 0 has device type Root Node with a PartsList with endpoints 11 and 12 (these are
sibling endpoints per the definition above)

• Endpoint 11 has device type Generic Switch and TagList containing two tags: Position.Left
and Number.One

• Endpoint 12 has device type Generic Switch and TagList containing two tags: Posi
tion.Right and Number.Two

Example of using TagList for disambiguation of a composed device type: a refrigerator with
two cabinets (fresh food and freezer), as illustrated in the figure below:

• Endpoint 1 has the composed device type (Refrigerator) and the PartsList contains end
points 2 and 4 (but not 3 and 5).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 498 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Endpoints 2 and 4 are sibling endpoints which each have a device type Temperature Con
trolled Cabinet, with a TagList to disambiguate.

• Endpoint 2 has a PartsList with endpoint 3 to indicate that the temperature sensor on end
point 3 measures the temperature in the refrigerator (fresh food) compartment. Endpoint
3 is a child of endpoint 2.

• Similarly, endpoint 4 has a PartsList with endpoint 5 to indicate that the temperature sen
sor on endpoint 5 measures the temperature in the freezer compartment. Endpoint 5 is a
child of endpoint 4.

• Endpoints 3 and 5 each use a TagList to indicate to the client details about the placement
of the temperature sensor inside the Temperature Controlled Cabinet of endpoint 2 and 4.
Note that these TagLists in this example are identical (in the product, both sensors are
located in the top left position of their respective compartment), which is allowed since
endpoints 3 and 5 are not siblings, hence the "Duplicate" condition does not apply. So
these endpoints are using a TagList to provide information rather than to disambiguate.

Figure 42. Disambiguation and information via semantic tags

9.2.4. Dynamic Endpoint Allocation

Some nodes MAY require a dynamic number of endpoints, since the functionality they expose can
change at run-time, e.g.

• a Bridge on which Bridged Devices are added or deleted.

• a Casting Video Player in which Content App endpoints are added or deleted (see Device
Library, section 10).

Such dynamic entities which need to be exposed with an endpoint, will be referred to as an
"exposed entity" in the following description.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 499

For such nodes with dynamic endpoints, the endpoint addresses SHALL be allocated according to
the following rules:

• When such exposed entity is exposed for the first time, it SHALL be allocated a new endpoint
address (or set of endpoint addresses), incrementing from the highest previously (ever) used
endpoint address.

◦ For the situation where a node following these mechanisms has exhausted all available
65535 endpoint addresses for exposed entities, it MAY wrap around to the lowest unused
endpoint address.

• For existing exposed entities, the endpoint addresses SHALL NOT be changed.

◦ This persistency requirement also holds for the case of restart/reboot of the device.

As a result of these mechanisms, endpoint addresses that were used for exposed entities that were
once exposed but now have been removed will not be reused in the future (apart from the excep
tional wrap-around corner case mentioned above), in order to avoid the possibility of confusing
other nodes by re-assigning (reusing) an endpoint address for a different exposed entity. Other
nodes using the exposed entities from this node SHOULD remove information related to exposed
entities no longer being exposed.

Other nodes that wish to be notified of changes of the exposed entities SHOULD monitor changes of
the PartsList attribute in the Descriptor cluster on the root node endpoint.

9.2.5. Superset Device Types

A superset device type is a device type that is functionally similar to a subset device type and has an
overlap in its cluster requirements with a subset device type. If an endpoint lists both the superset
device type and the subset device type(s) in its DeviceTypeList list, a client that is capable of only
controlling the subset device type(s) would also be able to control the aspects of the superset device
type that are in common with the subset device type.

A superset device type is subject to the following constraints:

• All clusters in the subset device type with mandatory conformance SHALL be supported in the
superset device type with mandatory conformance.

• Any clusters in the subset device type with optional conformance MAY be supported in the
superset device type.

• Any clusters in the subset device type with optional conformance that are also supported in the
superset device type MAY have either optional or mandatory conformance in the superset
device type.

• Element requirements of overlapping clusters in the superset device type SHALL be the same as
in the subset device type.

• An endpoint implementing a superset device type MAY include the subset device type(s) in the
DeviceTypeList of the descriptor cluster of the endpoint.

A composed device type SHALL indicate that superset device types are allowed in an implementa
tion by adding a + sign after the ID and the name of the subset device type having a subset/superset

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 500 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

relationship in the device type requirements table of the composed device type.

An endpoint SHALL NOT implement a subset of a device type listed in the device type requirements
table of a composed device type.

For example, the following table indicates that an implementation may use a dimmable light or any
superset of a dimmable light (such as color temperature light and extended color light) in a com
posed device, but it may not use an on/off light as that is a subset of a dimmable light:

ID Name Constraint Conformance

0x0101+ Dimmable Light+ O

9.3. Interaction Model Relationships
This section define some of the system behaviors and their constraints as they apply to interactions
specified in the Interaction Model.

9.3.1. Subscription

9.3.1.1. Persistency

A subscription is an ephemeral 'session' between a subscriber and a publisher. A subscription can
lose synchronization for a variety of reasons, including (but not limited to):

• Inability to send reports due to network connectivity issues

• Factory-reset of the publisher

• Reboot of either the subscriber or publisher

• Decision by either publisher or subscriber to tear down the subscription to reclaim resources

In all cases, the subscriber can eventually discover the loss of synchronization by not receiving a
sync report or data report in the agreed upon sync interval, or through some other failure to com
municate with the publisher.

• When a subscriber discovers the loss of synchronization, it MAY then initiate a re-subscription
to resume the subscription.

• An implementation MAY choose to persist the details of a subscription across reboots, but it is
not necessary.

In all cases, the publisher eventually discovers the loss of synchronization by not receiving a Status
Response to a Report Data message that expects a response, or by receiving an error Status
Response.

9.4. Binding Relationship
This relationship occurs because a simple client endpoint does not know which endpoints will be
the target for the client generated actions, on one or more remote nodes.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 501

For example: A light switch that controls one or more light bulbs, does not know the remote
node endpoints of the bulbs.

For example: A thermostat that subscribes to an occupancy sensor, does not know the remote
node endpoint of the sensor.

In such cases, a binding is used to direct the local endpoint to the remote endpoint. The existence of
the Binding cluster on an endpoint, allows a director to create one or more binding entries (bind
ings) in the Binding cluster. A director is a remote client that is given access to create such bindings.

Each binding indicates either a remote node’s endpoint or cluster on a remote node’s endpoint.
Multiple bindings are allowed, depending on the interaction. A binding is either a unicast binding,
where the binding target is a remote endpoint, or a groupcast binding, where the binding target is a
group of remote endpoints.

Please see the Binding Cluster specification for more specification detail.

9.5. Descriptor Cluster

NOTE
The Descriptor cluster is meant to replace the support from the Zigbee Device
Object (ZDO) for describing a node, its endpoints and clusters.

This cluster describes an endpoint instance on the node, independently from other endpoints, but
also allows composition of endpoints to conform to complex device type patterns.

This cluster supports a list of one or more device type identifiers that represent conformance to
device type specifications.

For Example: An Extended Color Light device type may support device type IDs for both a
Dimmable Light and On/Off Light, because those are subsets of an Extended Color Light (the
superset).

The cluster supports a PartsList attribute that is a list of zero or more endpoints to support a com
posed device type.

For Example: A Refrigerator/Freezer appliance device type may be defined as being com
posed of multiple Temperature Sensor endpoints, a Metering endpoint, and two Thermostat
endpoints.

9.5.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 502 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Revision Description

1 Initial Release

2 Semantic tag list; TagList feature

9.5.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Endpoint DESC

9.5.3. Cluster ID

ID Name

0x001D Descriptor

9.5.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Conformance Summary

0 TAGLIST TagList desc The TagList
attribute is
present

9.5.4.1. TagList Feature

See the Disambiguation section in the System Model spec for conformance requirements for this
feature and the corresponding attribute.

9.5.5. Data Types

9.5.5.1. DeviceTypeStruct Type

The device type and revision define endpoint conformance to a release of a device type definition.
See the Data Model specification for more information.

ID Name Type Constraint Quality Default Access Confor
mance

0 Device
Type

devtype-id M

1 Revision uint16 min 1 M

DeviceType Field

This SHALL indicate the device type definition. The endpoint SHALL conform to the device type def
inition and cluster specifications required by the device type.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 503

Revision Field

This is the implemented revision of the device type definition. The endpoint SHALL conform to this
revision of the device type.

9.5.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Device
TypeList

list[Device
Type
Struct]

min 1 F desc R V M

0x0001 ServerList list[cluster-
id]

F empty R V M

0x0002 ClientList list[cluster-
id]

F empty R V M

0x0003 PartsList list[end
point-no]

empty R V M

0x0004 TagList list[Seman
tic
TagStruct]

1 to 6 F MS R V TAGLIST

9.5.6.1. DeviceTypeList Attribute

This is a list of device types and corresponding revisions declaring endpoint conformance (see
DeviceTypeStruct). At least one device type entry SHALL be present.

An endpoint SHALL conform to all device types listed in the DeviceTypeList. A cluster instance that
is in common for more than one device type in the DeviceTypeList SHALL be supported as a shared
cluster instance on the endpoint.

9.5.6.2. ServerList Attribute

This attribute SHALL list each cluster ID for the server clusters present on the endpoint instance.

9.5.6.3. ClientList Attribute

This attribute SHALL list each cluster ID for the client clusters present on the endpoint instance.

9.5.6.4. PartsList Attribute

This attribute indicates composition of the device type instance. Device type instance composition
SHALL include the endpoints in this list.

See Endpoint Composition for more information about which endpoints to include in this list.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 504 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.5.6.5. TagList Attribute

This attribute SHALL be used to disambiguate sibling endpoints in certain situations, as defined in
the Disambiguation section in the System Model specification. An example of such a situation might
be a device with two buttons, with this attribute being used to indicate which of the two endpoints
corresponds to the button on the left side.

It MAY also be used to provide information about an endpoint (e.g. the relative location of a Tem
perature sensor in a Temperature Controlled Cabinet).

• A client SHOULD use these tags to convey disambiguation information and other relevant infor
mation to the user (e.g. showing it in a user interface), as appropriate.

• A client SHOULD use these tags in its logic to make decisions, as appropriate.

For example, a client MAY identify which endpoint maps to a certain function, orientation or label
ing.

A client MAY use the Label field of each SemanticTagStruct, if present in each structure, to indicate
characteristics of an endpoint, or to augment what is provided in the TagID field of the same struc
ture.

9.6. Binding Cluster

NOTE
This scope of this document is the Binding cluster as part of the Cluster Library. The
Binding cluster is meant to replace the support from the Zigbee Device Object (ZDO)
for supporting the binding table.

A binding represents a persistent relationship between an endpoint and one or more other local or
remote endpoints. A binding does not require that the relationship exists. It is up to the node appli
cation to set up the relationship.

A binding is used to inform a client endpoint of one or more targets for a potential interaction. For
example: a light switch that controls one or more light bulbs, needs to be told the nodes and end
points of the bulbs, or told a group in which the bulbs are members. For example: A client that
needs to subscribe to an occupancy sensor, needs to know the node and endpoint of the sensor.

In such cases, a binding is used to direct a local endpoint to a target. The existence of the Binding
cluster on the client endpoint, allows the creation of one or more binding entries (bindings) in the
Binding cluster.

Each binding indicates another endpoint or cluster on another endpoint. Multiple bindings are
allowed, depending on the interaction.

A binding is either a unicast binding, where the target is a single endpoint on a single node, or a
groupcast binding, where the target is a group, which may indicate multiple endpoints on multiple
nodes. The binding may also target a single cluster on the target endpoint(s).

When a client cluster requires a target for an interaction, the Binding cluster SHALL exist on the
same endpoint.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 505

Once a binding entry is created on the Binding cluster, the client endpoint MAY initiate interactions
to the binding target.

9.6.1. Binding Mutation

If, during the creation of multiple bindings, there are no available resources to create an entry, or
to establish a binding relationship, the client SHALL respond with a status of RESOURCE_EX
HAUSTED, and the binding SHALL NOT be created.

The number of bindings supported is left to the implementation. However, a device type definition
MAY prescribe the minimum number of bindings supported on an endpoint. In this case, the num
ber prescribed by the device type SHALL be supported for each fabric the node supports, unless the
device type specifies otherwise. The total number of bindings supported SHALL be the sum of the
requirements for each endpoint, unless the device types involved specify otherwise.

• For example, if a node supports 6 fabrics and a device type specifies at least 3 bindings must be
supported, the node would need to support at least 18 bindings and ensure that at least 3 were
available to every fabric.

A binding SHALL only be created with the Cluster field if the indicated client cluster exists on the
endpoint.

When a binding is removed, the client endpoint SHALL end the binding relationship with the
removed binding target.

9.6.2. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

9.6.3. Classification

Hierarchy Role Scope PICS Code

Base Utility Endpoint BIND

9.6.4. Cluster ID

ID Name

0x001E Binding

9.6.5. Data Types

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 506 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.6.5.1. TargetStruct Type

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 Node node-id all Endpoint

2 Group group-id min 1 !Endpoint

3 Endpoint endpoint-
no

all !Group

4 Cluster cluster-id all O

Node Field

This field is the remote target node ID. If the Endpoint field is present, this field SHALL be present.

Group Field

This field is the target group ID that represents remote endpoints. If the Endpoint field is present,
this field SHALL NOT be present.

Endpoint Field

This field is the remote endpoint that the local endpoint is bound to. If the Group field is present,
this field SHALL NOT be present.

Cluster Field

This field is the cluster ID (client & server) on the local and target endpoint(s). If this field is present,
the client cluster SHALL also exist on this endpoint (with this Binding cluster). If this field is
present, the target SHALL be this cluster on the target endpoint(s).

9.6.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Binding list[Target
Struct]

desc N [] RW F VM M

9.6.6.1. Binding Attribute

Each entry SHALL represent a binding.

Here are some examples:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 507

Endpoint
Device Type

Node Group Cluster Endpoint Example
Description

Light Switch
Client

omit 1234 omit omit switch end
point sends
On/Off, Level &
Color Control
cluster com
mands to
group 1234

Temp Sensor
Client

456789 omit 1026 3 temperature
sensor client
subscribes to
node 456789
endpoint 3
temperature
measurement
cluster

9.7. Label Cluster
This cluster provides a feature to tag an endpoint with zero or more labels. This is a base cluster
that requires a derived cluster to create an instance.

9.7.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

9.7.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Endpoint LABEL

9.7.3. Cluster ID

This is a base cluster with no cluster ID. Please see derived clusters for more information.

ID Name

n/a Label

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 508 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.7.4. Data Types

9.7.4.1. LabelStruct Type

This is a string tuple with strings that are user defined.

ID Name Type Constraint Quality Default Access Confor
mance

0 Label string max 16 empty M

1 Value string max 16 empty M

Label Field

The Label or Value semantic is not defined here. Label examples: "room", "zone", "group", "direc
tion".

Value Field

The Label or Value semantic is not defined here. The Value is a discriminator for a Label that may
have multiple instances. Label:Value examples: "room":"bedroom 2", "orientation":"North",
"floor":"2", "direction":"up"

9.7.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 LabelList list[Label
Struct]

derived derived empty derived M

9.7.5.1. LabelList Attribute

This is a list of string tuples. Each entry is a LabelStruct.

9.8. Fixed Label Cluster
This cluster provides a feature for the device to tag an endpoint with zero or more read only labels.
Examples:

• A bridge can use this to indicate grouping of bridged devices. For example: All bridged devices
whose endpoints have an entry in their LabelList "room":"bedroom 2" are in the same
(bed)room.

• A manufacturer can use this to identify a characteristic of an endpoint. For example to identify
the endpoints of a luminaire, one pointing up, the other pointing down, one of the endpoints
would have a LabelList entry "orientation":"up" while the other would have "orienta
tion":"down". Using such indication, the user interface of a Node controlling this luminaire
knows which of the endpoints is which of the lights.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 509

Note that the TagList in the Descriptor cluster provides an alternative mechanism for such self-
description using standardized tags rather than manufacturer-selected strings, yielding a standard
ized mechanism for features defined in the various namespaces. The second example above can be
implemented using semantic tags Direction.Upward and Direction.Downward instead of (or in
addition to) the Fixed Label cluster.

9.8.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

9.8.2. Classification

Hierarchy Role Scope PICS Code

Label Utility Endpoint FLABEL

9.8.3. Cluster ID

ID Name

0x0040 Fixed Label

9.8.4. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 LabelList list[Label
Struct]

N empty R V M

9.9. User Label Cluster
This cluster provides a feature to tag an endpoint with zero or more labels.

9.9.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 510 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.9.2. Classification

Hierarchy Role Scope PICS Code

Label Utility Endpoint ULABEL

9.9.3. Cluster ID

ID Name

0x0041 User Label

9.9.4. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 LabelList list[Label
Struct]

min 4 per
node

N empty RW VM M

9.9.4.1. LabelList Attribute

An implementation SHALL support at least 4 list entries per node for all User Label cluster
instances on the node.

9.10. Access Control Cluster
The Access Control Cluster exposes a data model view of a Node’s Access Control List (ACL), which
codifies the rules used to manage and enforce Access Control for the Node’s endpoints and their
associated cluster instances. Access to this Access Control Cluster itself requires a special Adminis
ter privilege level, such that only Nodes granted such privilege (hereafter termed "Administrators")
can manage the Access Control Cluster.

The Access Control Cluster SHALL be present on the root node endpoint of each Node, and SHALL
NOT be present on any other Endpoint of any Node.

9.10.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

9.10.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node ACL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 511

9.10.3. Cluster ID

ID Name

0x001F AccessControl

9.10.4. Data Types

9.10.4.1. ChangeTypeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Changed Entry or extension was
changed

M

1 Added Entry or extension was
added

M

2 Removed Entry or extension was
removed

M

9.10.4.2. AccessControlEntryPrivilegeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

1 View Can read and observe
all (except Access Con
trol Cluster and as seen
by a non-Proxy)

M

2 Proxy View Can read and observe
all (as seen by a Proxy)

P, M

3 Operate View privileges, and
can perform the pri
mary function of this
Node (except Access
Control Cluster)

M

4 Manage Operate privileges, and
can modify persistent
configuration of this
Node (except Access
Control Cluster)

M

5 Administer Manage privileges, and
can observe and mod
ify the Access Control
Cluster

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 512 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Proxy View Value

This value implicitly grants View privileges

Operate Value

This value implicitly grants View privileges

Manage Value

This value implicitly grants Operate & View privileges

Administer Value

This value implicitly grants Manage, Operate, Proxy View & View privileges

9.10.4.3. AccessControlEntryAuthModeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

1 PASE Passcode authenticated
session

M

2 CASE Certificate authenti
cated session

M

3 Group Group authenticated
session

M

9.10.4.4. AccessControlTargetStruct Type

ID Name Type Constraint Quality Default Access Confor
mance

0 Cluster cluster-id all X M

1 Endpoint endpoint-
no

all X M

2 Device
Type

devtype-id all X M

9.10.4.5. AccessControlEntryStruct Type

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 Privilege AccessCon
trolEn
tryPrivi
legeEnum

all S M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 513

Access Quality: Fabric Scoped

2 AuthMode AccessCon
trolEn
tryAuth
Mod
eEnum

all S M

3 Subjects list[Subjec
tID]

max Sub
jectsPerAc
cessCon
trolEntry

X S M

4 Targets list[Access
Con
trolTarget
Struct]

max Tar
getsPerAc
cessCon
trolEntry

X S M

Privilege Field

The privilege field SHALL specify the level of privilege granted by this Access Control Entry.

NOTE The Proxy View privilege is provisional.

Each privilege builds upon its predecessor, expanding the set of actions that can be performed
upon a Node. Administer is the highest privilege, and is special as it pertains to the administration
of privileges itself, via the Access Control Cluster.

When a Node is granted a particular privilege, it is also implicitly granted all logically lower privi
lege levels as well. The following diagram illustrates how the higher privilege levels subsume the
lower privilege levels:

Figure 43. Access Control Privilege Levels

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 514 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Individual clusters SHALL define whether attributes are readable, writable, or both readable and
writable. Clusters also SHALL define which privilege is minimally required to be able to perform a
particular read or write action on those attributes, or invoke particular commands. Device type
specifications MAY further restrict the privilege required.

The Access Control Cluster SHALL require the Administer privilege to observe and modify the
Access Control Cluster itself. The Administer privilege SHALL NOT be used on Access Control
Entries which use the Group auth mode.

E.g. A Fan Control Cluster may require Operate privilege to write to a level attribute
(low/medium/high), and to configure each level’s RPM setting via a command. The Fan Con
trol Cluster may also expose a current RPM attribute, which requires only View privilege to
read. Clients granted Operate privilege will be able to both change the level, and configure
each level’s RPM. Clients granted View privilege will be able to read the current RPM, but will
not be granted sufficient privilege to change the level or configure each level’s RPM.

E.g. A Fan Control Cluster may be included in a more industrial device type. To ensure proper
operation, this device type may restrict configuration of fan level RPM settings to require
Manage privilege. Clients granted Manage privilege will have sufficient privilege to configure
each level’s RPM; clients granted Operate privilege will not be able to perform such configu
ration, but will still be able to change the level. This additional restriction would apply only to
the Fan Control Cluster as included in this particular device type; a client granted Operate
privilege may still be able to perform configuration in Fan Control Clusters included in other
device types on the same Node.

AuthMode Field

The AuthMode field SHALL specify the authentication mode required by this Access Control Entry.

Subjects Field

The subjects field SHALL specify a list of Subject IDs, to which this Access Control Entry grants
access.

Device types MAY impose additional constraints on the minimum number of subjects per Access
Control Entry.

An attempt to create an entry with more subjects than the node can support SHALL result in a
RESOURCE_EXHAUSTED error and the entry SHALL NOT be created.

Subject ID SHALL be of type uint64 with semantics depending on the entry’s AuthMode as follows:

Subject Semantics

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 515

AuthMode Subject

PASE Lower 16-bits → Passcode ID
Upper 48-bits → all bits clear

CASE 64-bits → Node ID or CASE Authenticated Tag

Group Lower 16-bits → Group ID
Upper 48-bits → all bits clear

An empty subjects list indicates a wildcard; that is, this entry SHALL grant access to any Node that
successfully authenticates via AuthMode. The subjects list SHALL NOT be empty if the entry’s Auth
Mode is PASE.

The PASE AuthMode is reserved for future use (see Section 6.6.2.8, “Bootstrapping of the Access Con
trol Cluster”). An attempt to write an entry with AuthMode set to PASE SHALL fail with a status
code of CONSTRAINT_ERROR.

For PASE authentication, the Passcode ID identifies the required passcode verifier, and SHALL be 0
for the default commissioning passcode.

For CASE authentication, the Subject ID is a distinguished name within the Operational Certificate
shared during CASE session establishment, the type of which is determined by its range to be one
of:

• a Node ID, which identifies the required source node directly (by ID)

• a CASE Authenticated Tag, which identifies the required source node indirectly (by tag)

E.g. an ACL entry with CASE AuthMode that grants privileges to Subject IDs [
0x0000_0000_1111_1111, 0x0000_0000_2222_2222, 0x0000_0000_3333_3333] (which are Node
IDs) will grant access to Nodes with Node ID 0x0000_0000_1111_1111,
0x0000_0000_2222_2222, or 0x0000_0000_3333_3333, but will not grant access to Nodes with
Node ID 0x0000_0000_4444_4444 or 0x0000_0000_5555_5555.

E.g. an ACL entry with CASE AuthMode that grants privileges to Subject IDs [
0x0000_0000_6666_6666, 0xFFFF_FFFD_ABCD_0002] (which are a Node ID and a CASE
Authenticated Tag) will grant access to the Node with Node ID 0x0000_0000_6666_6666 and
any Nodes with CAT identifier value 0xABCD if the CAT’s version is 0x0002 or higher. It will
not grant access to Nodes with other CAT values such as 0x9999_9999. Any node with CAT
identifier value of 0xABCD but version less than 0x0002 (for example: 0xFFF
F_FFFD_ABCD_0001) will not be granted access.

For Group authentication, the Group ID identifies the required group, as defined in the Group Key
Management Cluster.

E.g. an entry with Group AuthMode that grants privileges to Subject IDs [
0x0000_0000_1111_1111, 0x0000_0000_2222_2222] (which are Group IDs) will grant access to
Nodes in Group 0x1111_1111 or 0x2222_2222, but will not grant access to Nodes in Group

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 516 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

0x3333_3333, even if they share Operational Group Keys.

Targets Field

The targets field SHALL specify a list of AccessControlTargetStruct, which define the clusters on this
Node to which this Access Control Entry grants access.

Device types MAY impose additional constraints on the minimum number of targets per Access
Control Entry.

An attempt to create an entry with more targets than the node can support SHALL result in a
RESOURCE_EXHAUSTED error and the entry SHALL NOT be created.

A single target SHALL contain at least one field (Cluster, Endpoint, or DeviceType), and SHALL NOT
contain both an Endpoint field and a DeviceType field.

A target grants access based on the presence of fields as follows:

Target Semantics

Cluster Endpoint DeviceType Target

Invalid

D All clusters on any end
point with Descriptor
containing device type
D

E All clusters on only
endpoint E

E D Invalid

C Only cluster C on all
endpoints

C D Only cluster C on any
endpoint with Descrip
tor containing device
type D

C E Only cluster C on only
endpoint E

C E D Invalid

An empty targets list indicates a wildcard: that is, this entry SHALL grant access to all cluster
instances on all endpoints on this Node.

E.g. an entry that grants privileges to the Color Light Bulb Device Type will grant privileges to
any cluster on any endpoint that contains the Color Light Bulb device type (whether that clus
ter is in the Color Light Bulb device type or not), and will not grant privileges to any other

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 517

cluster on any other endpoint.

E.g. an entry that grants privileges to Endpoint 1 will grant privileges to any cluster on End
point 1, and will not grant privileges to any other cluster on any other endpoint.

E.g. an entry that grants privileges to the On/Off Cluster on any endpoint will not grant privi
leges to any other cluster on any endpoint.

E.g. an entry that grants privileges to the On/Off Cluster with Color Light Bulb Device Type
will grant privileges to just the On/Off Cluster on any endpoint that contains the Color Light
Bulb device type, and will not grant privileges to any other cluster on any other endpoint
(including other clusters in the Color Light Bulb device type, or the On/Off cluster on end
points that do not contain the Color Light Bulb device type).

E.g. an entry that grants privileges to the On/Off Cluster on Endpoint 1 will not grant privi
leges to any other cluster on Endpoint 1, or to any other cluster (including the On/Off cluster)
on any other endpoint.

9.10.4.6. AccessControlExtensionStruct Type

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 Data octstr max 128 S M

Data Field

This field MAY be used by manufacturers to store arbitrary TLV-encoded data related to a fabric’s
Access Control Entries.

The contents SHALL consist of a top-level anonymous list; each list element SHALL include a pro
file-specific tag encoded in fully-qualified form.

Administrators MAY iterate over this list of elements, and interpret selected elements at their dis
cretion. The content of each element is not specified, but MAY be coordinated among manufactur
ers at their discretion.

E.g. a manufacturer could use this field to store structured data, including various metadata
and cryptographic signatures. The manufacturer could then verify a fabric’s Access Control
List by generating a canonical bytestream from the Access Control Entries for the fabric, then
verifying the signature against it. Such a canonical bytestream could be generated by encod
ing specific entry fields and sub-fields (such as lists) in specific order and specific format (e.g.
TLV).

9.10.5. Attributes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 518 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 ACL list[Access
ControlEn
tryStruct]

desc desc RW A F M

0x0001 Extension list[Access
ControlEx
tension
Struct]

desc desc RW A F O

0x0002 Sub
jectsPer
Access
Contro
lEntry

uint16 min 4 F 4 R V M

0x0003 Tar
getsPerAc
cessCon
trolEntry

uint16 min 3 F 3 R V M

0x0004 Access
Contro
lEntries
PerFabric

uint16 min 4 F 4 R V M

9.10.5.1. Default Value

The default value of the Access Control Cluster is empty; that is, devoid of contents, with each list
attribute containing zero elements.

The Access Control List is able to have an initial entry added because the Access Control Privilege
Granting algorithm behaves as if, over a PASE commissioning channel during the commissioning
phase, the following implicit Access Control Entry were present on the Commissionee (but not on
the Commissioner):

Access Control Cluster: {
 ACL: [
 0: { // implicit entry only; does not explicitly exist!
 FabricIndex: 0, // not fabric-specific
 Privilege: Administer,
 AuthMode: PASE,
 Subjects: [],
 Targets: [] // entire node
 }
],
 Extension: []
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 519

9.10.5.2. Administration Guidelines

The Access Control Cluster is passive in nature and is only responsible for maintaining entries in
the Access Control List. It is the responsibility of Administrators to create and maintain Access Con
trol policy by managing the list and its entries. The Access Control Cluster SHALL NOT change or
remove Access Control Entries of its own volition.

Administrators SHOULD strive to minimize resource usage by combining entries where appropri
ate. For example, if an Administrator is responsible for an entry that grants privilege to subject
Node A, and wishes to grant the same privilege to Node B under the same conditions, then that
Administrator SHOULD update the existing entry to apply to subject Node B as well as Node A,
instead of creating a new entry. If a set of Nodes is commonly used in entries, then an Administra
tor MAY consider using CASE Authenticated Tags (CATs) for those entries, especially if membership
in the set of Nodes changes over time.

Administrators SHOULD carefully consider the effect of Access Control Entries they manage, partic
ularly when targeting entire Endpoints (either directly, or indirectly by Device Type), to ensure that
granted privileges are appropriate for the set of Clusters that may entail. Administrators SHOULD
be mindful that targeting by Device Type grants privileges to all Clusters on all Endpoints with
Descriptor containing that Device Type (thereby including Clusters not part of that specified Device
Type), now and in the future. Administrators SHOULD consider whether targeting specific End
points, or Clusters, or both, might be a more appropriate policy for the given Subjects; studying the
Descriptor Cluster for affected Endpoints may help in this determination.

Administrators SHOULD be careful to avoid inadvertently removing their own administrative
access. For example, an Administrator SHOULD change its own administrative access entry by
updating the existing entry or by creating a new entry before removing the old entry, and SHOULD
NOT remove the old entry before creating any new entry.

9.10.5.3. ACL Attribute

An attempt to add an Access Control Entry when no more entries are available SHALL result in a
RESOURCE_EXHAUSTED error being reported and the ACL attribute SHALL NOT have the entry
added to it. See access control limits.

See the AccessControlEntriesPerFabric attribute for the actual value of the number of entries per
fabric supported by the server.

Each Access Control Entry codifies a single grant of privilege on this Node, and is used by the Access
Control Privilege Granting algorithm to determine if a subject has privilege to interact with targets
on the Node.

9.10.5.4. Extension Attribute

If present, the Access Control Extensions MAY be used by Administrators to store arbitrary data
related to fabric’s Access Control Entries.

The Access Control Extension list SHALL support a single extension entry per supported fabric.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 520 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.10.5.5. SubjectsPerAccessControlEntry Attribute

This attribute SHALL provide the minimum number of Subjects per entry that are supported by this
server.

Since reducing this value over time may invalidate ACL entries already written, this value SHALL
NOT decrease across time as software updates occur that could impact this value. If this is a con
cern for a given implementation, it is recommended to only use the minimum value required and
avoid reporting a higher value than the required minimum.

9.10.5.6. TargetsPerAccessControlEntry Attribute

This attribute SHALL provide the minimum number of Targets per entry that are supported by this
server.

Since reducing this value over time may invalidate ACL entries already written, this value SHALL
NOT decrease across time as software updates occur that could impact this value. If this is a con
cern for a given implementation, it is recommended to only use the minimum value required and
avoid reporting a higher value than the required minimum.

9.10.5.7. AccessControlEntriesPerFabric Attribute

This attribute SHALL provide the minimum number of ACL Entries per fabric that are supported by
this server.

Since reducing this value over time may invalidate ACL entries already written, this value SHALL
NOT decrease across time as software updates occur that could impact this value. If this is a con
cern for a given implementation, it is recommended to only use the minimum value required and
avoid reporting a higher value than the required minimum.

9.10.6. Error handling

Administrators SHALL use regular actions to administer the Access Control Cluster (by reading and
writing entries in the list). Administrators SHOULD take care to use DataVersion conditional writes
when administering the list or its contents.

The Access Control Cluster SHALL fail to write, and return an appropriate error, if an attempt is
made to create or update an Access Control Entry or Access Control Extension such that it would
have invalid contents.

For example, the following Access Control Entry conditions will result in an error of CONSTRAIN
T_ERROR:

• Privilege enum value invalid

• AuthMode enum value invalid

• AuthMode is PASE (reserved for future use)

• Subjects element invalid

◦ e.g. illegal CAT with CASE AuthMode

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 521

• Targets element invalid

◦ e.g. no field present

◦ e.g. both Endpoint and DeviceType fields present

• Field combinations invalid

◦ e.g. Administer Privilege with Group AuthMode

For example, the following Access Control Extension conditions will result in an error of CON
STRAINT_ERROR:

• There is an attempt to add more than 1 entry associated with the given accessing fabric index in
the extension list

• Data value exceeds max length

• Data value not valid TLV-encoded data

The Access Control Cluster MAY fail to write, and return a RESOURCE_EXHAUSTED error, if an
attempt is made to create or update an entry or extension such that storage is exhausted.

9.10.7. Events

ID Name Priority Access Conformance

0x00 AccessControlEn
tryChanged

INFO A S M

0x01 AccessControlEx
tensionChanged

INFO A S M

9.10.7.1. AccessControlEntryChanged Event

The cluster SHALL send AccessControlEntryChanged events whenever its ACL attribute data is
changed by an Administrator.

• Each added entry SHALL generate an event with ChangeType Added.

• Each changed entry SHALL generate an event with ChangeType Changed.

• Each removed entry SHALL generate an event with ChangeType Removed.

Access Quality: Fabric-Sensitive

ID Name Type Constraint Quality Default Confor
mance

1 AdminN
odeID

node-id desc X M

2 AdminPass
codeID

uint16 desc X M

3 ChangeType ChangeType
Enum

all M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 522 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Access Quality: Fabric-Sensitive

4 LatestValue AccessCon
trolEntryS
truct

all X M

AdminNodeID Field

The Node ID of the Administrator that made the change, if the change occurred via a CASE session.

Exactly one of AdminNodeID and AdminPasscodeID SHALL be set, depending on whether the
change occurred via a CASE or PASE session; the other SHALL be null.

AdminPasscodeID Field

The Passcode ID of the Administrator that made the change, if the change occurred via a PASE ses
sion. Non-zero values are reserved for future use (see PasscodeId generation in PBKDFParamRe
quest).

Exactly one of AdminNodeID and AdminPasscodeID SHALL be set, depending on whether the
change occurred via a CASE or PASE session; the other SHALL be null.

ChangeType Field

The type of change as appropriate.

LatestValue Field

The latest value of the changed entry.

This field SHOULD be set if resources are adequate for it; otherwise it SHALL be set to NULL if
resources are scarce.

9.10.7.2. AccessControlExtensionChanged Event

The cluster SHALL send AccessControlExtensionChanged events whenever its extension attribute
data is changed by an Administrator.

• Each added extension SHALL generate an event with ChangeType Added.

• Each changed extension SHALL generate an event with ChangeType Changed.

• Each removed extension SHALL generate an event with ChangeType Removed.

Access Quality: Fabric-Sensitive

ID Field Type Constraint Quality Default Confor
mance

1 AdminN
odeID

node-id desc X M

2 AdminPass
codeID

uint16 desc X M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 523

Access Quality: Fabric-Sensitive

3 ChangeType ChangeType
Enum

all M

4 LatestValue AccessCon
trolExten
sionStruct

all X M

AdminNodeID Field

The Node ID of the Administrator that made the change, if the change occurred via a CASE session.

Exactly one of AdminNodeID and AdminPasscodeID SHALL be set, depending on whether the
change occurred via a CASE or PASE session; the other SHALL be null.

AdminPasscodeID Field

The Passcode ID of the Administrator that made the change, if the change occurred via a PASE ses
sion. Non-zero values are reserved for future use (see PasscodeId generation in PBKDFParamRe
quest).

Exactly one of AdminNodeID and AdminPasscodeID SHALL be set, depending on whether the
change occurred via a CASE or PASE session; the other SHALL be null.

ChangeType Field

The type of change as appropriate.

LatestValue Field

The latest value of the changed extension.

This field SHOULD be set if resources are adequate for it; otherwise it SHALL be set to NULL if
resources are scarce.

9.11. Group Relationship
A group is a collection of one or more endpoints on one or more nodes. A group is identified by a
unique group ID. If the network supports fabrics, each group, its group ID, and nodes that are mem
bers of the group, are all scoped to a single fabric.

Conceptually, there is a Group Table on each node that represents endpoint group membership.
Each Group Table entry maps a group ID to one or more endpoints on that node, and any endpoint
on a node MAY be assigned to one or more groups.

A group relationship, that is contained in the Group Table, is managed through the endpoints using
the Groups cluster.

The Interaction Model allows a group identifier to be used as the destination of a message or action.
If a message received by a node has a group destination, the Group Table is checked to see which

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 524 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

endpoints on the node are members of the group. Then, the message will be delivered to those end
points.

Note that there is a risk that multiple clients allocate the same group identifier for their own pur
pose. This likely leads to undesired behavior. For this reason, a client SHOULD discover the unique
ness of their 'candidate' group ID.

Also note that groupcast relies on its support by the underlying network layer. Depending on this
network layer, groupcast may not work to "sleepy" devices that have their radio turned off when
idle to preserve battery lifetime.

9.12. Bridge for non-Matter devices

9.12.1. Introduction

A Bridge serves to allow the use of non-Matter IoT devices (e.g. devices on a Zigbee or Z-Wave net
work, or any other non-Matter connectivity technology) in a Matter Fabric, with the goal to enable
the consumer to keep using these non-Matter devices together with their Matter devices.

This is illustrated in the figure below: the non-Matter devices are exposed as Bridged Devices to
Nodes on the Fabric. The Matter Nodes can communicate with both the (native) Matter devices as
well as the Bridged Devices (by virtue of the Bridge which performs the translation between Matter
and the other protocol).

Bridged
Device 1

Bridged
Device 2

Bridged
Device 3

Bridge

Assumes
responsibility
for securing
and certifying
the communi-
cation link to
each Bridged
Device

Acts as an
interpreter
for Bridged
Devices
and
presents
them as
Matter
Devices to
the various
Matter apps

Presents
a Matter
interface
to the
Matter
apps

Matter App 3

Matter App 2

Matter App 1

See and control all
of the Bridged
Devices and Matter
Devices using
Matter protocol

Non-Matter
Transport Layer (e.g.
Zigbee; Z-Wave;
proprietary; etc.)

Manufacturer
App

Manufacturer -
defined

interface

Matter Device 1

Matter
Fabric

Matter Device 2

Matter Device 3

Matter Device 4

Figure 44. principle of bridging

NOTE
The bridging-concept described here is NOT intended to be used to expose Matter
Nodes (which are not on the Fabric) to a Fabric, since direct connection of those
Matter Nodes to the Fabric would provide a better experience.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 525

This section will describe how the Data Model concepts can be used by a Bridge to expose the
Bridged Devices in such a way that they can be discovered and used by Nodes on the Matter Fabric.

9.12.2. Exposing functionality and metadata of Bridged Devices

After Commissioning, the Bridge SHALL expose (at least) one Node to the Fabric. The device imple
menting the Bridge MAY have more than one Node. This, however, is orthogonal to the bridging
concept and will not be discussed further here.

• On this Node, the Bridge SHALL expose a set of endpoints representing the various Bridged
Devices on the non-Matter side of the Bridge.

• Additionally, it SHALL expose an endpoint with the device type Aggregator which has a Descrip
tor cluster with a PartsList attribute containing all the endpoints representing those Bridged
Devices.

• Each Bridged Device is represented by one or more endpoints listed in this PartsList (see Infor
mation about Bridged Devices and examples below). The Descriptor cluster on the correspond
ing endpoint provides information about the particular Bridged Device, such as its device
type(s).

Descriptor cluster:
DeviceTypeList: Extended Color Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "kitchen"

Descriptor cluster:
DeviceTypeList: Extended Color Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "dining table"

Descriptor cluster:
DeviceTypeList: Dimmable Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "hallway"

Descriptor cluster:
DeviceTypeList: Temperature Sensor, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "outdoor temperature"

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "living room entrance"

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "kitchen entrance"

The PartsList on endpoint 1 lists all endpoints for bridged
devices; each endpoint 11..16 represents one device at
the non-Matter side of the bridge.

Descriptor cluster:
DeviceTypeList: Root Node
PartsList: EP 1, 11,12,13,14,15,16

Basic Information cluster:
..

EP 0

EP 11

EP 12

EP 13

EP 14

EP 15

EP 16

Descriptor cluster:
DeviceTypeList: Aggregator
PartsList: EP 11,12,13,14,15,16

EP 1

Figure 45. example of endpoints representing Bridged Devices

In case the Bridge is bridging to/from multiple technologies (or has some other logical distinction
between groups of bridged devices), it MAY expose such groups as two or more such hierarchical
trees each with their Aggregator device type (e.g. one for each technology, see figure below); it MAY
also combine all bridged devices in one hierarchical tree (see figure above). Both figures have the
same set of bridged devices - the difference is in how the bridge manufacturer decides to expose
them as one or multiple sets.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 526 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Descriptor cluster:
DeviceTypeList: Aggregator
PartsList: EP 14,15,16

TagList: Tag=(MfgCode=0xFFF1, Namespace=0x11,
TagID=0x05), Label=“Z-Wave bridge”

Descriptor cluster:
DeviceTypeList: Extended Color Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "kitchen"

Descriptor cluster:
DeviceTypeList: Extended Color Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "dining table"

Descriptor cluster:
DeviceTypeList: Dimmable Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "hallway"

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "living room entrance"

This implementation chooses to expose two instances of the Aggregator device type, each with
their own hierarchy of devices, to be able to expose which bridged device is on which technology.

Descriptor cluster:
DeviceTypeList: Root Node
PartsList: EP 1,2, 11,12,13,14,15,16

Basic Information cluster:
..

EP 0

EP 11

EP 12

EP 13

EP 14

Descriptor cluster:
DeviceTypeList: Aggregator
PartsList: EP 11,12,13
TagList: Tag=(MfgCode=0xFFF1, Namespace=0x11,

TagID=0x03), Label=“Zigbee bridge”

EP 1
EP 2

Zigbee devices Z-Wave devices

Descriptor cluster:
DeviceTypeList: Temperature Sensor, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "outdoor temperature"

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "kitchen entrance"

EP 15

EP 16

Figure 46. example of endpoints representing Bridged Devices from two technologies

9.12.2.1. Topology or logical grouping

A Bridge typically has information on topology or logical grouping of the Bridged Devices, which
can be of use to Nodes on the Matter Fabric.

• For example, consider a Bridge with 50 lights. If this exposure of grouping, and their naming,
would not be present, the user would just see a list of 50 lights on their controller and would not
know which of those physical lights would be in which location/group.

If a Bridge has such information on topology or logical grouping, it SHOULD expose such informa
tion in the EndpointLists attribute of an Actions cluster (the ActionLists of which MAY be empty if
no actions are exposed). A Bridge MAY make it possible (e.g., through a Bridge Manufacturer’s app)
for its users to restrict whether all or some of such information is exposed to the Fabric. The Node
on the Fabric using the Bridged Devices which is interested in using such topology or logical group
ing (e.g. to show the grouping of lights per room in an overview to the user), SHOULD derive such
grouping (and associated naming) from this EndpointLists attribute.

In the example below, the devices are split over two rooms, as exposed in the EndpointLists
attribute. This example also illustrates a composed endpoint for a composed Bridged Device, in this
case a lighting device (Bridged Device at EP 24,25,26) which has an up- and downlighter which can
be controlled separately, and which have their own set of lighting-related clusters on an individual
endpoint (EP 25,26). Note that the Bridged Device Basic Information cluster is at the top of the hier
archy for this composed device (EP 24), while the application device types and application clusters
are at the leaf endpoints (EP 25,26).
Since EP 25,26 are listed in the PartsList of EP 24, they 'inherit' the Bridged Node device type and
information in the Bridged Device Basic Information cluster of EP 24.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 527

Descriptor cluster:
DeviceTypeList: Extended Color Light
TagList: Direction.Downward

Descriptor cluster:
DeviceTypeList: Extended Color Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "dining table"

Descriptor cluster:
DeviceTypeList: Color Temperature Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "ceiling light"

Descriptor cluster:
DeviceTypeList: Color Temperature Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "kitchen light"

Descriptor cluster:
DeviceTypeList: Temperature Sensor, Bridged Node,

Power Source
Bridge Device Basic Information cluster:

NodeLabel: "bedroom temperature"
Power Source cluster: (features=BAT,REPLC)

BatChargeLevel: Warning
BatReplacementDescription: "AAA batteries"
BatQuantity: 2
EndpointList: 23

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "living room entrance"

In this example, the Actions cluster is used to indicate
grouping, i.e. which devices are in which room. The bedroom
has 3 bridged devices, and one of them (endpoint 24,25,26)
is a composed device - it uses theTagList in the Descriptor
cluster to expose information on the user-relevant
components of the composed device (endpoint 25,26).

living room bedroom

Descriptor cluster:
DeviceTypeList: Extended Color Light
TagList: Direction.Upward

composed device

Descriptor cluster:
DeviceTypeList: Bridged Node
PartsList: 25,26

Bridge Device Basic Information cluster:
NodeLabel: "bedroom light"

EP 12

EP 13

EP 14

EP 24

EP 25

EP 26

EP 22

EP 23

Descriptor cluster:
DeviceTypeList: Root Node
PartsList: EP 1, 12,13,14,22,23,24,25,26

Basic Information cluster:
..

EP 0

Descriptor cluster:
DeviceTypeList: Aggregator
PartsList: EP 12,13,14,22,23,24,25,26

Actions cluster:
ActionList: []
EndpointLists: [

[0xE001, "living room", room, [12,13,14]],
[0xE002, "bedroom", room, [22,23,24,25,26]]

]

EP 1

Figure 47. example of endpoints representing Bridged Devices using grouping

living room
dining table

kitchen light

living room entrance

bedroom temperature

bedroom
ceiling light

bedroom light

bedroom light up

bedroom light down

Figure 48. impression of app UI indicating information for the Bridged Devices

9.12.2.2. Native Matter functionality in Bridge

The Bridge MAY also contain native Matter functionality, i.e. non-bridged functionality, such as in
the example below, which shows a smart speaker device having, in addition to a Wi-Fi connection,
also a Zigbee connection towards a number of Zigbee lights. The speaker functionality (EP 31) is
native Matter functionality (and could have a Controller role to allow sending Matter commands
upon receiving voice commands), while the remainder of the non-zero endpoints represent the
Bridged Devices.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 528 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "bedside switch"

In this example, the EndPointLists attribute of the Actions
cluster is used to indicate grouping (e.g. all devices in one
room - irrespective whether they are bridged or not).
EP31 is a component of the device itself which is not bridged,
i.e. native Matter; it is in the bedroom along with some
bridged devices.

Descriptor cluster:
DeviceTypeList: Speaker

bedroom

Descriptor cluster:
DeviceTypeList: Extended Color Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "dining table"

Descriptor cluster:
DeviceTypeList: Color Temperature Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "kitchen light"

Descriptor cluster:
DeviceTypeList: Generic Switch, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "living room entrance"

living room

Descriptor cluster:
DeviceTypeList: Color Temperature Light, Bridged Node

Bridge Device Basic Information cluster:
NodeLabel: "ceiling light"

EP 12

EP 13

EP 14

EP 31

EP 22

EP 24

Descriptor cluster:
DeviceTypeList: Root Node
PartsList: EP 1, 12,13,14,22,24,31

Basic Information cluster:
..

EP 0

Descriptor cluster:
DeviceTypeList: Aggregator

PartsList: EP 12,13,14,22,24
Actions cluster:
ActionList: []
EndpointLists: [

[0xE001, "living room", room, [12,13,14]],
[0xE002, "bedroom", room, [22,24,31]]

]

EP 1

Figure 49. example of Bridge with native Matter functionality

9.12.2.3. Information about Bridged Devices

For each Bridged Device, the Bridge SHALL include a Bridged Device Basic Information cluster on
the endpoint which represents this Bridged Device. In case a Bridged Device is represented by mul
tiple endpoints, the Bridged Device Basic Information cluster SHALL only be present on the end
point which is the top level of the hierarchy representing this Bridged Device (example: endpoint 24
in Figure 47, “example of endpoints representing Bridged Devices using grouping”).
On this endpoint with the Bridged Device Basic Information cluster, the Bridge SHALL also include
a Descriptor cluster with

• a DeviceTypeList attribute containing device type Bridged Node plus the device type(s) of the
Bridged Device, and

• a PartsList attribute listing any other endpoints which jointly expose the functionality of this
Bridged Device.

Information about power sources for Bridged Devices

In case the Bridged Device contains a power source such as battery or mains power feed, and infor
mation about the state of that power source is available to the Bridge, the Bridge SHALL also
include one or more Power Source cluster(s), where their EndpointList attribute SHALL contain the
endpoint(s) of the Bridged Device that are powered by this power source. Each endpoint with a
Power Source cluster SHALL have the related Power Source device type in its DeviceTypeList.

For Bridged Devices which are represented by a single endpoint:

• The Power Source cluster SHALL be included on that single endpoint. An example of this is
shown for the battery-powered temperature sensor on endpoint 23 in Figure 47, “example of
endpoints representing Bridged Devices using grouping”.

For Bridged Devices which are represented by multiple endpoints:

• If the Bridged Device contains only one power source, the Power Source cluster SHALL be
present on an endpoint which corresponds to the part of the Bridged Device being powered by
the power source.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 529

◦ In case this power source provides power to the entire Bridged Device, the power source
cluster SHALL be on the endpoint where the Bridged Node device type is located, and con
tain an EndpointList attribute containing all the endpoints constituting the Bridged Device.

In case a Bridged Device does not contain a power source such as battery or mains power feed, or
information about the state of that power source is not available to the Bridge, the Bridge SHALL
NOT include a Power Source cluster on the endpoint(s) representing the Bridged Device.

9.12.2.4. Clusters for Bridged Device functionality (device types)

For each Bridged Device, the Bridge SHALL expose the clusters required for a device of the indi
cated Matter device type(s).
This allows the Matter Nodes to recognize the device type of the Bridged Device and interact with
its clusters in the same manner as with a native Matter Node of that device type.

9.12.2.5. Identify for Bridge and Bridged Devices

If the bridge has a mechanism to identify itself to the user (e.g. blinking LED on the bridge itself),
the associated Identify cluster SHOULD be used on the endpoint with the Aggregator device type.

For the identification function of individual bridged devices, the conformance for the associated
Identify cluster is determined by the application device types on the endpoint(s) representing the
bridged device. For example, in the composed lighting device in Figure 47, “example of endpoints
representing Bridged Devices using grouping”, each of the endpoints 25 and 26 would have an iden
tify cluster to allow individual identification of each of those lights.

9.12.3. Discovery of Bridged Devices

A Node which discovers another Node with device type Aggregator on one of its endpoints SHOULD
walk the entire tree of endpoints via the PartsList attributes and endpoints to discover the list of
Bridged Devices, including their device types and other attributes, as well as any native Matter
functionality potentially present on the Node.
Each endpoint found containing a Bridged Node device type represents a Bridged Device of the
device type(s) specified at this endpoint, or one of the endpoints found via its PartsList. If the dis
covering Node supports this device type, it MAY add this Bridged Device to the list of devices which
it could interact with, or could set up configuration for.

This discovering Node SHALL use the acquired information on the available Bridged Devices to set
up (configure) (likely with input from the user) how the Bridged Devices can be used with the Mat
ter Nodes (e.g. which switch controls which light, or how to control a light from an app on the
user’s phone).
Since the Bridge may expose a large number of Bridged Devices, the discovering Node SHALL use
the NodeLabel attribute in the Bridged Device Basic Information cluster of each of the Bridged
Devices to allow the user to easily identify and recognize the various Bridged Devices, and expedite
the setup/configuration process, rather than present the user with an unannotated list of, for exam
ple, 20 lights, 3 sensors and 4 switches. These labels have likely been populated by the user when
interacting previously with the Bridge e.g. through means provided by the Bridge Manufacturer,
such as a Bridge Manufacturer app.
If power source-related information regarding the Bridged Device is provided in the Power Source

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 530 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

cluster on the associated endpoint, the discovering Node SHOULD use this information in a similar
manner as power source-related information acquired from a Matter Node’s Power Source cluster.
Such information can then be used to inform the user about the state of the power source (e.g.
warn about low batteries) in a Bridged Device in a similar manner as done for Matter Nodes.

9.12.4. Configuration of Bridged Devices

For configuration of the discovered Bridged Devices, two basic archetypes are described in the fol
lowing sections: one for actuators and one for sensors/switches.
Since a Bridged Device of a certain device type has the same set of application clusters as a native
Matter device of the same device type, this process is similar to configuring a native Matter device
of that device type.

9.12.4.1. Sending commands from a Matter controller to a Bridged Device

For Bridged Devices that are actuators and hence have a Controlee role, a Controller Node on the
Fabric MAY send commands to the associated clusters on one or more endpoints on the Bridge’s
Node, such as an On command to the On/Off cluster of a Bridged Device. The Bridge SHALL forward
this command to the relevant Bridged Device after conversion between the Matter protocol and the
non-Matter device’s native protocol.

Example:

A Controller creates a Group containing some Matter lights as well as some non-Matter lights, by
sending an Add Group command to the instances of the Group cluster on both the endpoints of the
Matter lights as well as on the Bridge’s Node endpoints representing the targeted bridged lights.
Similarly, the Controller creates one or more Scenes using the instances of the Scene cluster on these
endpoints.
The Controller then sends a (single) On command (On/Off cluster) to this group to switch on all these
lights in a single operation. This (single) multicast message will be received (and interpreted) by the
Matter lights which are part of this group as well as by the Bridge, which will forward it (after
appropriate protocol conversion) to the relevant bridged lights.
Similarly, the Controller sends a (single) Move to Level (Level Control cluster) or sends a (single)
Recall Scene (Scene cluster) to this group, to set the brightness resp. recall a scene contents on all
these lights in a single operation.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 531

Zigbee
network

Matter
network

Matter controllers & apps

lights

bridge
Matter
<=>

Zigbee

Zigbee light controlMatter light control

Matter
lights

Bridge Manufacturer app

Living room

Uplighter

Downlighter

Reading
light

Living room

Uplighter

Downlighter

Reading light

Kitchen

Ceiling

Cooking
island

bridged lights

Figure 50. example of bridging lights

9.12.4.2. Receiving status/events/commands from a Bridged Device

For Bridged Devices like sensors and switches, the Bridge will receive value updates (e.g. Zigbee
attribute reports), events and/or commands from those devices, and SHALL (after conversion from
the native protocol of the non-Matter devices towards Matter protocol) represent those as attrib
utes, events and/or commands in the appropriate clusters on the associated endpoints of the Bridge.
Interactions with those attributes/events/commands on the Matter side (e.g., towards a Controller
using the sensor/switch data) SHOULD be identical to interactions with corresponding attrib
utes/events/commands in native Matter sensors and switches (e.g., attribute readout and subscrip
tion, proxying and eventing).

Examples:

• A temperature sensor sends a status report to the Bridge over a non-Matter interface. The logic
in the Bridge processes this as an update to the Measured Value attribute of the Temperature Mea
surement cluster on the endpoint associated with this bridged sensor.
Nodes on the Fabric which have an interest in this value can read the updated attribute value,
and can configure a subscription on this attribute. This is identical to reading an attribute value
or setting up an attribute subscription on a native-Matter temperature sensor Node.

• A user presses a button on a (push-button) switch device. The switch device sends a message to
the Bridge over a non-Matter interface. The logic in the Bridge processes this to generate an Ini
tialPress event (Switch cluster) on the endpoint representing the switch.
Nodes on the Fabric which have an interest in the switch operation can setup eventing from this
cluster.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 532 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

bridge
Matter
<=>

Zigbee Zigbee
network

Matter
network

Matter controllers & apps Bridge Manufacturer app

Living room
Uplighter

Downlighter

Reading light

Living room
Uplighter

Downlighter
Reading light

Kitchen
Ceiling
Cooking island

sensors & switches

Matter switch/sensor state Zigbee switch/sensor state

bridged switches/sensors

lights

Matter
lights

Switch 1 ON

Switch 2 OFF

Temp: 20 °C

Switch 1 ON

Switch 2 OFF

Temp: 20 °C

Figure 51. example of bridging switches and sensors

9.12.5. New features for Bridged Devices

Bridged Devices can have their software updated independently of the Bridge, through Bridge Man
ufacturer-specific means. These updates MAY result in one or more changes to their capabilities,
such as supported clusters and/or attributes, for an endpoint. Like every Matter Node, every end
point on the Bridge’s Node contains a Descriptor cluster that contains attributes for the device types
(DeviceTypeList), endpoints (PartsList) and supported clusters (ServerList and ClientList). Nodes
that wish to be notified of such changes SHOULD monitor changes of these attributes.

9.12.6. Changes to the set of Bridged Devices

Bridged Devices can be added to or removed from the Bridge through Bridge-specific means. For
example, the user can use a Manufacturer-provided app to add/remove Zigbee devices to/from their
Matter-Zigbee Bridge.
When an update to the set of Bridged Devices (which are exposed according to the Section 9.12.11,
“Best practices for Bridge Manufacturers”) occurs, the Bridge SHALL

• on the Descriptor clusters of the root node endpoint and of the endpoint which holds the Aggre
gator device type: update the PartsList attribute (add/remove entries from this list)

• update the exposed endpoints and their descriptors according to the new set of Bridged Devices

Nodes that wish to be notified of added/removed devices SHOULD monitor changes of the PartsList
attribute in the Descriptor cluster on the root node endpoint and the endpoint which holds the
Aggregator device type.

Allocation of endpoints for Bridged Devices SHALL be performed as described in Dynamic End
point allocation.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 533

9.12.7. Changes to device names and grouping of Bridged Devices

Typically, the user has some means (e.g. a Manufacturer-provided app) to assign names to the
Bridged Devices, or names could be assigned automatically by the Bridge. The Bridge SHALL expose
such names in the NodeLabel attribute of the Bridged Device Basic Information cluster on the
applicable endpoint.
Similarly, the user typically has some means to group the Bridged Devices (e.g. via a room/zone-con
cept) and provide names to such groups, or grouping could be applied automatically by the Bridge.
The Bridge SHOULD expose such grouping using the EndpointLists attribute of the Actions cluster
as described above.
For such exposed information, when there is a change in naming/grouping (e.g. the user makes
changes via a Manufacturer-provided app), the Bridge SHALL update the appropriate attributes.
Nodes that wish to be notified of a change in such a name or grouping SHOULD monitor changes of
this attribute or cluster.

9.12.8. Setup flow for a Bridge (plus Bridged Devices)

As described above, the Bridge together with its Bridged Devices is exposed as a single Node with a
list of endpoints. Consequently, a single Node ID and a single Operational Certificate is assigned
during Commissioning and a single pass through the commissioning flow is required to bring the
Bridge (along with its Bridged Devices) onto a Fabric. This provides for a simple user experience,
since the user only needs to go through the commissioning flow for the Bridge, and not separately
for each of the Bridged Devices.

9.12.9. Access Control

The Bridge is a Matter node, therefore it has a single Access Control Cluster for the entire Node, like
every other Matter Node. This cluster contains all Access Control Entries for each of its endpoints,
including for all Bridged Devices and other native Matter functionality exposed by the Bridge Node.
A typical setup of Access Control would reflect which privilege level a Matter Controller needs to
have for one or more Bridged Devices. This overall access set may be a subset of all the Bridged
Devices on the Bridge, rather than all endpoints on a Bridge. This can be accomplished by setting an
Access Control Entry containing as targets a list of those endpoints representing a Bridged Device or
a set of Bridged Devices. As defined in the ACL model, it is also possible to specify access towards
specific Targets, for example all Bridged Devices of device type Extended Color Light.

9.12.10. Software update (OTA)

The Bridge is a Matter device and its Matter-related functionality MAY be updated using the mecha
nism described in Section 11.20, “Over-the-Air (OTA) Software Update”.
The Bridged Devices, on the other hand, are not native Matter devices, do not have a Product ID,
and are not listed in the Distributed Compliance Ledger. They are typically updated using a mecha
nism defined and deployed by the Bridge Manufacturer. That same mechanism is typically used to
update the parts of the Bridge which are not related to Matter, which is particularly relevant to
allow synchronization of updates to the non-Matter part of the Bridge with updates to the Bridged
Devices. Obviously, such mechanism MAY also be employed to update the entire Bridge firmware,
including the Matter-related functionality.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 534 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.12.11. Best practices for Bridge Manufacturers

This section summarizes (in order of priority) the process to determine which non-Matter devices
the Bridge exposes to the Fabric.

1. Choice of supported device types

◦ A Manufacturer MAY choose which of the Matter device types they can or want to support in
the Bridge. After implementation of support for bridging of those device types, they SHALL
certify the Bridge for those device types.

◦ By default, a Bridge SHOULD expose to the Fabric all its connected non-Matter devices which
can be mapped to a Matter device type for which that Bridge is certified.
E.g., if a Bridge is certified for Matter light bulbs, it SHOULD NOT hide any light bulb on the
non-Matter side from the Fabric by default (some situations where the Bridge MAY deviate
from this recommendation are in the following text).

◦ Given the wide variety of device types on a wide variety of standards, there may be device
types on the non-Matter side that do not have a corresponding Matter device type. Such
devices cannot be bridged to a Matter device type. The Manufacturer MAY choose to not
expose such devices with the Bridge or MAY expose them with a manufacturer-specific
device type and/or manufacturer-specific clusters.

2. Compatibility issues

◦ For the device types for which a Bridge is certified, a Bridge Manufacturer MAY decide to
not expose certain devices based on any reason, including compatibility and interoperabil
ity reasons, or to expose them in a 'best-effort' manner as needed.

▪ The Bridge Manufacturer may choose to not expose a device that does not support cer
tain functions or features which are mandatory for a Matter device type, but which are
defined as optional, or not defined at all, in the specification for the corresponding
device type on the non-Matter side of the bridge. Such a Bridge would expose to the Fab
ric only Bridged Devices of device types which support those particular control functions
or features which are required.

▪ The Bridge Manufacturer may also choose to map or emulate such features which are
not available in the Bridged Device; example: for a bridged colored light connected via a
protocol which does not support scenes, the Bridge could emulate the scene function by
storing the scenes in the Bridge and sending corresponding brightness and color com
mands to the light when a Scene Recall command is received from a Matter Node.

3. User choice

◦ A Bridge MAY make it possible (e.g., through a Bridge Manufacturer’s app) for its users to
further restrict which devices are exposed to the Fabric.
For example, a user may decide to prevent exposure to the Fabric of certain Devices Types,
such as all occupancy sensors, or of only certain devices of a certain device type, such as
only their bedroom occupancy sensor.

9.12.12. Best practices for Administrators

An Administrator MAY indicate to users which devices are native Matter and which ones are
Bridged Devices, as determined using the presence of a Bridged Node device type on the endpoint, in

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 535

order to ensure the user does not make assumptions about the Bridged Devices having the same
security requirements as native Matter devices.

9.13. Bridged Device Basic Information Cluster
This Cluster serves two purposes towards a Node communicating with a Bridge:

• Indicate that the functionality on the Endpoint where it is placed (and its Parts) is bridged from
a non-Matter technology, and

• Provide a centralized collection of attributes that the Node MAY collect to aid in conveying
information regarding the Bridged Device to a user, such as the vendor name, the model name,
or user-assigned name.

This cluster SHALL be exposed by a Bridge on the Endpoint representing each Bridged Device.
When the functionality of a Bridged Device is represented using a set of Endpoints, this cluster
SHALL only be exposed on the Endpoint which is at the top of the hierarchy for the functionality of
that Bridged Device.

This cluster SHALL NOT be used on an endpoint that is not in the Descriptor cluster PartsList of an
endpoint with an Aggregator device type.

This cluster has been derived from the Basic Information Cluster, and provides generic information
about the Bridged Device. Not all of the attributes in the Basic Information Cluster are relevant for
a Bridged Device (e.g. ProductID since it is not a Matter device). For other attributes, the informa
tion which is listed as Mandatory for the Basic Information Cluster, may not be available when the
Bridged Device does not provide it to the Bridge, and the Bridge has no other means to determine it.
For such cases where the information for a particular attribute is not available, the Bridge SHOULD
NOT include the attribute in the cluster for this Bridged Device. See below for Conformance details.

9.13.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Added ProductAppearance attribute

3 Added SpecificationVersion and MaxPathsPerIn
voke attributes

9.13.2. Classification

Hierarchy Role Scope PICS Code

Basic Information Utility Endpoint BRBINFO

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 536 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.13.3. Cluster ID

ID Name

0x0039 Bridged Device Basic Information

9.13.4. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 DataMod
elRevision

X

0x0001 Vendor
Name

O

0x0002 VendorID O

0x0003 Product
Name

O

0x0004 ProductID X

0x0005 NodeLabel O

0x0006 Location X

0x0007 Hardware
Version

O

0x0008 Hardware
Version
String

O

0x0009 Software
Version

O

0x000A Software
Version
String

O

0x000B Manufac
turing
Date

O

0x000C PartNum
ber

O

0x000D Produc
tURL

O

0x000E Product
Label

O

0x000F Serial
Number

O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 537

ID Name Type Constraint Quality Default Access Confor
mance

0x0010 LocalCon
figDis
abled

X

0x0011 Reachable M

0x0012 UniqueID O

0x0013 Capabili
tyMinima

X

0x0014 Produc
tAppear
ance

O

0x0015 Specifica
tionVer
sion

X

0x0016 Max
PathsPer
Invoke

X

Since this cluster has been derived from the Basic Information Cluster, the identifiers of the attrib
utes, their range, quality and default characteristics and their descriptions correspond to those in
that Cluster and those descriptions are not repeated here. Several attributes from the Basic Infor
mation Cluster which are not relevant or applicable for a Bridged Device have been marked with X
in column Conformance and SHALL NOT be used in the Bridged Device Basic Information Cluster.
The Conformance characteristics of several attributes in this cluster have changed from M to O
compared to their Conformance in the Basic Information Cluster, and SHALL be used according to
the table above.

The Bridge SHOULD fill these attributes with the available information, which could e.g. come from
the Bridged Device provided to the Bridge over the non-Matter interface (e.g. VendorName and Ven
dorID) or could have been provided by the user (e.g. assigned name of a device for NodeLabel).
If the manufacturer of a Bridged Device is known to the Bridge, the Bridge SHALL provide this
name (in attribute VendorName), otherwise it SHALL NOT include this attribute.
If the manufacturer of a Bridged Device and the associated Alliance-assigned Vendor ID are known
to the Bridge (e.g. by copying the Manufacturer Code from the Node Descriptor of a Zigbee device),
the Bridge SHALL provide this identifier (in attribute VendorID), otherwise it SHALL NOT include
this attribute.

The Reachable attribute SHALL be used to indicate whether the bridged device is reachable by the
bridge over the non-Matter network, so a Matter Node which wants to communicate with a bridged
device can get an indication that this might fail (when the attribute is False). Determination of
reachability MAY not be perfect (e.g. depending on technology employed), so the Matter Node
SHOULD be aware of the risk of false positives and negatives on reachability determination. For
example, a bridged device MAY be marked as unreachable while it could actually be reached, and
vice-versa.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 538 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Also see event ReachableChanged below.

The UniqueID attribute (when present) for a Bridged Device SHOULD be updated when the Bridge
is factory reset.

9.13.5. Events

This cluster SHALL support these events:

ID Name Priority Access Conformance

0x00 StartUp O

0x01 ShutDown O

0x02 Leave O

0x03 Reach
ableChanged

M

9.13.5.1. Leave Event

The Leave event SHOULD be generated by the bridge when it detects that the associated device has
left the non-Matter network.

The data of this event SHALL contain the following information:

ID Field Type Constraint Quality Default Confor
mance

0 FabricIndex X

NOTE

The FabricIndex field has the X conformance, indicating it SHALL NOT be present.
This event, in the context of Bridged Device Basic Information cluster, has no usable
fields, but the original Basic Information cluster’s field definition is kept for com
pleteness.

9.13.5.2. ReachableChanged Event

This event SHALL be generated when there is a change in the Reachable attribute. Its purpose is to
provide an indication towards interested parties that the reachability of a bridged device (over the
non-Matter network) has changed, so they MAY take appropriate action.
After (re)start of a bridge this event MAY be generated.

9.14. Actions Cluster
This cluster provides a standardized way for a Node (typically a Bridge, but could be any Node) to
expose

• Information about logical grouping of endpoints on the Node (example: lights in a room)

• Information about named actions that can be performed on such a group of endpoints (exam

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 539

ple: recall a scene for a group of lights by its name)

• Commands to trigger such actions

• Events to receive feedback on the state of such actions.

The information on grouping and available actions is typically provided by the user or Bridge man
ufacturer via some means not defined in Matter, and therefore provided as read-only to Nodes. For
example: a manufacturer-provided app allows a user to set up logical grouping and create/assign
scene for such groups.

Using this cluster, a Node can learn about such logical grouping, provided actions, and trigger such
actions.

While the origin of this cluster stems from use cases with a Bridge, its server side may also be
implemented on any Node which can expose certain grouping, actions or automations to other
users.

After defining the attributes, commands and events for this cluster, and the associated data types,
several examples are provided to illustrate the capabilities of this cluster.

Actions can be defined in a flexible manner to suit the needs of the various nodes implementing
this cluster. For each action, the commands available for that particular action are defined.

This cluster can be used to expose only the grouping of endpoints without any actions defined by
populating the EndpointList attribute accordingly and providing an empty list for ActionList.

The term 'action' in the description of this cluster should not be confused with the term 'action' as
used in the Interaction Model.

9.14.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

9.14.2. Classification

Hierarchy Role Scope PICS Code

Base Application Node ACT

9.14.3. Cluster ID

ID Name

0x0025 Actions

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 540 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.14.4. Data Types

9.14.4.1. CommandBits Type

This data type is derived from map16.

Bit Name Summary

0 InstantAction Indicate support for InstantAc
tion command

1 InstantActionWithTransition Indicate support for InstantAc
tionWithTransition command

2 StartAction Indicate support for StartAction
command

3 StartActionWithDuration Indicate support for StartAc
tionWithDuration command

4 StopAction Indicate support for StopAction
command

5 PauseAction Indicate support for PauseAc
tion command

6 PauseActionWithDuration Indicate support for PauseAc
tionWithDuration command

7 ResumeAction Indicate support for ResumeAc
tion command

8 EnableAction Indicate support for EnableAc
tion command

9 EnableActionWithDuration Indicate support for EnableAc
tionWithDuration command

10 DisableAction Indicate support for DisableAc
tion command

11 DisableActionWithDuration Indicate support for DisableAc
tionWithDuration command

Note - The bit allocation of this bitmap SHALL follow the ID’s of the Commands of this cluster.

9.14.4.2. ActionTypeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Other Use this only when
none of the other val
ues applies

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 541

Value Name Summary Conformance

1 Scene Bring the endpoints
into a certain state

M

2 Sequence A sequence of states
with a certain time pat
tern

M

3 Automation Control an automation
(e.g. motion sensor con
trolling lights)

M

4 Exception Sequence that will run
when something
doesn’t happen

M

5 Notification Use the endpoints to
send a message to user

M

6 Alarm Higher priority notifi
cation

M

Scene Value

Can be used to set a static state of the associated endpoints (typically using InstantAction or Instan
tActionWithTransition), or to bring these endpoints into a more dynamic state (typically using Star
tAction), where the endpoints would e.g. gradually cycle through certain colors for a pleasing effect.
A voice controller could use "set" (to map to InstantAction) or "play" (to map to StartAction) to trig
ger such actions.
Example: see examples 1 and 2.

Sequence Value

Indicates an action which involves a sequence of events/states of the associated endpoints, such as
a wake-up experience.
Example: see example 4.

Automation Value

Indications an automation (e.g. a motion sensor controlling lights, an alarm system) which can be
e.g. started, stopped, paused, resumed.
Example: see example 3.

Exception Value

Indicates some action which the server will execute when a certain condition (which normally does
not happen) is not met.
Example: lock the doors when the server’s system has detected no one is at home while the doors
are in the 'unlocked' state.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 542 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Notification Value

Indicates an action that can be triggered (e.g. by InstantAction) to notify the user.
Example: play a pattern on the lights in the living room if there is someone in the garden in the
evening.

Alarm Value

Similar to Notification but with a higher priority (and might override other endpoint states which
Type=Notification would not override).
Example: flash all lights in the house when CO sensor triggers.

9.14.4.3. ActionStateEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Inactive The action is not active M

1 Active The action is active M

2 Paused The action has been
paused

M

3 Disabled The action has been
disabled

M

Note that some of these states are applicable only for certain actions, as determined by their Sup
portedCommands.

9.14.4.4. ActionErrorEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unknown Other reason not listed
in the row(s) below

M

1 Interrupted The action was inter
rupted by another com
mand or interaction

M

9.14.4.5. EndpointListTypeEnum Type

This data type is derived from enum8 and has its values listed below.

Value Name Summary Conformance

0 Other Another group of end
points

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 543

Value Name Summary Conformance

1 Room User-configured group
of endpoints where an
endpoint can be in only
one room

M

2 Zone User-configured group
of endpoints where an
endpoint can be in any
number of zones

M

The Room and Zone values are provided for the cases where a user (or the system on behalf of the
user) has created logical grouping of the endpoints (e.g. bridged devices) based on location.

Other Value

This value is provided for the case of an endpoint list which is tied specifically to this action i.e. not
independently created by the user. For Type=Other the Name MAY be empty. A Matter controller
would typically not use this for anything else than just to know which endpoints would be affected
by the action.

Room Value

Is used for the situation where an endpoint can only be part of one such rooms (e.g. physical map
ping). Using these exposed logical groups, a Matter controller who has a similar grouping concept
can use it to place each endpoint (bridged device) in the right room automatically, without user
having to redo that setup for each device in each system - both at first contact and upon later
updates to the endpoints (e.g. user adds a bridged device or creates a new room).

Zone Value

Is a more general concept where an endpoint can be part of multiple zones, e.g. a light in the living
room can be part of the "reading corner" zone (subset of the lights in the living room) but also part
of the "downstairs" zone which contains all the lights on a floor, e.g. combining living room, kitchen
and hallway. This indicates that a user has defined this list of endpoints as something they logically
would like to control as a group, so Matter controllers could provide the user with a way to do as
such.

9.14.4.6. ActionStruct Type

This data type holds the details of a single action, and contains the data fields below.

ID Name Type Constraint Quality Default Access Confor
mance

0 ActionID uint16 all M

1 Name string max 32
[128]

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 544 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

2 Type Action
TypeEnum

all M

3 End
pointLis
tID

uint16 all M

4 Support
edCom
mands

Command
Bits

0 to
0x0FFF

M

5 State ActionSta
teEnum

all M

ActionID Field

This field SHALL provide an unique identifier used to identify an action.

Name Field

This field SHALL indicate the name (as assigned by the user or automatically by the server) associ
ated with this action. This can be used for identifying the action to the user by the client. Example:
"my colorful scene".

Type Field

This field SHALL indicate the type of action. The value of Type of an action, along with its Support
edCommands can be used by the client in its UX or logic to determine how to present or use such
action. See ActionTypeEnum for details and examples.

EndPointListID Field

This field SHALL provide a reference to the associated endpoint list, which specifies the endpoints
on this Node which will be impacted by this ActionID.

SupportedCommands Field

This field is a bitmap which SHALL be used to indicate which of the cluster’s commands are sup
ported for this particular action, with a bit set to 1 for each supported command according to the ta
ble below. Other bits SHALL be set to 0.

State Field

This field SHALL indicate the current state of this action.

9.14.4.7. EndpointListStruct Type

This data type holds the details of a single endpoint list, which relates to a set of endpoints that
have some logical relation, and contains the data fields below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 545

ID Name Type Constraint Quality Default Access Confor
mance

0 End
pointLis
tID

uint16 all R M

1 Name string max 32
[128]

R M

2 Type End
pointList
TypeEnum

all R M

3 Endpoints list[end
point-no]

max 256 R M

EndPointListID Field

This field SHALL provide an unique identifier used to identify the endpoint list.

Name Field

This field SHALL indicate the name (as assigned by the user or automatically by the server) associ
ated with the set of endpoints in this list. This can be used for identifying the action to the user by
the client. Example: "living room".

Type Field

This field SHALL indicate the type of endpoint list, see EndpointListTypeEnum.

EndPoints Field

This field SHALL provide a list of endpoint numbers.

9.14.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 ActionList list[Action
Struct]

max 256 empty R V M

0x0001 End
pointLists

list[End
pointList
Struct]

max 256 empty R V M

0x0002 SetupURL string max 512 empty R V O

9.14.5.1. ActionList Attribute

The ActionList attribute holds the list of actions. Each entry SHALL have an unique ActionID, and its
EndpointListID SHALL exist in the EndpointLists attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 546 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.14.5.2. EndpointLists Attribute

The EndpointLists attribute holds the list of endpoint lists. Each entry SHALL have an unique End
pointListID.

9.14.5.3. SetupURL Attribute

The SetupURL attribute (when provided) SHALL indicate a URL; its syntax SHALL follow the syntax
as specified in RFC 3986, max. 512 ASCII characters. The location referenced by this URL SHALL
provide additional information for the actions provided:

• When used without suffix, it SHALL provide information about the various actions which the
cluster provides.

◦ Example: SetupURL could take the value of example://Actions or https://domain.example/
Matter/bridgev1/Actions for this generic case (access generic info how to use actions pro
vided by this cluster).

• When used with a suffix of "/?a=" and the decimal value of ActionID for one of the actions, it
MAY provide information about that particular action. This could be a deeplink to manufac
turer-app/website (associated somehow to the server node) with the information/edit-screen for
this action so that the user can view and update details of the action, e.g. edit the scene, or
change the wake-up experience time period.

◦ Example of SetupURL with suffix added: example://Actions/?a=12345 or
https://domain.example/Matter/bridgev1/Actions/?a=12345 for linking to specific info/editing
of the action with ActionID 0x3039.

9.14.6. Commands

ID Name Direction Response Access Conformance

0x00 InstantAction client ⇒ server Y O desc

0x01 InstantAction
WithTransi
tion

client ⇒ server Y O desc

0x02 StartAction client ⇒ server Y O desc

0x03 StartAction
WithDuration

client ⇒ server Y O desc

0x04 StopAction client ⇒ server Y O desc

0x05 PauseAction client ⇒ server Y O desc

0x06 PauseAction
WithDuration

client ⇒ server Y O desc

0x07 ResumeAction client ⇒ server Y O desc

0x08 EnableAction client ⇒ server Y O desc

0x09 EnableAction
WithDuration

client ⇒ server Y O desc

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 547

https://domain.example/Matter/bridgev1/Actions
https://domain.example/Matter/bridgev1/Actions
https://domain.example/Matter/bridgev1/Actions/?a=12345

ID Name Direction Response Access Conformance

0x0A DisableAction client ⇒ server Y O desc

0x0B DisableAction
WithDuration

client ⇒ server Y O desc

Conformance: a server SHALL support a command when it is listed in the SupportedCommands
data field of one or more actions listed in the ActionList provided by the server.

Some general requirements and data fields for all the commands:

• The ActionID data field SHALL indicate the action identifier. If there is no entry the in ActionList
holding the same action identifier, a response SHALL be generated with the StatusCode NOT_
FOUND.

• The InvokeID data field MAY be provided by the client when invoking a command. When this
value is provided, the server SHALL generate a StateChanged event when the action changes to
a new state or an ActionFailed event when execution of the action fails; in the data of such
events, the value of the InvokeID data field from the invoke will be provided, so that the client
can relate the event back to the corresponding command. It is up to the client to determine
which value is provided in InvokeID. When sending multiple commands for the same action,
with different InvokeID, the server SHALL provide in the event the InvokeID value from the
most recent command for a particular ActionID.

• If the command refers to an action which currently is not in a state where the command
applies, a response SHALL be generated with the StatusCode INVALID_COMMAND.

• Actions are typically mapped to state changes of the involved endpoints. Those endpoints can
also be controlled with commands from other clusters, controlled by other nodes and impacted
by non-Matter interactions (e.g. local controls). Such other interactions can cause the state of the
endpoints to differ from the results of the command which triggered the action. A client inter
ested in such changes can use the InvokeID data field (see above) to receive events State
Changed and ActionFailed for feedback for such cases.

9.14.6.1. InstantAction Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command triggers an action (state change) on the involved endpoints, in a "fire and forget"
manner. Afterwards, the action’s state SHALL be Inactive.

Example: recall a scene on a number of lights.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 548 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.14.6.2. InstantActionWithTransition Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

2 Transition
Time

uint16 all MS M

It is recommended that, where possible (e.g., it is not possible for attributes with Boolean data type),
a gradual transition SHOULD take place from the old to the new state over this time period. How
ever, the exact transition is manufacturer dependent.

This command triggers an action (state change) on the involved endpoints, with a specified time to
transition from the current state to the new state. During the transition, the action’s state SHALL be
Active. Afterwards, the action’s state SHALL be Inactive.

Example: recall a scene on a number of lights, with a specified transition time.

TransitionTime Field

This field SHALL indicate the transition time in 1/10th of seconds.

9.14.6.3. StartAction Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command triggers the commencement of an action on the involved endpoints. Afterwards, the
action’s state SHALL be Active.

Example: start a dynamic lighting pattern (such as gradually rotating the colors around the set
points of the scene) on a set of lights.

Example: start a sequence of events such as a wake-up experience involving lights moving through
several brightness/color combinations and the window covering gradually opening.

9.14.6.4. StartActionWithDuration Command

This command SHALL have the following data fields:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 549

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

2 Duration uint32 all MS M

This command triggers the commencement of an action on the involved endpoints, and SHALL
change the action’s state to Active. After the specified Duration, the action will stop, and the action’s
state SHALL change to Inactive.

Example: start a dynamic lighting pattern (such as gradually rotating the colors around the set
points of the scene) on a set of lights for 1 hour (Duration=3600).

Duration Field

This field SHALL indicate the requested duration in seconds.

9.14.6.5. StopAction Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command stops the ongoing action on the involved endpoints. Afterwards, the action’s state
SHALL be Inactive.

Example: stop a dynamic lighting pattern which was previously started with StartAction.

9.14.6.6. PauseAction Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command pauses an ongoing action, and SHALL change the action’s state to Paused.

Example: pause a dynamic lighting effect (the lights stay at their current color) which was previ
ously started with StartAction.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 550 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.14.6.7. PauseActionWithDuration Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

2 Duration uint32 all MS M

This command pauses an ongoing action, and SHALL change the action’s state to Paused. After the
specified Duration, the ongoing action will be automatically resumed. which SHALL change the
action’s state to Active.

Example: pause a dynamic lighting effect (the lights stay at their current color) for 10 minutes
(Duration=600).

The difference between Pause/Resume and Disable/Enable is on the one hand semantic (the former
is more of a transitionary nature while the latter is more permanent) and on the other hand these
can be implemented slightly differently in the implementation of the action (e.g. a Pause would be
automatically resumed after some hours or during a nightly reset, while an Disable would remain
in effect until explicitly enabled again).

Duration Field

This field SHALL indicate the requested duration in seconds.

9.14.6.8. ResumeAction Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command resumes a previously paused action, and SHALL change the action’s state to Active.

The difference between ResumeAction and StartAction is that ResumeAction will continue the
action from the state where it was paused, while StartAction will start the action from the begin
ning.

Example: resume a dynamic lighting effect (the lights' colors will change gradually, continuing from
the point they were paused).

9.14.6.9. EnableAction Command

This command SHALL have the following data fields:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 551

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command enables a certain action or automation. Afterwards, the action’s state SHALL be
Active.

Example: enable a motion sensor to control the lights in an area.

9.14.6.10. EnableActionWithDuration Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

2 Duration uint32 all MS M

This command enables a certain action or automation, and SHALL change the action’s state to be
Active. After the specified Duration, the action or automation will stop, and the action’s state SHALL
change to Disabled.

Example: enable a "presence mimicking" behavior for the lights in your home during a vacation;
the Duration field is used to indicated the length of your absence from home. After that period, the
presence mimicking behavior will no longer control these lights.

Duration Field

This field SHALL indicate the requested duration in seconds.

9.14.6.11. DisableAction Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

This command disables a certain action or automation, and SHALL change the action’s state to Inac
tive.

Example: disable a motion sensor to no longer control the lights in an area.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 552 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.14.6.12. DisableActionWithDuration Command

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 all M

1 InvokeID uint32 all O

2 Duration uint32 all MS M

This command disables a certain action or automation, and SHALL change the action’s state to Dis
abled. After the specified Duration, the action or automation will re-start, and the action’s state
SHALL change to either Inactive or Active, depending on the actions (see examples 4 and 6).

Example: disable a "wakeup" experience for a period of 1 week when going on holiday (to prevent
them from turning on in the morning while you’re not at home). After this period, the wakeup
experience will control the lights as before.

Duration Field

This field SHALL indicate the requested duration in seconds.

9.14.7. Events

This cluster SHALL support these events:

ID Name Priority Access Conformance

0x00 StateChanged INFO V M

0x01 ActionFailed INFO V M

9.14.7.1. StateChanged Event

This event SHALL be generated when there is a change in the State of an ActionID during the execu
tion of an action and the most recent command using that ActionID used an InvokeID data field.

It provides feedback to the client about the progress of the action.

Example: When InstantActionWithTransition is invoked (with an InvokeID data field), two State
Changed events will be generated:

• one when the transition starts (NewState=Active)

• one when the transition completed (NewState=Inactive)

This event SHALL have the following data fields:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 553

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 M

1 InvokeID uint32 M

2 NewState ActionSta
teEnum

M

ActionID Field

This field SHALL be set to the ActionID of the action which has changed state.

InvokeID Field

This field SHALL be set to the InvokeID which was provided to the most recent command referenc
ing this ActionID.

NewState Field

This field SHALL be set to state that the action has changed to.

9.14.7.2. ActionFailed Event

This event SHALL be generated when there is some error which prevents the action from its nor
mal planned execution and the most recent command using that ActionID used an InvokeID data
field.

It provides feedback to the client about the non-successful progress of the action.

Example: When InstantActionWithTransition is invoked (with an InvokeID data field), and another
controller changes the state of one or more of the involved endpoints during the transition, thus
interrupting the transition triggered by the action, two events would be generated:

• StateChanged when the transition starts (NewState=Active)

• ActionFailed when the interrupting command occurs (NewState=Inactive, Error=interrupted)

Example: When InstantActionWithTransition is invoked (with an InvokeID data field = 1), and the
same client invokes an InstantAction with (the same or another ActionId and) InvokeID = 2, and this
second command interrupts the transition triggered by the first command, these events would be
generated:

• StateChanged (InvokeID=1, NewState=Active) when the transition starts

• ActionFailed (InvokeID=2, NewState=Inactive, Error=interrupted) when the second command
interrupts the transition

• StateChanged (InvokeID=2, NewState=Inactive) upon the execution of the action for the second
command

This event SHALL have the following data fields:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 554 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 ActionID uint16 M

1 InvokeID uint32 M

2 NewState ActionSta
teEnum

M

3 Error Action
ErrorEnum

M

ActionID Field

This field SHALL be set to the ActionID of the action which encountered an error.

InvokeID Field

This field SHALL be set to the InvokeID which was provided to the most recent command referenc
ing this ActionID.

NewState Field

This field SHALL be set to state that the action is in at the time of generating the event.

Error Field

This field SHALL be set to indicate the reason for non-successful progress of the action.

9.14.8. Examples

This section provides some examples how the attributes and commands in this cluster can be used
in practical situations. Details of the behavior typically depend on the details of the logic built into
the server.

9.14.8.1. Example 1: Scene recall

User has defined a scene on a number of lights. The corresponding action would have these data
fields describing it:

• Name="sunset"

• Type=Scene

• EndpointListID references a struct referencing the set of involved endpoints

◦ Name="living room"

◦ Type=Room

◦ Endpoints=list of the endpoints of the lights in this room

• SupportedCommands: InstantAction, InstantActionWithTransition

The InstantAction command (e.g. triggered by a voice command "set sunset in living room") will

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 555

trigger the server to activate that scene on those lights.

When a slow fade-in is preferred, the InstantActionWithTransition can be used, with a Transition
Time parameter of e.g. 50 (denoting 5 s).

Figure 52. State diagram for example 'scene recall'

9.14.8.2. Example 2: Set dynamic light effect

User has defined a scene on a number of lights. The corresponding action would have these data
fields describing it:

• Name="sunset"

• Type=Scene

• EndpointListID references a struct referencing the set of involved endpoints (same as in Exam
ple 1)

• SupportedCommands: StartAction, StartActionWithDuration, StopAction

The StartActionWithDuration command (e.g. triggered by a voice command "play sunset in living
room for 1 hour") will trigger the server to activate a dynamic pattern with colors inspired by sun
set on the associated lights. At any time, the StopAction can be used to stop the effect.

Please note that the most of the data fields in the ActionStruct for this example are identical to
those in example 1 - except for the SupportedCommands. The different sets of supported commands
indicate whether it is an instant scene recall (example 1) vs. a long-term dynamic effort (example
2). A server could expose this action also as a single action with the combined set of supported com
mands.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 556 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 53. State diagram for example 'dynamic light effect'

9.14.8.3. Example 3: Pause sensor automation

User has defined an automation: a motion sensor controls the lights in a certain room. Sometimes,
they want to override that automatic behavior, e.g. when having a party.

The action for this example would refer to such automation, which is typically active, but can be
paused (=temporarily disabled).

The corresponding action would have these data fields describing it:

• Name="motion sensor"

• Type=Automation

• EndpointListID references a struct referencing the set of involved endpoints (same as in Exam
ple 1)

• SupportedCommands: EnableAction, DisableAction, PauseAction, PauseActionWithDuration,
ResumeAction

Typically, the action has been started when the user defines the motion sensor behavior, so without
a Matter command the action’s state would be 'Active'. The PauseActionWithDuration command
(e.g. triggered by a voice command "disable the motion sensor in living room for 2 hours") will trig
ger the server to disable the behavior associated with the motion sensor for the specified time. A
ResumeAction command would make this behavior active again. The automation could also have
internal logic to abort the disabling after several hours or during the night-time reset, to accommo
date for the case the user 'paused' and forgot to 'resume'.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 557

Figure 54. State diagram for example 'pause sensor automation'

9.14.8.4. Example 4: Wake-up routine

User has defined a wake-up routine: the lights in the bedroom will gradually become brighter and
change in color temperature to simulate a sunrise. The sequence lasts for e.g. 30 minutes. Near the
end of the sequence, the window coverings would be (partially) opened as well.

The corresponding action would have these data fields describing it:

• Name="wakeup"

• Type=Sequence

• EndpointListID references a struct referencing the set of involved endpoints (lights and window
coverings in the bedroom)

• SupportedCommands: EnableAction, DisableAction, DisableActionWithDuration, PauseAction,
PauseActionWithDuration

When the user wants to snooze some more, he can use a voice command to trigger the PauseAction
command (which could automatically timeout after e.g. 10 minutes). The StopAction command
could similarly be used to cancel the remainder of the whole sequence. The DisableActionWithDu
ration (with parameter 172,800 =2*24*60*60 s) can be used on Friday evening to disable the
sequence for the weekend.

When such action has been defined, a Matter node which is aware of the user’s calendar for the
day, can use the StartAction command to trigger this sequence of events.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 558 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 55. State diagram for example 'wake-up experience'

9.14.8.5. Example 5: Scheduled scene recall

User has setup a scene to be recalled at a certain time of day (e.g. colorful garden lighting to switch
on around sunset) and switching off those lights (e.g. at midnight). The server’s automation system
takes care of this. On certain occasions (e.g. garden party), the user wants to override this behavior
(i.e. the scene should not be recalled at sunset because another scene has been set for the party).

The corresponding action would have these data fields describing it:

• Name="colorful evening garden"

• Type=Automation

• EndpointListID references a struct referencing the set of involved endpoints (lights in the gar
den)

• SupportedCommands: EnableAction, DisableAction, DisableActionWithDuration

After installation, this action is in Inactive state. At the scheduled "on" time, the colorful garden
lighting scene is activated and the action’s state changes to the Active state. At the scheduled "off"
time, the lights are switched off, and the action’s state changes to the Inactive state. Using the Dis
ableAction, the user can prevent these automated steps to occur - the action’s state changes to the
Disabled state. Using the DisableActionWithDuration, the user can do similarly, but also indicate an
automatic re-enabling after the specified time period. Using the EnableAction, the user can re-
enable the automation.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 559

Figure 56. State diagram for example 'scheduled scene recall'

9.14.8.6. Example 6: Alarm system

User has an alarm system which exposes this cluster, with an action that allows to arm/disarm the
system by voice commands from a Matter node which is a client to this cluster.

The corresponding action would have these data fields describing it:

• Name="alarm system"

• Type=Automation

• EndpointListID references a struct referencing the set of involved endpoints (elements of the
alarm system)

• SupportedCommands: EnableAction, DisableAction, DisableActionWithDuration

After installation, this action could be in Inactive state (assume user is at home installing so system
is not armed). Using the EnableAction, the alarm system would be armed. Using the DisableAction,
the alarm system would be disarmed (or disarmed for a period with DisableWithDuration).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 560 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 57. State diagram for example 'alarm system'

9.15. Proxy Architecture

NOTE Proxy Architecture, Proxy clusters, and Proxy support, are provisional.

9.15.1. Motivation

Constrained devices might not support more than a handful of subscriptions. This is usually attrib
utable to a limited memory or battery. However, there might be a large number of clients who
desire to subscribe to that device.

9.15.2. Subscription Proxy: Overview

A subscription proxy is a type of Node that is capable of multiplexing subscriptions from multiple
subscribers onto a single subscription to a given publisher.

The term 'proxy' is a convenient shorthand that refers to this type of Node.

The term 'source' SHALL refer to a node that serves as the original source of truth for a set of data.
The source acts as a publisher of that data.

The term 'client' SHALL refer to a node that wants to subscribe to some source.

A proxy subscribing to a source SHALL surface an identical 'mirror' of the source’s data to down
stream clients without the clients having to alter their interaction regardless of whether they are
interacting with a proxy or the source itself.

The proxy SHALL be identified by the Subscription Proxy Device Type.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 561

Figure 58. Digital twin acting as a proxy re-publishing clusters

This multiplexing of subscriptions allows the source to delegate all subscriptions to its proxy, only
needing to support a single subscription from that proxy. This reduces the demands placed on
energy and memory resources. Consequently, that single subscription will encompass the union of
all client interest sets. If the combined set of attribute/event paths becomes fairly large, proxies can
leverage the use of wildcards to merge multiple localized paths into a single, broader path with
wildcards.

Figure 59. Proxy multiplexing interest sets from 3 distinct clients

A proxy SHALL only proxy subscribe interactions. It SHALL NOT proxy any other type of interac
tion.

9.15.3. Composition & Paths

A client subscribing to a proxy SHALL specify the Node ID of the source it wishes to subscribe to in
the Path. This SHALL be different from the logical destination Node ID of the message, which

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 562 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

SHALL be the Node ID of the proxy.

Figure 60. Sample paths when subscribing to a proxy vs the source

9.15.4. Proxy Subscriptions

9.15.4.1. Overview

A proxy only attempts to subscribe to a source when there is a current, valid subscription from a
client to the proxy for that source’s data.

The term 'upstream subscription' refers to the subscription from the proxy either directly to the
source, or indirectly to another proxy for that source’s data.

The term 'downstream subscription' refers to the subscription from either a client or another proxy
to the proxy in question.

Consequently, when that 'downstream' subscription disappears, the 'upstream' subscription will
either be torn down (if there are no other clients interested in that source) or be amended.

This does not require a priori knowledge of a client’s interest set.

9.15.4.2. Upstream/Downstream Subscription Mechanics

Upstream and downstream subscriptions have the following properties:

• Both subscriptions are independent, but weakly linked.

◦ Data is received on the client side, stored on the server side, and used to generate a different
set of reports to downstream client(s).

• It is data that is being proxied, not the actual subscription messages themselves.

• The termination of a downstream subscription will automatically result in an amendment of
the upstream subscription to remove the relevant paths that were in the downstream, with a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 563

complete termination of the upstream subscription if there was only 1 downstream subscriber
present.

• The disappearance of an upstream subscription will not automatically cancel the downstream
subscription.

◦ Upstream subscriptions MAY disappear due to network connectivity issues. If an upstream
sync report is not received, the proxy SHALL attempt once to re-subscribe to the upstream
source; if that re-subscription attempt fails, the proxy SHALL terminate any associated
downstream subscriptions.

◦ If an upstream subscription is positively terminated by the source as a whole, that will
result in a similar termination of the downstream subscription.

• In addition to forwarding status codes embedded in the ReportData from the source, the proxy
will convey a special 'NO_UPSTREAM_SUBSCRIPTION' IM status code to the downstream client if
it has not established a subscription to the source.

The diagram below gives a sample sequence show-casing the two subscriptions:

Figure 61. Upstream/Downstream subscription sequences

9.15.4.3. Sync/Liveness

Since subscriptions provide a 'sync' message to infer health of the subscription on both sides, it
allows a client to monitor the health of its source peer.

Conveyance of this is preserved in downstream subscription through the 'NO_UPSTREAM_SUB
SCRIPTION' status code. This conveys effectively the same information as the sync message would
had the client directly subscribed to the source.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 564 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.15.4.4. Upstream Subscription Parameter Derivation

Since the proxy multiplexes all downstream subscriptions onto a single upstream subscription, it
has to have logic to harmonize the various parameters from each client subscription.

The following logic table describes what the proxy SHOULD do:

Parameter Suggested Logic

Attribute/EventPaths UNION of all paths. Proxy MAY use wildcards if
needed to simplify this logic.

DataVersionList MIN

EventNumberList MIN

MinimumSyncInterval MIN

MaximumSyncInterval MAX

MinimumReportingIntervalList MIN

ReportableChangeList MIN

Since each client’s interest is different from the final multiplexed subscription, the proxy has to
appropriately filter the data being received from the source before sending it to a given client.

9.15.5. Schemas and Data Serialization/Deserialization

Unlike clients that need to semantically interpret data in addition to deserializing/serializing
to/from its internal data stores, a proxy only needs to do the latter.

As a result, proxies MAY achieve proxy functionality with a single firmware image built to handle
any client, any cluster, any type of device.

9.15.6. Indirect Proxies

A proxy MAY subscribe to another proxy instead of subscribing directly to the source. This creates
proxy chains that allow a single source to be proxied by multiple proxies, allowing better use of
available proxy capacity.

9.15.7. Proxy Discovery & Assignment Flow

The following flow describes the process by which a client:

• Discovers that a source needs a proxy

• Finds an appropriate proxy on the network that is able to handle its request

• Sets up the proxy to subscribe to the source

9.15.7.1. Step 0: Proxy Setup

A device indicates its ability to act as a certified proxy through stating support for the Subscription
Proxy device type.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 565

When such a device is commissioned, the commissioner SHALL recognize this ability and MAY
write the NodeIds of all the sources that need proxying into the Proxy Configuration Cluster on the
proxy device. Alternatively, it MAY configure the proxy to wildcard proxy all devices, removing the
need to specify a particular set of NodeIds.

Additionally, the commissioner MAY write the Node ID of the newly added proxy to the Valid Prox
ies Cluster on source devices that needs proxying. This cluster stores the static list of candidate
proxies for a given device. Only devices that support the cluster would need to have this configura
tion written.

9.15.7.2. Step 1: Rejection

There unfortunately isn’t any a priori heuristic that MAY be applied to deduce if a source needs
proxying. This is usually a function of the number of clients subscribed to a source, the number of
paths in those subscriptions, as well as the sync intervals.

When a source cannot handle any more incremental subscriptions, that is when proxying is
needed. This is discovered when a client tries to subscribe to the source and is sent back a StatusRe
sponse containing a RESOURCE_EXHAUSTED IM status code, indicating the source’s inability to handle
further subscriptions:

Figure 62. Rejection

In the diagram above, the constraints of the source have been simplified down to having 3 available
subscription slots that get filled up.

Upon receipt of the RESOURCE_EXHAUSTED error, the client SHALL invoke the Get Valid Proxies Request
command on the source Node. In response, it SHALL receive a Get Valid Proxies Response message
containing the NodeIds of valid, candidate proxies.

9.15.7.3. Step 2: Proxy Discovery

After the client has received the list of possible valid proxies, the client MAY attempt to discover a
valid proxy that is able to proxy its request.

To do so, the client sends out a Proxy Discover Request Command as a groupcast message to the All

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 566 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Proxies universal group. Before it transmits this message, the client SHALL momentarily subscribe
to the IPv6 address that maps to the All Proxies universal group to appropriately receive all
responses.

Figure 63. Discovery Request

9.15.7.4. Step 3: Proxy Response

Proxies respond to the request with a Proxy Discover Response Command sent as a groupcast message
to the All Proxies universal group. A proxy SHALL only send this message when it can handle the
subscription request, regardless of whether it is currently subscribed to the source. The response
will contain metadata about its ability to handle the subscription.

The Proxy Discover Response Command SHALL be sent as a completely separate, un-related transac
tion to the original request. The client SHALL correlate the two using the SourceNodeId present in
both messages.

Proxies SHALL stagger their responses by waiting for a random interval between 0 and PROXY_S
CAN_RESPONSE_JITTER before sending the Proxy Discover Response Command to prevent overwhelm
ing the network or the client, which can be constrained and can have limited buffers.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 567

Figure 64. Proxies send back responses

9.15.7.5. Step 4: Proxy Selection

Client SHALL wait for PROXY_SCAN_PERIOD to aggregate all responses and SHALL filter the set of
responses received. Specifically, the client SHALL discard:

• Responses containing a Source Node ID for other unintended sources

• Responses containing a Source Node ID in the message that does not match any in the Valid
ProxyList.

It SHALL then select a proxy from this filtered set based on implementation-chosen policies. One
suggested approach would involve selecting the proxy with the least number of hops to the source,
followed by largest available capacity.

Clients MAY unsubscribe from the IPv6 multicast group that maps to the All Proxies universal
group after aggregating the responses.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 568 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 65. Selecting a Proxy

9.15.7.6. Step 5: Proxy Subscription

The client then subscribes to the proxy it has selected.

The proxy will do one of two things:

Option 1: If there isn’t another proxy already subscribed to the source, the proxy subscribes to the
source directly:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 569

Figure 66. Primary proxy subscription

Option 2: If there is already another proxy subscribed to that source, the selected proxy subscribes
to that proxy instead.

Figure 67. Primary proxy subscription

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 570 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

It doesn’t attempt to subscribe directly to the source since it does not know if the source has any
free slots available to support the subscription, risking a potential subscription failure if it did so.

Proxies MAY select between the two options by 'sniffing' the `Proxy Discover Response Command mes
sages that were emitted by other proxies. This allows the candidate proxy to determine whether
there is another proxy already subscribed to the source.

A proxy SHALL have only one subscription to a given source regardless of the number of subscrip
tion requests from clients for that source. This is necessary to ensure timely ACL enforcement in the
case where a client no longer has access to the source, and subsequent state changes will not be
made available to that client (see ACL Enforcement for more details).

9.15.7.7. Step 6: Eviction

At this point, the source might not be able to handle another subscription. If so, it SHALL evict non-
proxy subscriptions to make space for the proxy subscription. This is acceptable since those clients
that got evicted MAY eventually subscribe to a proxy as well.

To make this possible, proxies have to express the type of subscription (proxy or not proxy) in the
SubscribeRequest itself.

Figure 68. C3 gets evicted

9.15.7.8. Step 7: Re-Assignment

The evicted clients undergo the same proxy discovery/selection process, and eventually settle on a
set of proxies.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 571

Figure 69. C3 gets reassigned to P1

9.15.7.9. Notable Characteristics

This algorithm has the following notable characteristics:

• The system 'auto-balances' based on the needs of clients and the capabilities of the source

• No persistent state or a priori configuration is needed on any node

• No a priori heuristics are needed to figure out if a node should be proxied.

• Robust to proxy failure by leveraging the liveness construct of subscriptions to accelerate dis
covery

• No centralized proxy management/assignment service is needed.

◦ There is no single point of failure. No need for an election, state backup, or fail-over.

• Low complexity on server (which are usually the more constrained device), slightly more on the
client

9.15.8. Constraints

9.15.8.1. Eviction Rules

A source SHALL NOT evict an existing proxy already subscribed to it to make way for a new sub
scription regardless of whether that new subscription emanates from a proxy or not. This prevents
instability in the system since it might result in ping-ponging proxies subscribing to that source.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 572 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.15.8.2. Number of Direct Proxies

There SHOULD only be one proxy node directly subscribed to a source in a single-fabric setting.
This is not enforced by the source but rather, by proxies themselves.

9.15.8.3. Multi-Fabric

In a multi-fabric setting, a source node MAY be subscribed to by clients commissioned into different
fabrics. It is highly desirable that a single proxy interacting with a source support clients from mul
tiple fabrics. To make this possible, a proxy SHOULD when possible, be commissioned into all fab
rics that contain sources that need proxying.

If a proxy is not commissioned into all fabrics, it might not see another proxy’s Proxy Discover
Response Command messages, nor will it be capable of directly subscribing to that proxy even if it did,
since it doesn’t have credentials to do so. This MAY result in multiple proxies attempting to sub
scribe directly to the source, resulting in potential rejection by the source and consequently, an
inability for a client’s subscription to be served indirectly through that chosen proxy. This might be
unpredictable depending on which proxy was able to subscribe first to that source.

9.15.9. Certification

To ensure a consistent expectation of behavior from a proxy device, the proxy SHOULD be certified
by the Connectivity Standards Alliance against the expectations of a proxy. Once certified, it MAY
claim compatibility against the Subscription Proxy device type.

9.15.10. Security & Privacy

9.15.10.1. Authentication

To prevent malicious or unattested devices from acting as proxies to clients, the Valid Proxies Clus
ter provides a scheme for admins to specify the NodeIds of valid, attested proxies to the source
itself, which is in turn conveyed to clients. This allows for filtering of the ensuing Proxy Discover
Response Command messages to only select valid, trusted proxies.

9.15.10.2. Multicast Messages

The proxy discovery commands SHALL be encrypted with a fabric-provided group key. An Admin
istrator that wishes to enable proxy functionality on a set of clients SHALL bind the All Proxies
group to a specific group key in the Group Key Management cluster.

Consequently, a Proxy Discover Request Command message SHALL be sent for every All Proxies
GroupID instance specified in the Group Keys Management cluster.

9.15.10.3. ACL Enforcement

Administrators SHOULD configure source nodes to grant the 'Proxy View' privilege to proxy clients.
If this privilege is not granted for at least the Access Control cluster, the proxy will not function.
This privilege SHOULD be granted for the entire source node for a proxy to be most effective, since
neither the proxy nor the Administrator can predict which source clusters may be subscribed by
other clients.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 573

The proxy SHALL subscribe to the Access Control Cluster on the source and SHALL enforce the
source’s ACLs on behalf of the source when serving its downstream client subscriptions.

The proxy MAY enforce the source’s ACLs eagerly (i.e. at first ACL change), lazily (i.e. at next data
report), or by some combination of these approaches. The key guarantee is that the proxy SHALL
apply the latest source ACLs from its upstream subscription at the time it generates associated
downstream subscription reports.

The proxy SHALL enforce the source’s ACLs on a path by path basis, in a similar manner to how the
Access Control Privilege Granting algorithm enforces access. Downstream subscription paths that
are not granted access by the proxy SHALL cause the proxy to generate an UNSUPPORTED_ACCESS error
for that subscription path.

If all report data paths in a downstream subscription result in UNSUPPORTED_ACCESS error, the proxy
SHALL tear down that downstream subscription.

If the proxy is not able to view the source’s Access Control Cluster due to insufficient privileges, it
SHALL NOT generate any downstream subscription data reports for that source. Instead, the proxy
SHALL generate a report containing UNSUPPORTED_ACCESS errors for each path in the downstream
subscription and tear down the downstream subscription.

9.15.11. Parameters and Constants

Table 75, “Glossary of constants” is a glossary of constants used in this section, along with a brief
description and example default for each constant.

Table 75. Glossary of constants

Constant Name Description Default Value

PROXY_SCAN_RESPONSE_JITTER The maximum amount of time to ran
domly wait before sending a Proxy Dis
cover Response Command message.

1000 millisec
onds

PROXY_SCAN_PERIOD The maximum amount of time initiator of
proxy discovery will wait to collect Proxy
Discover Response Command messages after
sending a Proxy Discover Request Command
message.

1100 millisec
onds

9.15.12. Proxy Discovery Cluster

This cluster contains commands needed to do proxy discovery as defined in the Section 9.15.7.3,
“Step 2: Proxy Discovery” and Section 9.15.7.4, “Step 3: Proxy Response” steps of the overall Section
9.15.7, “Proxy Discovery & Assignment Flow”.

9.15.12.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 574 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Revision Description

1 Initial Release

9.15.12.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node PXDSC

9.15.12.3. Cluster ID

ID Name Conformance

0x0043 ProxyDiscovery P

9.15.12.4. Commands

ID Name Direction Response Access Conformance

0x00 ProxyDiscov
erRequest

client ⇒ server N O M

0x01 ProxyDiscov
erResponse

client ⇐ server N M

9.15.12.4.1. ProxyDiscoverRequest Command

This command is used during proxy discovery, as specified in Section 9.15.7, “Proxy Discovery &
Assignment Flow”.

ID Name Type Constraint Quality Default Confor
mance

0 SourceNode
Id

node-id all M

1 NumAttrib
utePaths

uint16 desc M

2 NumEvent
Paths

uint16 desc M

SourceNodeId Field

This is the Node ID of the source for which a client seeks to find a Proxy.

NumAttributePaths Field

The number of attribute paths the client will have in the subscription request. This is a heuris
tic/hint to allow a Proxy to better ascertain whether it can support the ensuing subscription.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 575

NumEventPaths Field

The number of event paths the client will have in the subscription request. This is a heuristic/hint to
allow a Proxy to better ascertain whether it can support the ensuing subscription.

9.15.12.4.2. ProxyDiscoverResponse Command

This command is used during proxy discovery, as specified in Section 9.15.7, “Proxy Discovery &
Assignment Flow”.

ID Name Type Constraint Quality Default Confor
mance

0 SourceNode
Id

node-id all M

1 NumHop
sToSource

uint16 desc M

2 Available
Capacity

uint16 desc M

SourceNodeId Field

This is the Node ID of the source the proxy can proxy for. This SHALL match the node id in the cor
responding Proxy Discover Request Command message.

NumHopsToSource Field

If the proxy currently subscribes to the source (either directly or indirectly), this indicates the num
ber of hops to the source. Sensible values start at 1, with 1 being used for a proxy that subscribes
directly to the source. If the proxy is not subscribed directly to the source, this value SHALL be one
greater than the NumHopsToSource for the given Node ID of the proxy it is subscribed to.

0 indicates that the proxy currently does not have a subscription to the source.

AvailableCapacity Field

A number indicating the number of Cluster Attribute Paths the proxy has space for support. This
allows for an absolute comparison of different memory capacities of candidate proxies by the client
in selecting the best possible candidate.

9.15.13. Proxy Configuration Cluster

This cluster provides a means for a proxy-capable device to be told the set of Nodes it SHALL proxy.

9.15.13.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 576 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Revision Description

1 Initial Release

9.15.13.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node PXCFG

9.15.13.3. Cluster ID

ID Name Conformance

0x0042 ProxyConfiguration P

9.15.13.4. Data Types

9.15.13.4.1. ConfigurationStruct Type

Quality: Fabric-Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 Prox
yAllNodes

bool desc false RW M

2 SourceList list[node-
id]

desc empty RW M

ProxyAllNodes Field

This field SHALL be set to true to indicate to the proxy that it SHALL proxy all nodes. When true,
the SourceList attribute is ignored.

SourceList Field

When ProxyAllNodes is false, this list contains the set of Node IDs of sources that this proxy SHALL
specifically proxy.

9.15.13.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0 Configura
tionList

list[Config
ura
tionStruct]

all N empty R W M

9.15.13.5.1. ConfigurationList Attribute

List of proxy configurations. There SHALL NOT be multiple entries in this list for the same fabric.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 577

9.15.14. Valid Proxies Cluster

This cluster provides a means for a device to be told of the valid set of possible proxies that can
proxy subscriptions on its behalf as per Section 9.15.7, “Proxy Discovery & Assignment Flow”.

9.15.14.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

9.15.14.2. Classification

Hierarchy Role Context PICS Code

Base Utility Node PXVALID

9.15.14.3. Cluster ID

ID Name Conformance

0x0044 ValidProxies P

9.15.14.4. Data Types

9.15.14.4.1. ValidProxyStruct Type

Encapsulates the Node ID of a Valid Proxy.

Quality: Fabric-Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 NodeID node-id all R W M

9.15.14.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 ValidProx
yList

list[Valid
ProxyS
truct]

N/A N F empty R W M

9.15.14.5.1. ValidProxyList Attribute

List of valid proxies that can proxy this Node. Each entry in this list is fabric-scoped.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 578 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.15.14.6. Commands

ID Name Direction Response Access Conformance

0x00 GetValidProx
iesRequest

client ⇒ server GetValidProx
iesResponse

O M

0x01 GetValidProx
iesResponse

client ⇐ server N M

9.15.14.6.1. GetValidProxiesRequest Command

This command is used during proxy discovery, as specified in Section 9.15.7, “Proxy Discovery &
Assignment Flow”.

9.15.14.6.2. GetValidProxiesResponse Command

This command is used during proxy discovery, as specified in Section 9.15.7, “Proxy Discovery &
Assignment Flow”.

ID Name Type Constraint Quality Default Confor
mance

0 ProxyN
odeIdList

list[node-id] M

ProxyNodeList Field

This contains the list of node ids stored in the ValidProxyList whose associated fabric matches the
accessing fabric.

9.16. Intermittently Connected Devices Behavior

9.16.1. ICD Server Behavior

9.16.1.1. Operational States

9.16.1.1.1. Idle Mode

Idle Mode defines the operational state of an ICD where the node is unreachable due to it not being
able to receive messages for a certain period of time. The ICD will remain in Idle Mode for a maxi
mum of one Idle Mode Duration as defined in the ICD Management cluster.

Slow Polling

When in Idle Mode, the ICD SHALL configure its network interface in Slow Polling. Slow Polling
defines the fastest frequency at which the device will typically receive messages in Idle Mode. The
Slow Polling interval MAY be the same as the Idle Mode Duration.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 579

9.16.1.1.2. Active Mode

Active Mode defines the operational state of an ICD where it is reachable on the network and will
answer in a timely manner. The minimum amount of time a device will typically remain in Active
Mode is Active Mode Duration as defined in the ICD Management cluster.

Fast Polling

When in Active Mode, the ICD SHALL configure its network interface in Fast Polling. Fast Polling
defines the fastest frequency at which the device can receive messages in Active Mode.

9.16.1.1.3. Operational State Switch

Some of the reasons why an ICD can switch Operational states from Idle Mode to Active Mode are:

• The ICD has remained in Idle Mode for a full Idle Mode Duration.

• An attribute change needs to be reported to a subscriber.

• When the maximum reporting interval has been reached for an active subscription.

• A generated event needs to be reported to a subscriber.

When an ICD switches from Idle Mode to Active Mode, it MAY send all pending messages. These
messages could be:

• Sending subscription reports and events.

• Sending Check-In messages.

• Sending Interaction Messages.

A node typically determines whether it is in Active or Idle mode based on whether it has any out
standing Exchanges in the Message Layer. While there are Exchanges active, a node typically will
remain in Active mode. Once all Exchanges are closed and the node has no other outstanding rea
sons for staying active, a node SHOULD transition into Idle mode. An ICD node MAY use additional
modes and logic for switching between them.

9.16.1.2. ICD Session Configurations

Due to the ICD operating modes, there may be an additional delay before the ICD receives a mes
sage. This causes the travel time of a message to be affected by the ICD’s configuration and current
operating mode.

When in Idle Mode, the device will typically not receive messages at a faster frequency than the
Slow Polling Interval. As such, a client SHOULD NOT try to send the same message at a frequency
higher than the Slow Polling Interval when the ICD is in Idle Mode. The ICD SHALL set its SES
SION_IDLE_INTERVAL to a value greater than or equal to the Slow Polling Interval.

When in Active Mode, the device will typically not receive messages at a faster frequency than the
Fast Polling Interval. As such, a client SHOULD NOT try to send the same message at a frequency
higher than the Fast Polling Interval when the ICD is in Active Mode. The ICD SHALL set its SES
SION_ACTIVE_INTERVAL to a value greater than or equal to the Fast Polling Interval.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 580 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The ICD SHALL set its SESSION_ACTIVE_THRESHOLD to the Active Mode Threshold stored in the
ICD Management cluster.

9.16.1.3. Check-In Protocol Support

This section describes the Check-In Protocol use case used by Intermittently Connected Devices
(ICDs) to maintain a known relationship in case subscriptions with clients are lost. This includes
how a client shares a Check-In token (symmetric key) with the ICD, when Check-In messages are
sent and how the Check-In Protocol requirements are respected.

The Check-In Protocol is a fail-safe mechanism which allows an Intermittently Connected Device
(ICD) to notify a registered client that it is available for communication when all subscriptions
between the client and ICD are lost. A subscription can be lost for several reasons, such as:

• The ICD might not have full RAM retention when it is in an idle state.

• When the ICD is powered off to change the battery.

• Power or network outage causing the connection between the client and the ICD to be inter
rupted.

• The client is unavailable for any reason (e.g. during a software update or hosted on a mobile
device that is sometimes out-of-home).

The Check-In message is sessionless and relies on a shared secret that has been given to the ICD
during the registration of the client using the ICD Management cluster.

9.16.1.3.1. Use Case Requirements

The ICD Check-In Protocol representation of the Check-In Counter SHALL be the ICD Counter. It
SHALL follow all the requirements of the Check-In Counter.

The ICD Check-In Protocol representation of the Check-In Protocol persistent data store SHALL be
the RegisteredClients attribute in the ICD Management cluster. The attribute SHALL store all the
client registration information.

The Application Data for the ICD Check-In Protocol use case SHALL be the Active Mode Threshold
attribute in the ICD Management cluster. Before being used in the encryption process, the Active
Mode Threshold SHALL be converted into a 2-byte little-endian value.

9.16.1.3.2. Protocol State Machine

The state machine diagram represents the states an ICD can be in. The diagram represents the state
of the ICD for one client or MonitoredSubject. The ICD can be in a different state for each client
simultaneously.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 581

Figure 70. ICD State Machine

Uncommissioned State

An ICD is in the Uncommissioned state when it has not been provided with any credentials to join a
fabric. In this state, the ICD is passively waiting for incoming messages during the open commis
sioning window.

Unregistered State

An ICD is in the Unregistered state with a given MonitoredSubject when no established relationship
with the client exists, meaning the ICD has neither a registration entry in the ICD Management clus
ter nor an active subscription associated with the client. In this state, the ICD is passively waiting
for incoming messages during its Active Mode Duration.

Check-in State

An ICD is in the Check-in state when a registration entry is present for the client in the ICD Manage
ment cluster, but no active subscriptions exists for that client. In this state, the ICD sends Check-In
messages instead of subscription reports/events. The Check-In message notifies the client that the
ICD is available for communication.

When in the Check-in state, each time an ICD transitions from Idle Mode to Active Mode, the ICD
SHALL send a Check-In message to each registered (MonitoredSubject) client without an active sub
scription. This means the ICD will send at least one Check-In message every Idle Mode Duration.

Subscribed State

An ICD is in the Subscribed state with a given MonitoredSubject when it has at least one active sub
scription with the client. It is not necessary to have an entry in the ICD Management cluster to be in
the subscribed state. The ICD MAY be in the subscribed state most of its operating time. In this state,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 582 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

the ICD’s goal is to notify the client when it is available for communication with subscription
reports.

9.16.1.3.3. Message Format

All Check-In messages SHALL be structured as specified in Message Format.

All Check-In messages are unsecured at the message layer:

• The Session ID field SHALL be set to 0.

• The Session Type bits of the Security Flags SHALL be set to 0.

• The S Flag field of the Message Flags SHALL be set to 0.

• The Message Counter value SHALL be the current value of the global unencrypted message
counter.

• The DSIZ field of the Message Flags SHALL be set to 0.

Protocol Header Field

The Check-In message will have the following values for the protocol header field :

• The Initiator flag field SHALL be set to 1.

• The Reliability flag field SHALL be set to 0.

• The SX flag field SHALL be set to 0.

• The Vendor Flag field SHALL be set to 0.

Protocol Id and Opcode

The ICD Check-In message SHALL have secure channel protocol ID. The ICD Check-In message
SHALL have the ICD Check-In message protocol opcode.

9.16.1.3.4. Sending Check-In Message Steps

When sending an ICD Check-In message, the server SHALL respect the following requirements:

1. The server SHALL NOT send more than one Check-In message with a given ICD counter value to
the same RegisteredClient CheckInNodeID.

2. The server SHALL follow the encryption process of the Check-In Protocol.

3. The server SHALL configure the Matter header as defined in message format section.

The server MAY try to resolve the IP address and the port of the CheckInNodeID each time the
server needs to send a Check-In message to a RegisteredClient CheckInNodeID.

9.16.1.4. User Active Mode Trigger

Since ICDs are not immediately responsive, they require a means to render them available for com
munication for user initiated use cases. Some of the user initiated use cases are:

• Opening a new commissioning window to add another administrator.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 583

• Reconfiguration of an existing fabric (e.g. IPKs, NOC rotation, ACL changes).

• Reconfiguration of cluster functionality (e.g. ICD Management, Bindings, Groups, Scenes).

• Removal of a device from a fabric.

• Changes to the device’s settings.

To enable these user initiated use cases, ICDs need to provide a way for a user to put them in active
mode and render them responsive. The User Active Mode Trigger feature in the ICD Management
cluster indicates whether a particular device implements an active mode trigger.

9.16.1.5. Short Idle Time (SIT) ICD

ICDs with Slow Polling Interval shorter than or equal to 15 seconds SHOULD be configured as a
Short Idle Time ICD. For example, this is a typical scenario for door locks and window coverings,
where commands need to be sent to the ICD with a use case imposed latency requirement. Typi
cally, devices that are Short Idle Time ICDs are not initiators in the communication flow.

9.16.1.5.1. Requirements

A SIT ICD SHALL advertise its SESSION_IDLE_INTERVAL per SII. It SHALL also advertise its SES
SION_ACTIVE_INTERVAL per SAI. The device MAY have a user action that triggers the ICD to transi
tion to Active mode.

Having a long ActiveModeThreshold makes the ICD more responsive for subsequent messages at the
expense of increased power consumption. The ICD stays in Active Mode for the entire duration of
the ActiveModeThreshold.

On the other hand, having an ActiveModeThreshold of 0 means that the device might enter Idle Mode
immediately after the last active exchange is closed. One good example is if a client reads five
attributes in a row from an ICD and the ActiveModeThreshold is 0 then it MAY have to wait up to one
Idle Mode Duration after each attribute read.

In order to get the benefits of the ActiveModeThreshold attributes while keeping the power consump
tion low, the ICD MAY ignore the Active Mode Threshold and immediately return to IdleMode upon
the completion of an exchange if the ICD was the Initiator of the exchange being closed and there
are no other reasons keeping it in active mode.

9.16.1.6. Long Idle Time (LIT) ICD

ICDs with a Slow Polling Interval longer than 15 seconds SHOULD be configured as Long Idle Time
ICDs. For example, this is a typical scenario for sensors and light switches, where data reports are
initiated by the ICD for an updated sensed value or a switch event. Typically, devices that are Long
Idle Time ICDs are initiators in the communication flow.

Long Idle Time ICDs are provisional.

9.16.1.6.1. Requirements

The device SHALL indicate it is a LIT ICD by setting the Long Idle Time feature to 1 in the ICD Man
agement cluster. When the device is operating as a LIT ICD, it SHALL advertise 1 with the ICD dis

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 584 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

covery TXT key. This informs clients that they SHOULD wait for a notification from the LIT ICD
before sending any messages to the device. When the device is operating as a SIT ICD, it SHALL
advertise 0 with the ICD discovery TXT key. This informs clients that they SHOULD NOT wait for a
notification from the LIT ICD before sending any messages to the device. It SHALL also advertise its
SESSION_ACTIVE_INTERVAL per SAI. A LIT ICD SHOULD NOT advertise its SESSION_IDLE_INTER
VAL with SII. The device SHALL support the ICD Check-In use case requirements. The device SHALL
have a user action that triggers the ICD to transition to Active mode. The Fast Polling interval
SHALL be smaller than the Active Mode Duration. The ActiveModeThreshold SHALL NOT be
smaller than 5 seconds.

9.16.1.6.2. Client Registration Requirement

For LIT ICDs to be fully functional, they require clients to support the ICD client behavior. The main
client requirements are the client registration process with the ICD Management cluster, and the
processing of incoming Check-In messages received from the ICD. A LIT ICD SHALL operate as a SIT
ICD if it doesn’t have at least one registration with any client on any fabric in the ICD Management
cluster. A LIT ICD MAY operate as a LIT ICD when at least one client has successfully registered.

When operating as a SIT ICD, a LIT ICD:

1. SHALL NOT set its Slow Polling Interval to a value higher than the Short Idle Time ICD maxi
mum.

2. SHALL advertise its SESSION_IDLE_INTERVAL using the SII discovery TXT key.

3. SHALL advertise 0 with the ICD discovery TXT key to inform clients that it can be reached asyn
chronously.

4. MAY ignore the Active Mode Threshold as described in the SIT ICD Requirements section.

After a client has successfully registered with ICD Management cluster, a LIT ICD MAY operate as
one. When an ICD transitions from operating as a SIT to a LIT ICD, the LIT ICD SHALL respect all the
LIT requirements.

9.16.1.6.3. Runtime Operating Mode Switching

Due to the registration requirement, LIT ICDs SHALL have the capacity to switch between LIT and
SIT operating modes. This ability can be leveraged by devices that have a use case where the device
MAY want to remain in the SIT operating mode even if a client has registered. A good example is a
Smoke & CO alarm device. While the device is line-powered, it can be very responsive to clients and
remain in the SIT operating mode. If it loses line-power, it can transition to LIT operating mode if it
has at least one registration and leverage all the LIT ICD features and power efficiency.

Each time a LIT ICD switches between operating modes, both the mDNS ICD key and Operating
Mode attribute of the ICDM cluster must be updated:

• ICD=0 and OperatingMode=SIT if "Long Idle Time ICD is operating as a Short Idle Time ICD",

• ICD=1 and OperatingMode=LIT if "Long Idle Time ICD is operating as a Long Idle Time ICD".

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 585

9.16.1.6.4. Runtime Polling Interval Changes

In addition to being able to dynamically switch between LIT and SIT operating modes, an ICD can
also dynamically change its Fast Polling Interval, Slow Polling Interval and its Active Mode Thresh
old. A change in Active Mode Threshold value SHALL trigger a DNS-SD update of the SAT TXT key.
Changes of the SESSION_ACTIVE_INTERVAL or SESSION_IDLE_INTERVAL SHALL also trigger a DNS-SD
update of the corresponding SAI or SII TXT keys. Note that an update of the polling intervals MAY
NOT trigger an update of the SAI or SII TXT keys if the new polling intervals are still compliant with
the rules from ICD Session Configurations section.

9.16.2. ICD Client Behavior

This section provides a description of the client requirements to support Long Idle Time ICDs. A
client does not require a specific feature-set to support Short Idle Time ICDs.

9.16.2.1. Check-In Protocol Support

A client that supports Long Idle Time ICDs SHALL implement the Check-In Protocol client require
ments.

9.16.2.2. Registration Processes

In order to maximize the reliability of communications with Long Idle Time ICDs, which can be
unreachable for extended periods of time, the ICD Management cluster provides a mechanism for
clients to register themselves or other monitoring nodes to receive Check-In messages from an ICD.
A client that needs to be able to interact with a Long Idle Time ICDs SHALL invoke the Register
Client command against it, typically during commissioning, or have the commissioner or some
other existing client send the RegisterClient command on its behalf.

The RegisterClient command supplies three parameters to the server:

1. A symmetric Key which is used to encrypt the Check-In messages sent by the server.

2. A node identifier which specifies the node that will receive the Check-In messages.

3. A subject-id used to determine if a particular client has an active subscription.

When a client registers with multiple servers, it SHALL use unique keys since the key is used to
identify which server sent the Check-In message. Check-In messages do not have an originator
address. Therefore, successfully decrypting a Check-In message with a key and having that key cor
respond to a specific server is the only way to identify which server sent the Check-In message.

If the commissioner is ephemeral and a separate stationary controller exists in the network, the
commissioner SHOULD register the stationary controller in the ICD Management cluster. An
ephemeral client SHOULD NOT register itself in the ICD Management cluster. Because an ICD is only
required to provide one guaranteed client slot per fabric, clients SHOULD self-limit commissioning
time registration.

9.16.2.2.1. Commissioner Self-Registration

A commissioner that is also a controller can register itself with the ICD during the device configura
tion portion of the commissioning process. This is the simplest client registration scenario, where a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 586 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

commissioner registers itself during commissioning. At the end of the commissioning process, the
commissioner and ICD are coupled.

Figure 71. Commissioner Self-Registration to ICD

9.16.2.2.2. External Controller Registration

A commissioner can also register an external controller at the time of commissioning. This requires
that the commissioner knows the node ID of the controller and that commissioner and controller
share a symmetric key used for the client registration by some out-of-band means.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 587

Figure 72. External Controller Registration

9.16.2.2.3. Delegated Controller Registration

A commissioner can also delegate client registration to some other assisting device or controller. In
such a scenario, the commissioner does not register the controller, but instead completes the com
missioning process and then hands control to the delegated controller to register itself or other
clients with the ICD.

When doing so, a commissioner would need to send a command to keep the ICD awake for some
amount of time, in order to ensure that an external controller can reach it.

Alternatively, the infrastructure could also be notified of the newly-commissioned ICD before
invoking CommissioningComplete, as this would keep the device awake and available for interactions.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 588 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 73. Delegated Controller Registration

9.16.2.2.4. Assisted On Demand Registration

If a new controller is added to a fabric with existing ICDs, it may be necessary that some existing
controller in the infrastructure assist with client registration by providing notification to a new con
troller when an ICD is active and thus available.

In this scenario, an out-of-band method can be used for the existing controller to detect or be
informed of the addition of the new controller and signal to it when present ICDs are active. It
should be noted that it is also feasible for a node identity to be instantiated on different hardware
to suit the needs of the user. This could allow controllers to be replaced in a system, or have con
troller identities roam to different hardware without the need to re-register in the client.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 589

Figure 74. Infrastructure Assisted On-Demand Registration

9.16.2.2.5. Assisted Proxy Registration

Alternatively, instead of the new controller receiving notification when an ICD wakes up, an exist
ing controller could be requested to register the new controller when an ICD checks-in. In this way,
the existing controller acts as a proxy to register on behalf of the new controller. This requires a
queuing or caching mechanism in the existing controller.

Figure 75. Infrastructure Assisted Proxy Registration

9.16.2.3. Unregistration Process

When a commissioner or client wants to unregister itself, it can send an UnregisterClient command
to the ICD. When a registered client is about to permanently leave the network, it SHOULD send an
UnregisterClient command to free its slot for another client.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 590 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

When an ICD receives the RemoveFabric command, all registrations associated with the fabric will
be removed during the fabric removal process.

9.16.2.4. Post-Commissioning Process

In addition to registering a client with the ICD, the commissioner or client SHOULD ensure that
some node that matches the registered SubjectID establishes and maintains a subscription with the
ICD. A client is not required to establish and maintain a subscription with the ICD. In such case, it
can rely on Check-In messages as a heartbeat to provide an indication when it can communicate
with an ICD.

9.16.2.5. Client and ICD Relationship

This section describes how a client and a LIT ICD arrange to communicate with each other. Because
SIT ICDs are reachable on the network without special action by clients, clients need not register
with SIT ICDs.

9.16.2.5.1. Interaction Queueing

Successfully initiating communication to an ICD where no in-network caching is available requires
waiting to issue the communication until an ICD is awake and online. A simple approach to achieve
this could be to queue Matter interactions and only send them when the ICD becomes available.
This, however, is likely unsuitable when actuating a device, and also can defeat the intention of the
timed interaction facility.

9.16.2.5.2. Subsystem Caching

Alternatively, a sophisticated controller mediating communications with an ICD can arbitrate by
informing subsystems and the infrastructure whenever the ICD becomes available for communica
tion. This allows each subsystem to make its own, intelligent caching decisions.

9.16.2.5.3. Communication with an ICD

LIT ICDs have two operating modes. They can either be operating as LIT or as SIT ICD. If the ICD is
operating as a SIT ICD, it SHALL advertise this by setting the ICD discovery TXT key to 0. When the
LIT ICD is operating as a SIT ICD, clients can send their message to the ICD without prior notifica
tion. If the ICD is operating as a LIT ICD, it SHALL advertise this by setting the ICD discovery TXT
key to 1. If the ICD is operating as a LIT ICD, it will be unreachable for extended of periods of time.
Clients need to wait for prior notification before sending a message to the ICD. Prior notification
typically arrives with these two types of messages :

• Report transaction from the ICD on an ongoing Subscription.

• Check-In message from the ICD.

After sending either of these messages, an ICD will remain available for a period of time to allow
clients to send their messages. Clients that support LIT ICDs SHOULD sequentially send any
buffered interactions for a peer ICD immediately after receipt of a notification from that LIT ICD.

Upon receipt of a Check-In message from an ICD, a client that has lost its previous subscription or
intends to establish a new subscription with that ICD SHOULD initiate an attempt to subscribe to

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 591

the ICD. If the client initiates a session establishment with the ICD in response to a Check-In mes
sage, then the client SHOULD assume the ICD to be active and use the SESSION_ACTIVE_INTERVAL
for its MRP retry intervals. If the client chooses not to establish a subscription, it MAY utilize the
Check-In message as a means of tracking a regular heartbeat from the given ICD. If the client no
longer intends to interact with the ICD, and there is a least one other client also registered with the
ICD, the uninterested client SHOULD unregister itself from the ICD.

When a client wants the ICD to stay in active mode for a longer duration (typically greater than the
duration of ActiveModeThreshold), it can send a StayActiveRequest command to the ICD server. The
StayActiveRequest command SHALL contain a requested time duration (in milliseconds) that the
client wants the ICD to stay active for. In response, the ICD SHALL reply with the duration that the
ICD SHALL be active for.

9.16.2.5.4. Asynchronous Interactions

Consider a sensor LIT ICD, which primarily exposes telemetry data via read-only attributes and
allows a few commands to be executed from its application clusters. Such devices must still be
administered, and that can only be carried out when the ICD is reachable.

Likely targets for administration are:

• Opening a new commissioning window to add another administrator.

• Reconfiguration of an existing fabric (e.g. IPKs, NOC rotation, ACL changes).

• Reconfiguration of cluster functionality (e.g. ICD Management cluster, Binding cluster, Groups
cluster, Scenes Management cluster).

• Removal of a device from a fabric.

• Changes to the device’s settings.

To enable these user initiated use cases, LIT ICDs expose to clients instructions on how they can be
forced into Active Mode. Clients SHOULD expose these instructions to users to permit users to trig
ger Active Mode as needed.

9.17. ICD Management Cluster
ICD Management Cluster enables configuration of the ICD’s behavior and ensuring that listed
clients can be notified when an intermittently connected device, ICD, is available for communica
tion.

The cluster implements the requirements of the Check-In Protocol that enables the ICD Check-In
use case.

NOTE This feature is provisional.

9.17.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 592 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Revision Description

1 Initial Release

2 Addition of LIT ICD support, UserActiveMode
Trigger, ActiveModeDuration, StayActiveRe
sponse; removal of field Key in MonitoringRegis
trationStruct

9.17.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node ICDM

9.17.3. Cluster ID

ID Name

0x0046 ICDManagement

9.17.4. Features

This cluster SHALL support the FeatureMap global attribute.

Bit Code Feature Conformance Summary

0 CIP CheckInProtocol
Support

P, LITS, O Device supports
attributes and
commands for the
Check-In Protocol
support.

1 UAT UserActiveMode
Trigger

P, LITS, O Device supports
the user active
mode trigger fea
ture.

2 LITS LongIdleTimeSup
port

P, O Device supports
operating as a
Long Idle Time
ICD.

9.17.4.1. CheckInProtocolSupport Feature

When this feature is supported, the device SHALL support all the associated commands and attrib
utes to properly support the Check-In Protocol.

9.17.4.2. UserActiveModeTrigger Feature

This feature is supported if and only if the device has a user active mode trigger.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 593

9.17.4.3. LongIdleTimeSupport Feature

This feature is supported if and only the device is a Long Idle Time ICD.

NOTE In this version of the specification, the support for the feature is provisional.

9.17.5. Data Types

9.17.5.1. UserActiveModeTriggerBitmap Type

This data type is derived from map32. See the UserActiveModeTriggerHint table for requirements
associated to each bit.

Bit index Name Summary

0 PowerCycle Power Cycle to transition the
device to ActiveMode

1 SettingsMenu Settings menu on the device
informs how to transition the
device to ActiveMode

2 CustomInstruction Custom Instruction on how to
transition the device to Active
Mode

3 DeviceManual Device Manual informs how to
transition the device to Active
Mode

4 ActuateSensor Actuate Sensor to transition the
device to ActiveMode

5 ActuateSensorSeconds Actuate Sensor for N seconds to
transition the device to Active
Mode

6 ActuateSensorTimes Actuate Sensor N times to tran
sition the device to ActiveMode

7 ActuateSensorLightsBlink Actuate Sensor until light blinks
to transition the device to
ActiveMode

8 ResetButton Press Reset Button to transition
the device to ActiveMode

9 ResetButtonLightsBlink Press Reset Button until light
blinks to transition the device to
ActiveMode

10 ResetButtonSeconds Press Reset Button for N sec
onds to transition the device to
ActiveMode

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 594 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Bit index Name Summary

11 ResetButtonTimes Press Reset Button N times to
transition the device to Active
Mode

12 SetupButton Press Setup Button to transition
the device to ActiveMode

13 SetupButtonSeconds Press Setup Button for N sec
onds to transition the device to
ActiveMode

14 SetupButtonLightsBlink Press Setup Button until light
blinks to transition the device to
ActiveMode

15 SetupButtonTimes Press Setup Button N times to
transition the device to Active
Mode

16 AppDefinedButton Press the N Button to transition
the device to ActiveMode

9.17.5.2. MonitoringRegistrationStruct Type

Access Quality: Fabric Scoped

ID Name Type Quality Constraint Access Default Confor
mance

1 CheckInN
odeID

node-id N all S M

2 Moni
toredSub
ject

subject-id N all S M

3 Key D

9.17.5.2.1. CheckInNodeID Field

This field SHALL indicate the NodeID of the Node to which Check-In messages will be sent when the
MonitoredSubject is not subscribed.

9.17.5.2.2. MonitoredSubject Field

This field SHALL indicate the monitored Subject ID. This field SHALL be used to determine if a par
ticular client has an active subscription for the given entry. The MonitoredSubject, when it is a
NodeID, MAY be the same as the CheckInNodeID. The MonitoredSubject gives the registering client
the flexibility of having a different CheckInNodeID from the MonitoredSubject. A subscription
SHALL count as an active subscription for this entry if:

• It is on the associated fabric of this entry, and

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 595

• The subject of this entry matches the ISD of the SubscriptionRequest message that created the
subscription. Matching SHALL be determined using the subject_matches function defined in the
Access Control Privilege Granting Algorithm.

For example, if the MonitoredSubject is Node ID 0x1111_2222_3333_AAAA, and one of the sub
scribers to the server on the entry’s associated fabric bears that Node ID, then the entry matches.

Another example is if the MonitoredSubject has the value 0xFFFF_FFFD_AA12_0002, and one of the
subscribers to the server on the entry’s associated fabric bears the CASE Authenticated TAG value
0xAA12 and the version 0x0002 or higher within its NOC, then the entry matches.

9.17.5.3. OperatingModeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 SIT ICD is operating as a
Short Idle Time ICD.

M

1 LIT ICD is operating as a
Long Idle Time ICD.

M

9.17.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 IdleMode
Duration

uint32 1 to 64800 F 1 R V M

0x0001 Active
ModeDu
ration

uint32 all F 300 R V M

0x0002 Active
Mode
Threshold

uint16 all F 300 R V M

0x0003 Regis
tered
Clients

list[Moni
toringReg
istra
tionStruct]

desc N [] R F A CIP

0x0004 ICD
Counter

uint32 all NC 0 R A CIP

0x0005 ClientsSup
portedPer
Fabric

uint16 min 1 F 1 R V CIP

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 596 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0006 UserAc
tiveMode
Trigger
Hint

UserActive
ModeTrig
gerBitmap

desc F 0 R V P, UAT

0x0007 UserAc
tiveMode
TriggerIn
struction

string max 128 F "" R V P, desc

0x0008 Operating
Mode

Operating
Mod
eEnum

all R V P, LITS

9.17.6.1. IdleModeDuration Attribute

This attribute SHALL indicate the maximum interval in seconds the server can stay in idle mode.
The IdleModeDuration SHALL NOT be smaller than the ActiveModeDuration.

9.17.6.2. ActiveModeDuration Attribute

This attribute SHALL indicate the minimum interval in milliseconds the server typically will stay in
active mode after initial transition out of idle mode. The ActiveModeDuration does not include the
ActiveModeThreshold.

9.17.6.3. ActiveModeThreshold Attribute

This attribute SHALL indicate the minimum amount of time in milliseconds the server typically will
stay active after network activity when in active mode.

9.17.6.4. RegisteredClients Attribute

This attribute SHALL contain all clients registered to receive notification if their subscription is lost.
The maximum number of entries that can be in the list SHALL be ClientsSupportedPerFabric for
each fabric supported on the server, as indicated by the value of the SupportedFabrics attribute in
the Operational Credentials cluster.

9.17.6.5. ICDCounter Attribute

This attribute returns the value of the ICD Counter.

9.17.6.6. ClientsSupportedPerFabric Attribute

This attribute SHALL indicate the maximum number of entries that the server is able to store for
each fabric in the RegisteredClients attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 597

9.17.6.7. UserActiveModeTriggerHint Attribute

This attribute SHALL indicate which user action(s) will trigger the ICD to switch to Active mode. If
the attribute indicates support for a trigger that is dependent on the UserActiveModeTriggerIn
struction in the UserActiveModeTriggerHint table, the UserActiveModeTriggerInstruction attribute
SHALL be implemented and SHALL provide the required information, unless specified otherwise in
the requirement column of the UserActiveModeTriggerHint table.

ActuateSensorLightsBlink, ResetButtonLightsBlink and SetupButtonLightsBlink (i.e. bits 7, 9 and 14)
have a dependency on the UserActiveModeTriggerInstruction attribute but do not require the
attribute to be present.

Bit index Name Requirement UserActiveModeTrig
gerInstruction Depen
dency

0 PowerCycle The Device will auto
matically enter Active
Mode upon power cycle
(e.g. remove/re-insert
batteries).

False

1 SettingsMenu The settings menu on
the Device provides
instructions to put it
into Active Mode.

False

2 CustomInstruction The UserActiveMode
TriggerInstruction
key/value pair
describes a custom way
to put the Device into
Active Mode. This Cus
tom Instruction option
is NOT recommended
for use by a Device that
does not have knowl
edge of the user’s lan
guage preference.

True

3 DeviceManual The Device Manual pro
vides special instruc
tions to put the Device
into Active Mode (see
Section 11.23.5.8, “User
ManualUrl”). This is a
catch-all option to cap
ture user interactions
that are not codified by
other options in this ta
ble.

False

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 598 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Bit index Name Requirement UserActiveModeTrig
gerInstruction Depen
dency

4 ActuateSensor The Device will enter
Active Mode when the
sensor is actuated, e.g.
for a door sensor,
open/close the door.

False

5 ActuateSensorSeconds The Device will enter
Active Mode when the
sensor is actuated for N
seconds. The exact
value of N SHALL be
made available via the
UserActiveModeTrig
gerInstruction
attribute.

True

6 ActuateSensorTimes The Device will enter
Active Mode when
reset button is pressed.
The exact value of N
SHALL be made avail
able via the UserActive
ModeTriggerInstruc
tion attribute.

True

7 ActuateSensorLights
Blink

The Device will enter
Active Mode when the
sensor is actuated until
associated light blinks.
Information on color of
light MAY be made
available via the User
ActiveModeTriggerIn
struction attribute.

True

8 ResetButton The Device will enter
Active Mode when
reset button is pressed.

False

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 599

Bit index Name Requirement UserActiveModeTrig
gerInstruction Depen
dency

9 ResetButtonLightsBlink The Device will enter
Active Mode when
reset button is pressed
until associated light
blinks. Information on
color of light MAY be
made available via the
UserActiveModeTrig
gerInstruction
attribute.

True

10 ResetButtonSeconds The Device will enter
Active Mode when
reset button is pressed
for N seconds. The
exact value of N SHALL
be made available via
the UserActiveMode
TriggerInstruction
attribute.

True

11 ResetButtonTimes The Device will enter
Active Mode when
reset button is pressed
N times with maximum
1 second between each
press. The exact value
of N SHALL be made
available via UserAc
tiveModeTriggerIn
struction attribute.

True

12 SetupButton The Device will enter
Active Mode when
setup button is pressed.

False

13 SetupButtonSeconds The Device will enter
Active Mode when
setup button is pressed
for N seconds. The
exact value of N SHALL
be made available via
the UserActiveMode
TriggerInstruction
attribute.

True

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 600 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Bit index Name Requirement UserActiveModeTrig
gerInstruction Depen
dency

14 SetupButtonLightsBlink The Device will enter
Active Mode when
setup button is pressed
until associated light
blinks. Information on
color of light MAY be
made available via the
UserActiveModeTrig
gerInstruction
attribute.

True

15 SetupButtonTimes The Device will enter
Active Mode when
setup button is pressed
N times with maximum
1 second between each
press. The exact value
of N SHALL be made
available via the User
ActiveModeTriggerIn
struction attribute.

True

16 AppDefinedButton The Device will enter
Active Mode when N
button is pressed
where N identifies
which button to press.
The value of N SHALL
be made available via
the UserActiveMode
TriggerInstruction
attribute

True

An ICD can indicate multiple ways of being put into Active Mode by setting multiple bits in the
bitmap at the same time. However, a device SHALL NOT set more than one bit which has a depen
dency on the UserActiveModeTriggerInstruction attribute.

9.17.6.8. UserActiveModeTriggerInstruction Attribute

The meaning of the attribute is dependent upon the UserActiveModeTriggerHint attribute value,
and the conformance is in indicated in the "dependency" column in UserActiveModeTriggerHint ta
ble. The UserActiveModeTriggerInstruction attribute MAY give additional information on how to
transition the device to Active Mode. If the attribute is present, the value SHALL be encoded as a
valid UTF-8 string with a maximum length of 128 bytes. If the UserActiveModeTriggerHint has the
ActuateSensorSeconds, ActuateSensorTimes, ResetButtonSeconds, ResetButtonTimes, SetupButton
Seconds or SetupButtonTimes set, the string SHALL consist solely of an encoding of N as a decimal

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 601

unsigned integer using the ASCII digits 0-9, and without leading zeros.

For example, given UserActiveModeTriggerHint="2048", ResetButtonTimes is set which indicates
"Press Reset Button for N seconds". Therefore, a value of UserActiveModeTriggerInstruction="10"
would indicate that N is 10 in that context.

When CustomInstruction is set by the UserActiveModeTriggerHint attribute, indicating presence of a
custom string, the ICD SHOULD perform localization (translation to user’s preferred language, as
indicated in the Device’s currently configured locale). The Custom Instruction option SHOULD NOT
be used by an ICD that does not have knowledge of the user’s language preference.

When the UserActiveModeTriggerHint key indicates a light to blink (ActuateSensorLightsBlink, Reset
ButtonLightsBlink or SetupButtonLightsBlink), information on color of light MAY be made available
via the UserActiveModeTriggerInstruction attribute. When using such color indication in the UserAc
tiveModeTriggerInstruction attribute, only basic primary and secondary colors that could unam
biguously be decoded by a commissioner and understood by an end-user, but without worry of
localization, SHOULD be used, e.g. white, red, green, blue, orange, yellow, purple. The length of the
attribute SHOULD be kept small.

9.17.6.9. OperatingMode Attribute

This attribute SHALL indicate the operating mode of the ICD as specified in the OperatingMod
eEnum.

• If the ICD is operating as a LIT ICD, OperatingMode SHALL be LIT.

• If the ICD is operating as a SIT ICD, OperatingMode SHALL be SIT.

9.17.7. Commands

ID Name Direction Response Access Conformance

0x00 RegisterClient client ⇒ server RegisterClien
tResponse

M F CIP

0x01 RegisterClien
tResponse

client ⇐ server N CIP

0x02 Unregister
Client

client ⇒ server Y M F CIP

0x03 StayAc
tiveRequest

client ⇒ server StayActiveRe
sponse

O LITS, O

0x04 StayActiveRe
sponse

client ⇐ server N LITS, O

9.17.7.1. RegisterClient Command

This command allows a client to register itself with the ICD to be notified when the device is avail
able for communication.

This command SHALL have the following data fields:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 602 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 CheckInN
odeID

node-id all M

1 Monitored
Subject

subject-id all M

2 Key octstr 16 M

3 Verification
Key

octstr 16 O

9.17.7.1.1. CheckInNodeID Field

This field SHALL provide the node ID to which a Check-In message will be sent if there are no active
subscriptions matching MonitoredSubject.

9.17.7.1.2. MonitoredSubject Field

This field SHALL provide the monitored subject ID.

9.17.7.1.3. Key Field

This field SHALL provide the shared secret between the client and the ICD to encrypt the Check-In
message.

9.17.7.1.4. VerificationKey Field

This field SHALL provide the verification key. The verification key represents the key already
stored on the server. The verification key provided in this field SHALL be used by the server to
guarantee that a client with manage permissions can only modify entries that contain a Key equal
to the verification key. The verification key SHALL be provided for clients with manage permis
sions. The verification key SHOULD NOT be provided by clients with administrator permissions for
the server cluster. The verification key SHALL be ignored by the server if it is provided by a client
with administrator permissions for the server cluster.

9.17.7.1.5. Effect on Receipt

On receipt of the RegisterClient command, the server SHALL perform the following procedure:

1. The server verifies that an entry for the fabric is available in the server’s list of registered
clients.

a. If one of the entries in storage for the fabric has the same CheckInNodeID as the received
CheckInNodeID, the server SHALL continue from step 2.

b. If there is an available entry for the fabric, an entry is created for the fabric and the
received CheckInNodeID, MonitoredSubject and Key are stored. The server SHALL continue
from step 5.

c. If there are no available entries for the fabric, the status SHALL be RESOURCE_EXHAUSTED
and the server SHALL continue from step 6.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 603

2. The server SHALL verify the privileges of the command’s ISD.

a. If the ISD of the command has administrator privileges for the server cluster, the server
SHALL continue from step 4.

b. If the ISD of the command does not have administrator privileges for the server cluster, the
server SHALL continue from step 3.

3. The server SHALL verify that the received verification key is equal to the key previously stored
in the list of registered clients with the matching CheckInNodeID.

a. If the verification key does not have a valid value, the status SHALL be FAILURE. the server
SHALL continue from step 6.

b. If the verification key is not equal to the Key value stored in the entry, the status SHALL be
FAILURE. The server SHALL continue from step 6.

c. If the verification key is equal to the Key value stored in the entry, the server SHALL con
tinue from step 4.

4. The entry SHALL be updated with the received CheckInNodeID, MonitoredSubject and Key.

a. If the update fails, the status SHALL be FAILURE. The server SHALL continue from step 6.

b. If the update succeeds, the server SHALL continue from step 5.

5. The server SHALL persist the client information.

a. If the persistence fails, the status SHALL be FAILURE and the server SHALL continue from
step 6.

b. If the persistence succeeds, the status SHALL be SUCCESS and the server SHALL continue
from step 6.

6. The server SHALL generate a response.

a. If the status is SUCCESS, the server SHALL generate a RegisterClientResponse command.

b. If the status is not SUCCESS, the server SHALL generate a default response with the Status
field set to the evaluated error status.

9.17.7.2. RegisterClientResponse Command

This command SHALL be sent by the ICD Management Cluster server in response to a successful
RegisterClient command.

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 ICDCounter uint32 all M

9.17.7.2.1. When Generated

This command SHALL be generated in response to a successful RegisterClient command. The ICD
Counter field SHALL be set to the ICDCounter attribute of the server.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 604 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

9.17.7.3. UnregisterClient Command

This command allows a client to unregister itself with the ICD. Example: a client that is leaving the
network (e.g. running on a phone which is leaving the home) can (and should) remove its subscrip
tions and send this UnregisterClient command before leaving to prevent the burden on the ICD of
an absent client.

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 CheckInN
odeID

node-id all M

1 Verification
Key

octstr 16 O

9.17.7.3.1. CheckInNodeID Field

This field SHALL provide the registered client node ID to remove from storage.

9.17.7.3.2. VerificationKey Field

This field SHALL provide the verification key associated with the CheckInNodeID to remove from
storage. The verification key represents the key already stored on the server. The verification key
provided in this field SHALL be used by the server to guarantee that a client with manage permis
sions can only remove entries that contain a Key equal to the stored key. The verification key
SHALL be provided for clients with manage permissions. The verification key SHOULD NOT be pro
vided by clients with administrator permissions for the server cluster. The verification key SHALL
be ignored by the server if it is provided by a client with administrator permissions for the server
cluster.

9.17.7.3.3. Effect on Receipt

On receipt of the UnregisterClient command, the server SHALL perform the following procedure:

1. The server SHALL check whether there is a entry stored on the device for the fabric with the
same CheckInNodeID.

a. If there are no entries stored for the fabric, the status SHALL be NOT_FOUND. The server
SHALL continue from step 6.

b. If there is an error when reading from storage, the status SHALL be FAILURE. The server
SHALL continue from step 6.

c. If there is at least one entry stored on the server for the fabric, the server SHALL continue
from step 2.

2. The server SHALL verify if one of the entries for the fabric has the corresponding CheckInN
odeID received in the command.

a. If no entries have the corresponding CheckInNodeID, the status SHALL be NOT_FOUND. The
server SHALL continue from step 6.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 605

b. If an entry has the corresponding CheckInNodeID, the server SHALL continue to step 3.

3. The server SHALL check whether the ISD of the command has administrator permissions for
the server cluster.

a. If the ISD of the command has administrator privileges for the server cluster, the server
SHALL continue from step 5.

b. If the ISD of the command does not have administrator privileges for the server cluster, the
server SHALL continue from step 4.

4. The server SHALL verify that the received verification key is equal to the key previously stored
in the list of registered clients with the matching CheckInNodeID.

a. If the verification key does not have a valid value, the status SHALL be FAILURE. the server
SHALL continue from step 6.

b. If the verification key is not equal to the Key value stored in the entry, the status SHALL be
FAILURE. The server SHALL continue from step 6.

c. If the verification key is equal to the Key value stored in the entry, the server SHALL con
tinue from step 5.

5. The server SHALL delete the entry with the matching CheckInNodeID from storage and will per
sist the change.

a. If the removal of the entry fails, the status SHALL be FAILURE. The server SHALL continue
from step 6.

b. If the removal succeeds, the status SHALL be SUCCESS and the server SHALL continue to
step 6.

6. The server SHALL generate a response with the Status field set to the evaluated status.

9.17.7.4. StayActiveRequest Command

This command allows a client to request that the server stays in active mode for at least a given
time duration (in milliseconds) from when this command is received.

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 StayActive
Duration

uint32 all M

This StayActiveDuration MAY be longer than the ActiveModeThreshold value and would, typically, be
used by the client to request the server to stay active and responsive for this period to allow a
sequence of message exchanges during that period. The client MAY slightly overestimate the dura
tion it wants the ICD to be active for, in order to account for network delays.

9.17.7.4.1. Effect on Receipt

When receiving a StayActiveRequest command, the server SHALL calculate the maximum
PromisedActiveDuration it can remain active as the greater of the following two values:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 606 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• StayActiveDuration`: Specified in the received command by the client.

• Remaining Active Time: The server’s planned remaining active time based on the ActiveMode
Threshold and its internal resources and power budget.

A server MAY replace StayActiveDuration with Minimum Active Duration in the above calculation.

PromisedActiveDuration represents the guaranteed minimum time the server will remain active,
taking into account both the requested duration and the server’s capabilities.

The ICD SHALL report the calculated PromisedActiveDuration in a StayActiveResponse message back
to the client.

9.17.7.5. StayActiveResponse Command

This message SHALL be sent by the ICD in response to the StayActiveRequest command and SHALL
contain the computed duration (in milliseconds) that the ICD intends to stay active for.

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0 PromisedAc
tiveDura
tion

uint32 desc M

9.17.7.5.1. PromisedActiveDuration Field

This field SHALL provide the actual duration that the ICD server can stay active from the time it
receives the StayActiveRequest command.

Minimum Value for PromisedActiveDuration

The minimum value of the PromisedActiveDuration field SHALL be equal to either 30000 millisec
onds or StayActiveDuration (from the received StayActiveRequest command), whichever is smaller.

Example scenarios:

• A Client requests an ICD to stay awake for 20000 milliseconds in its StayActiveDuration
field. The ICD responds with 20000 in its PromisedActiveDuration if it can stay active for
that duration.

• A Client requests an ICD to stay awake for 35000 milliseconds in its StayActiveDuration
field. The ICD responds with 30000 in its PromisedActiveDuration since it can only stay
active for that minimal amount.

• A Client requests an ICD to stay awake for 10000 milliseconds in its StayActiveDuration
field, but the ICD’s remaining active time is 20000 milliseconds. The ICD responds with
20000 milliseconds in its PromisedActiveDuration field since it intends to stay active that
long.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 607

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 608 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 10. Interaction Model Encoding
Specification

10.1. Overview
This specification details the encoding of the Interaction Model (IM) in the Matter TLV format.

Specifically, it details the encoding of the application payload for Matter messages that map to the
Interaction Model. The details of the message header are described in Section 4.4, “Message Frame
Format” and out of scope of this document.

10.2. Messages

10.2.1. IM Protocol Messages

Each Action in the IM specification SHALL be mapped to a message with a unique Protocol Opcode,
namespaced under the PROTOCOL_ID_INTERACTION_MODEL Protocol ID.

• Vendor ID = 0x0000 (Matter Common)

• Protocol ID = PROTOCOL_ID_INTERACTION_MODEL

Protocol Opcode Action Message

0x01 Status Response StatusResponseMessage

0x02 Read Request ReadRequestMessage

0x03 Subscribe Request SubscribeRequestMessage

0x04 Subscribe Response SubscribeResponseMessage

0x05 Report Data ReportDataMessage

0x06 Write Request WriteRequestMessage

0x07 Write Response WriteResponseMessage

0x08 Invoke Request InvokeRequestMessage

0x09 Invoke Response InvokeResponseMessage

0x0A Timed Request TimedRequestMessage

10.2.2. Common Action Information Encoding

Every action SHALL encode the fields specified in Section 8.2.5.1, “Common Action Information”.
The methods for encoding Common Action Information fields are:

• As a field in the message header

• As a context tagged field in the action payload

For every field appearing in TLV-encoded data described by the schemas of the following sections,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 609

and where a context-specific tag is used, any context-specific tag not listed in a given schema
SHALL be reserved for future use and SHALL be silently ignored by clients and servers if seen in a
payload.

10.2.2.1. Message Header Encoded Action Information

The following Common Action Information fields are encoded into the message header:

Header Field Type Description

Message Exchange ID 16-bit integer Used to convey the Transaction
ID

Source Node ID 64-bit integer Node ID of the source that gen
erated the transaction

Destination ID 64-bit integer Either a Node ID or Group ID is
encoded in here depending on
what the IM indicates

Protocol ID 32 bits The protocol to which this mes
sage belongs; all messages in
this spec SHALL use the PROTO
COL_ID_INTERACTION_MODEL Proto
col ID

Protocol OpCode 8 bits The specific message type

10.2.2.2. Context Tag Encoded Action Information

The following Common Action Information fields are encoded as context tagged fields in the action
message payload. All action messages defined in Section 10.7, “Message Definitions” SHALL include
these tagged fields:

Common Action Field Context Tag

InteractionModelRevision 0xFF

10.2.3. Chunking

Chunking is the act of splitting an Action that contains attribute/event data, specifically ReportData
and WriteRequest actions, into multiple messages at logical boundaries due to the size limitations
imposed by IPv6 for UDP packets (see Section 4.4.4, “Message Size Requirements” for more details).

Since attribute/event data within Actions are already organized into a series of AttributeDataIBs
(for attributes) and EventDataIBs for event records, chunking entails maximally packing these
information blocks (IBs) into a series of 'data' messages.

To ensure in-order delivery of a chunked set of IBs, each data message requires a response before
the next data message can be sent. For ReportDataMessage and WriteRequestMessage, a StatusRe
sponseMessage and WriteResponseMessage are the respective response messages.

A MoreChunkedMessages flag SHALL be set on every data message except the last to convey to the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 610 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

receiver possible delivery of more chunked messages within a given Action. This is specified in the
WriteRequestMessage and ReportDataMessage.

While most data types can be easily encoded in this scheme to fit within a message, the fact that
lists can be of variable, and arbitrary, length can lead to complications. Specific strategies to encode
lists that are chunking friendly are provided in Section 10.6.4.3.1, “Lists”.

10.2.4. Transaction Flows

10.2.4.1. Read (Success)

Figure 76. Read message flow

10.2.4.2. Read (Server Error)

Figure 77. Read message with server-side error flow

10.2.4.3. Read (Client Error)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 611

Figure 78. Read message with client-side error flow

10.2.4.4. Write (Success)

Figure 79. Write message flow

10.2.4.5. Write (Server Error)

Figure 80. Write message with server-side error flow

10.2.4.6. Subscribe (Success)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 612 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 81. Subscription flow

10.2.4.7. Subscribe (Server Error)

Figure 82. Subscription with server-side error flow

10.2.4.8. Subscribe (Client Error)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 613

Figure 83. Subscription with client-side error flow

10.3. Data Types
The IM specification defines a number of schema data types that are usable in a given cluster
schema definition.

This section will outline their encoding onto TLV wire types, and their specific representations.

Class Schema Data Type TLV Type

Analog uint8, uint16, uint24, uint32,
uint40, uint48, uint56, uint64

Unsigned Integer (width is
selected automatically depend
ing on data value)

int8, int16, int24, int32, int40,
int48, int56, int64

Signed Integer (width is
selected automatically depend
ing on data value)

float32 Floating Point Number, 4-byte
value

float64 Floating Point Number, 8-byte
value

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 614 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Class Schema Data Type TLV Type

Discrete enum8, enum16 Unsigned Integer (width is
selected automatically depend
ing on data value)

data8, data16, data32, data64 Unsigned Integer (width is
selected automatically depend
ing on data value)

map8, map16, map32, map64 Unsigned Integer (width is
selected automatically depend
ing on data value)

boolean Boolean

Composite string UTF-8 string (length is selected
automatically depending on
data value)

octstr TLV octet string

Collection list TLV array

struct TLV structure

10.3.1. Analog - Integer

All signed integer schema types SHALL be encoded using the TLV signed integer type. The specific
TLV element type (1-byte, 2-byte, 4-byte and 8-byte signed integer types) SHALL be selected auto
matically at runtime depending on the actual value.

In this regard, the actual width of the over-the-wire type can be narrower than the width specified
in schema.

E.g. a 32-bit value defined in schema will be encoded to a 1-byte TLV signed integer type if the value
doesn’t exceed (-128 to +127).

Similarly, all unsigned integer schema types SHALL be encoded using the TLV unsigned integer
type.

10.3.2. Analog - Floating Point

Both single and double precision floating point analog schema types SHALL be encoded using
equivalent TLV floating point types as well.

10.3.3. Discrete - Enumeration

Enumerations SHALL be encoded using the TLV unsigned integer type, with the width selected
automatically at runtime based on the actual value.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 615

10.3.4. Discrete - Bitmap

Bitmaps SHALL be encoded using the TLV unsigned integer type, with the width selected automati
cally at runtime based on the actual value.

10.3.5. Composite - String

While strings are a derived data type, they SHALL be encoded using the TLV UTF-8 string type.

10.3.6. Composite - Octet String

Octet strings SHALL be encoded using TLV Byte Strings.

10.3.7. Collection - Struct

Structure types in schema SHALL be encoded using the TLV structure type.

10.3.8. Collection - List

The entirety of a list SHALL be encoded as a TLV array.

A list index SHALL start at 0.

Lists SHALL have a maximum size of 65535 elements (216-1).

10.3.9. Derived Types

All derived types (with the exception of strings) SHALL be encoded according to their base type.

10.3.10. Field IDs

Field IDs SHALL be encoded as:

• A context tag when the MEI prefix encodes a standard/scoped source.

• A fully-qualified profile-specific tag when the MEI prefix encodes a manufacturer code. The
Vendor ID SHALL be set to the manufacturer code, the profile number set to 0 and the tag num
ber set to the MEI suffix.

NOTE Support for encoding Field IDs with an MC source is provisional.

10.4. Sample Clusters
This section defines sample clusters (with attributes, events, and commands) for illustrative pur
poses; they SHALL NOT be interpreted as real clusters.

10.4.1. Disco Ball Cluster

This example cluster controls an imaginary mirrored disco ball, for the express purpose of disco

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 616 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

dancing.

10.4.1.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Deprecated Off enum value in Rotate attribute

3 Added pattern list feature

4 Added Name attribute

5 Added Reverse feature

6 Updated columns from Data & Interaction Model
specs

7 Deprecated Party feature

8 Added WobbleSupport and WobbleSetting

9 Made Pattern attribute non-volatile

10.4.1.2. Classification

Hierarchy Role Scope PICS Code

Base Application Endpoint DISCO

10.4.1.3. Cluster ID

ID Name

0x3456 Disco Ball

10.4.1.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Conformance Summary

0 PTY Party D Deprecated fea
ture

1 AX Axis O Allows the disco
ball rotational axis
to change

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 617

Bit Code Feature Conformance Summary

2 WBL Wobble O Allows the disco
ball to wobble on
its axis as speed
(dependent on
Axis)

3 PAT Pattern O Supports a list of
patterns to cycle
through automati
cally

4 STA Statistics O Supports a request
to statistics

5 REV Reverse P, O Supports a
Reverse command
and counterclock
wise rotation

Spec Writer Note

Describe features each in a separate section (if needed).

10.4.1.4.1. Statistics Feature

This feature indicates the ability to collect and read out statistics regarding the usage of the Disco
Ball.

10.4.1.5. Data Types

10.4.1.5.1. WobbleBitmap Type

This data type is derived from map8.

Bit Name Summary Conformance

0 Perpendicular Indicate wobble per
pendicular to axis

O

1 AlongAxis Indicate wobble along
Axis

O

2 Around Indicate wobble
around

O

10.4.1.5.2. RotateEnum Type

This data type is derived from enum8.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 618 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

0 Off Deprecated D*

1 Clockwise Rotation is currently
clockwise

M

2 CounterClockwise Rotation is currently
counterclockwise

REV

*Spec Writer Note

"D" means deprecated.

Clockwise Value

This value SHALL indicate that the disco ball is rotating in the clockwise direction

CounterClockwise Value

This value SHALL indicate that the disco ball is rotating in the counterclockwise direction

Spec Writer Note

Description sections are optional and should only be present, if additional details are needed
for a given enum value

10.4.1.5.3. PatternStruct Type

This indicates a pattern of operation for a running disco ball.

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

0 Duration uint16 all 0 M

1 Rotate Rota
teEnum

desc X* null* M

2 Speed uint8 max 200 X null M

3 Axis uint8 max 90 X null AX | WBL

4 Wobble
Speed

uint8 max 200 X null WBL**, O

5 Passcode string max 6 X null S M

*Spec Writer Note

Nullable data ("X") means that in some cases, the data can be null. Null data meaning must
be defined (as it is below).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 619

**Conformance

"WBL, O" means mandatory for WBL feature, otherwise optional.

Duration Field

This SHALL indicate the time in seconds for the disco ball to perform the pattern.

Rotate Field

This SHALL indicate the rotation direction or null to not change the direction.

Speed Field

This SHALL indicate the speed of the rotation, or null to not change the speed.

Axis Field

This SHALL indicate the angle of the axis of rotation, or null to not change the angle.

WobbleSpeed Field

This SHALL indicate the speed of the axis wobble, or null to not change the speed.

Passcode Field

An optionally specified passcode that if present, needs to always be provided in the Pattern Request
command to successfully invoke this pattern.

10.4.1.6. Status Codes

10.4.1.6.1. StatusCodeEnum Type

This data type is derived from enum8.

Value Name Summary

0x02* UNSUPPORTED_PATTERN The movement pattern is
unsupported on the device even
though all values are within
constraints

*Spec Writer Note

The list contains cluster specific status codes only indicated for a particular instance of this
cluster.

The list SHALL start at 2, after the global error status values of 0 for SUCCESS and 1 for
FAILURE.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 620 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

10.4.1.7. Attributes

Spec Writer Note

Attributes are supported by the server cluster only.

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Run bool all* 0 R V M

0x0001 Rotate Rota
teEnum

all 0 R V M

0x0002 Speed uint8 0 to 200* 0 R V M

0x0003 Axis uint8 0 to 90 0 RW VO AX | WBL

0x0004 Wobble
Speed

uint8 0 to 200 0 RW VO WBL

0x0005 Patterns list[Pat
ternStruct]

max 16* N* 0 RW VM T* PAT

0x0006 Name string max 16 N 0 RW VM P, O

0x0007 Wobble
Support

Wob
bleBitmap

desc R V WobbleSet
ting

0x0008 Wobble
Setting

Wob
bleBitmap

desc RW VM [WBL]

*Spec Writer Note

Constraint

• "all" means all possible values.

• "desc" means see attribute description for constraints on attribute.

• "X to Y" means a value range from X=minimum to Y=maximum value.

• "max X" means range or maximum number of entries for a list or bytes for a string type
derived from octstr.

Quality

• "N" indicates the read only, write only or read & write value is non-volatile across
restarts.

• "F" indicates that the read-only value is static (fixed) and will not change in the future
(like the ClusterRevision attribute).

• If there is no "N" or "F" then the value is volatile such that the value of the attribute may
change at some point in the future.

Access

• Access column indicates R=Read Only, RW=Read Write, R*W=Read [Write], T=Timed
Write, View=Read, Operate=Write, Manage=Write, Administer=Write for ACL processing.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 621

Conformance

• Any attribute that is "M" is part of the base mandatory feature set. "O" is purely optional.

• To support the Axis feature any attribute with "AX" conformance must be supported (see
Data Model).

• To support the Wobble feature any attribute with WBL conformance must be supported
(see Data Model).

• "AX | WBL" means either feature mandates this attribute. If neither are true, then the
attribute is not allowed.

• "AX & WBL" would require both features supported to mandate.

• "[PAT]" means optional for Pattern feature.

• "P, O" means provisional otherwise optional (after it’s no longer provisional).

• The name of another attribute in the conformance column means the attribute is manda
tory if the other attribute is supported. Conformance based on the presence of another
attribute can be made optional by using []. Conformance MAY be set using any element in
the same table.

10.4.1.7.1. Run Attribute

This attribute SHALL indicate if the disco ball is operating. If the Run attribute is 0, then the Speed,
Rotate and WobbleSpeed attributes SHALL be 0.

10.4.1.7.2. Rotate Attribute

This attribute SHALL indicate the direction of rotation either clockwise or counterclockwise.

10.4.1.7.3. Speed Attribute

This attribute SHALL indicate the speed of the disco ball in revolutions per minute.

10.4.1.7.4. Axis Attribute

This attribute SHALL indicate the tilt of the axis of the disco ball, in degrees.

10.4.1.7.5. WobbleSpeed Attribute

This attribute SHALL indicate the speed of the wobble rotation in revolutions per minute.

10.4.1.7.6. Pattern Attribute

This attribute SHALL contain an ordered list of pattern entries. This list of patterns SHALL be used
to operate the disco ball when the Pattern Request command is invoked.

10.4.1.7.7. Name Attribute

This attribute SHALL indicate a display name.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 622 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

10.4.1.7.8. WobbleSupport Attribute

This attribute SHALL indicate the bits of the WobbleBitmap supported by the device.

10.4.1.7.9. WobbleSetting Attribute

This attribute SHALL indicate the selected type of wobble. This attribute is constrained to, in case of
a write interaction, only accept the bits indicated in the WobbleSupport attribute.

10.4.1.8. Commands

Spec Writer Note

Commands are supported by the client & server, but always initiated by the client.

ID Name Direction Response** Access Conformance

0x00 StartRequest client ⇒ server Y O M

0x01 StopRequest client ⇒ server Y O M

0x02 ReverseReque
st

client ⇒ server Y O REV

0x03 Wob
bleRequest

client ⇒ server Y O WBL

0x04 PatternRe
quest

client ⇒ server Y M T* PAT

0x05 StatsRequest client ⇒ server StatsResponse** O STA

0x06 StatsResponse client ⇐ server N O STA

*Spec Writer Note

Commands are operable (O) with Invoke. Commands are operable with Timed (T) Invoke
only.

**Spec Writer Note

"StatsRequest" command has a "StatsResponse" command. "Y" means that the command
requires just a status in the Invoke Response. "N" means no response required (most
response commands do not need a response).

10.4.1.8.1. StartRequest Command

Upon receipt, this SHALL start the disco ball rotating using the data as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Speed uint8 max 200 MS* M

1 Rotate RotateEnum all Clockwise O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 623

*Spec Writer Note

"MS" means Manufacturer Specific.

Speed Field

This SHALL indicate the rotation speed.

Rotate Field

This SHALL indicate the rotation direction.

10.4.1.8.2. StopRequest Command

Upon receipt, this SHALL stop the disco ball rotating, and SHALL set the Run, Speed and Rotate
attributes to 0.

10.4.1.8.3. ReverseRequest Command

Upon receipt, this SHALL reverse the direction of the disco ball rotation. This command MAY gener
ate an error response of UNSUPPORTED_PATTERN.

10.4.1.8.4. WobbleRequest Command

Upon receipt, this SHALL wobble the disco ball on its axis at the speed in the WobbleSpeed
attribute. This command MAY generate an error response of UNSUPPORTED_PATTERN.

10.4.1.8.5. PatternRequest Command

ID Name Type Constraint Quality Default Confor
mance

0 Passcode string max 6 empty M

Passcode Field

If the passcode field is an empty string, this SHALL start the disco ball rotating using unprotected
(i.e patterns that have no passcode) pattern list entries in sequence to control the disco ball. When
the final entry in the list is processed the sequence SHALL restart at the first entry.

If the passcode field is not an empty string, only the patterns that correspond to the provided pass
code SHALL be invoked.

10.4.1.8.6. StatsRequest Command

Upon receipt, this SHALL generate a StatsResponse command.

10.4.1.8.7. StatsResponse Command

This command SHALL be generated in response to a StatsRequest command. The data for this com
mand SHALL be as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 624 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 LastRun uint32 all 0 M

1 NumPat
tern
sChanged

uint32 all 0 [PAT] *

*Spec Writer Note

Patterns field is an optional only for the PAT feature.

LastRun Field

This SHALL indicate the duration in seconds for the last time the disco ball was run.

NumPatternsChanged Field

This SHALL indicate the number of pattern changes from the Patterns attribute within the last run
time.

10.4.1.9. Events

Spec Writer Note

Events are supported by the server cluster only.

ID Name Priority Access Conformance

0x00 Started INFO V* M

0x01 Stopped INFO V M

0x02 PatternChange INFO V [PAT]

*Spec Writer Note

All events are viewable (V).

10.4.1.9.1. Started Event

This event SHALL be generated, when the Run attribute changes from false to true.

10.4.1.9.2. Stopped Event

This event SHALL be generated, when the Run attribute changes from true to false.

10.4.1.9.3. PatternChange Event

This event SHALL be generated when the Rotate, Speed, or WobbleSpeed attributes are written or

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 625

changed locally as the result of processing the Pattern attribute.

ID Name Type Constraint Quality Default Confor
mance

0 PrevPattern Pattern
Struct

X null M

1 CurPattern Pattern
Struct

M

2 NextPattern Pattern
Struct

X null M

3 Label string max 32 X null O

PrevPattern Field

This field SHALL be the previous pattern run. If there is no previous pattern, then PrevPattern
SHALL be null.

CurPattern Field

This field SHALL be the current pattern being run.

NextPattern Field

This field SHALL be the next in the pattern list. If there is no next pattern, the NextPattern event
field SHALL be null.

10.4.2. Super Disco Ball Cluster

This is derived* from the Disco Ball cluster, with overrides for qualities and conformance.

*Spec Writer Note

This is an example of a derived cluster, where only stricter conformance overrides, and
the Name attribute gets a longer allowed length. If both the Disco Ball and Super Disco Ball
server clusters are on the same endpoint, they would represent a singleton instance of a
cluster. This allows legacy clients implemented before the Super Disco Ball was specified
to still interoperate. Blank column entries define no change to the qualities.

10.4.2.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 626 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

10.4.2.2. Classification

Hierarchy Role Scope PICS Code

Disco Ball Application Endpoint SUPDISC

10.4.2.3. Cluster ID

ID Name

0xBBCC Super Disco Ball

10.4.2.4. Features

Bit Code Feature Conformance Summary

0 PTY Party D Deprecated fea
ture

1 AX Axis M Allows the disco
ball rotational axis
to change

2 WBL Wobble M Allows the disco
ball to wobble on
its axis as speed
(dependent on
Axis)

3 PAT Pattern M Supports a list of
patterns to cycle
through automati
cally

4 STA Statistics M Supports a request
to statistics

5 REV Reverse P, M Supports a
Reverse command
and counterclock
wise rotation

10.4.2.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Run M

0x0001 Rotate M

0x0002 Speed M

0x0003 Axis AX | WBL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 627

ID Name Type Constraint Quality Default Access Confor
mance

0x0004 Wobble
Speed

WBL

0x0005 Pattern PAT

0x0006 Name max 32 P, M

0x0007 Wobble
Support

[WBL]

0x0008 Wobble
Setting

[WBL]

10.4.2.6. Events

ID Name Priority Access Conformance

0x00 Started M

0x01 Stopped M

0x02 PatternChange PAT

10.5. Sample Device Types
This section defines sample device types based on the Section 10.4, “Sample Clusters” for illustrative
purposes; they SHALL NOT be interpreted as real device types.

10.5.1. Disco Ball Device Type

This defines conformance to the example Disco Ball device type.

10.5.1.1. Revision History

This is the revision history for this device type. The highest revision number in the table below is
the revision for this device type.

Revision Description

1 Initial release of this document

2 Attribute Name access changed to Administer

3 Initial Matter release

10.5.1.2. Classification

ID Device Name Superset Class Scope

0x5678 Disco Ball Simple Endpoint

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 628 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

10.5.1.3. Conditions

Please see the Base Device Type definition for conformance tags.

10.5.1.4. Cluster Requirements

Each endpoint supporting this device type SHALL include these clusters based on the conformance
defined below.

ID Name Client/Server Quality Conformance

0x0003 Identify Server M

0x3456 Disco Ball Server M

10.5.1.4.1. Identify Cluster

This is used to identify the endpoint.

Spec Writer Note

Describe each cluster use with normative requirements in a separate section (like this if
needed).

10.5.1.4.2. Disco Ball Cluster

This is what controls the disco ball.

10.5.1.5. Element Requirements

Below list qualities and conformance that override the cluster specification requirements. A blank
table cell means there is no change to that item and the value from the cluster specification applies.

ID Cluster Element Name Constraint Access Confor
mance

0x3456 Disco Ball Feature Pattern Ethernet |
Wi-Fi

0x3456 Disco Ball Feature Statistics Ethernet |
Wi-Fi

0x3456 Disco Ball Attribute Name max 10 VA Matter

0x3456 Disco Ball Event Field Pattern
Change.Labe
l

M

10.5.2. Super Disco Ball Device Type

This defines conformance to the example Super Disco Ball device type.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 629

10.5.2.1. Revision History

This is the revision history for this device type. The highest revision number in the table below is
the revision for this device type.

Revision Description

1 Initial release of this document

10.5.2.2. Classification

ID Device Name Superset Class

0x3457 Super Disco Ball Disco Ball Simple

10.5.2.3. Conditions

Please see the Base Device Type definition for conformance tags.

10.5.2.4. Cluster Requirements

Each endpoint supporting this device type SHALL include these clusters based on the conformance
defined below.

ID Name Client/Server Quality Conformance

0x0003 Identify Server M

0x3456 Super Disco Ball Server M

10.5.2.4.1. Identify Cluster

This is used to identify the endpoint.

10.5.2.4.2. Super Disco Ball Cluster

This is what controls the super disco ball.

10.5.2.5. Element Requirements

Below list qualities and conformance that override the cluster specification requirements. A blank
table cell means there is no change to that item and the value from the cluster specification applies.

ID Cluster Element Name Constraint Access Confor
mance

0x3456 Disco Ball Feature Pattern Ethernet |
Wi-Fi

0x3456 Disco Ball Feature Statistics Ethernet |
Wi-Fi

0x3456 Disco Ball Attribute Name max 10 VA Matter

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 630 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Cluster Element Name Constraint Access Confor
mance

0x3456 Disco Ball Event Field Pattern
Change.Labe
l

M

10.5.3. Disco Spot Device Type

This defines a spot light that shines on a disco ball to create a disco dancing experience.

10.5.3.1. Revision History

This is the revision history for this document.

Revision Description

1 Initial release of this document

10.5.3.2. Classification

*Spec Writer Note

When new device types are being created, the ID SHALL be set to ID-TBD until an ID can
be assigned to the new device type.

ID Device Name Superset Class Scope

N/A Disco Spot Simple Endpoint

Spec Writer Note

When adding new device types or clusters (non-sample) that do not have an allocated ID,
please use ID-TBD in the ID column and contact the Matter data model tiger team chair for
instructions on how to allocate new IDs.

10.5.3.3. Conditions

Please see the Base Device Type definition for conformance tags.

10.5.3.4. Cluster Requirements

Each endpoint supporting this device type SHALL include these clusters based on the conformance
defined below.

*Spec Writer Note

When new clusters are being created, the ID SHALL be set to ID-TBD until an ID can be
assigned to the new cluster.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 631

ID Name Client/Server Quality Conformance

N/A Light Movement Server M

0x010D Extended Color
Light

Server M

10.5.3.5. Element Requirements

*Spec Writer Note

If there are no element overrides, then this section SHALL be omitted.

10.5.4. Disco Dance System Device Type

This defines the components needed for a complete disco dancing system.

10.5.4.1. Revision History

This is the revision history for this document.

Revision Description

1 Initial release of this document

10.5.4.2. Classification

ID Device Name Superset Class Scope

N/A Disco Dance Sys
tem

Simple Endpoint

10.5.4.3. Conditions

Please see the Base Device Type definition for conformance tags.

10.5.4.4. Device Type Requirements*

*Spec Writer Note

This is the section to define that a device type is composed of other endpoints (device types).

Each endpoint supporting this device type SHALL include endpoints with these device types based
on the conformance defined below.

ID Name Constraint Conformance

N/A Disco Ball 1* M

N/A Disco Spot min 1* M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 632 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

*Spec Writer Note

Constraints are limitations on how many endpoints (parts) for this device type. In this exam
ple, there may be multiple (possibly many) spot lights for a single disco ball.

10.5.4.5. Cluster Requirements

*Spec Writer Note

If there are no cluster requirements, then this section SHALL be omitted.

10.5.4.6. Element Requirements

*Spec Writer Note

If there are no element overrides, then this section SHALL be omitted.

10.5.5. Weather Station Device Type

This defines the components needed for a weather station.

10.5.5.1. Revision History

This is the revision history for this document.

Revision Description

1 Initial release of this document

10.5.5.2. Classification

ID Device Name Superset Class Scope

ID-TBD Weather Station Simple Endpoint

10.5.5.3. Conditions

Please see the Base Device Type definition for conformance tags.

10.5.5.4. Device Type Requirements

Each endpoint supporting this device type SHALL include endpoints with these device types based
on the conformance defined below.

ID Name Constraint Namespace Conformance

0x0302 Temperature Sen
sor

min 1 Building M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 633

ID Name Constraint Namespace Conformance

0x0307 Humidity Sensor min 1 O

ID-TBD Wind Speed Sen
sor

min 1 O

ID-TBD Wind Direction
Sensor

min 1 O

ID-TBD Rain Sensor min 1 O

10.5.5.5. Cluster Requirements

ID Name Client/Server Quality Conformance

0x0003 Identify Server M

10.5.5.6. Element Requirements

*Spec Writer Note

If there are no element overrides, then this section SHALL be omitted.

10.6. Information Blocks
These are elements that may apply to multiple message types, and are defined in a common way to
permit re-use as a definition. Unless stated otherwise, these correspond to their identically named
counterparts in the Interaction Model Specification.

10.6.1. Tag Rules

Unless otherwise noted, all context tags SHALL be emitted in the order as defined in the appropri
ate specification. This is done to reduce receiver side complexity in having to deal with arbitrary
order tags.

10.6.2. AttributePathIB

TLV Type: List

Tag Comments Tag Type Tag Number TLV Type Range

EnableTagCom
pression

Context Tag 0 bool -

Node Context Tag 1 Unsigned Int 64 bits

Endpoint Context Tag 2 Unsigned Int 16 bits

Cluster Context Tag 3 Unsigned Int 32 bits

Attribute Context Tag 4 Unsigned Int 32 bits

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 634 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

TLV Type: List

ListIndex Context Tag 5 Unsigned Int 16 bits, nul
lable

WildcardPath
Flags

Context Tag 6 Unsigned Int 32 bits

• The contents of ClusterPathIB in the Interaction Model specification have been expanded here
for encoding efficiency.

• The ClusterPathIB Group field is omitted here (see Node field description).

• Maximum nesting is restricted to referencing a list element in an attribute. Consequently, the
NestedPath field is removed and replaced with a single ListIndex field.

10.6.2.1. EnableTagCompression

This tag is used to select between two different interpretations on the receiver when the Node, End
point, Cluster, Attribute tags are omitted:

• When false or not present, omission of any of the tags in question (with the exception of Node)
indicates wildcard semantics.

• When true, indicates the use of a tag compression scheme. In this case the value for any omitted
tag SHALL be set to the value for that tag in the last AttributePathIB that had EnableTagCompres
sion not present or set to false and was seen in a message that is part of the same interaction
model Action as the current message.

◦ The AttributePathIB the values end up coming from MAY appear in the same message (but
earlier in it) as the current AttributePathIB.

◦ The values that come from the previous AttributePathIB MAY still be missing. In that case,
with the exception of Node, they indicate wildcard semantics.

NOTE Support for encoding using the EnableTagCompression tag is provisional.

10.6.2.2. Node

• If the Group field is present in the IM representation, the Group ID is encoded in the DST field in
the message header and elided from the encoding here.

• The Node tag MAY be omitted if the target node of the path matches the NodeID of the server
involved in the interaction.

10.6.2.3. Endpoint, Cluster

• Each of these tags can be omitted. The semantics of such omission depend on the value of
EnableTagCompression.

10.6.2.4. Attribute, ListIndex

• When EnableTagCompression is false or not present, they have the following semantics:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 635

Attribute ListIndex Description

Omitted Omitted Selects all attributes within the
specified Node, Endpoint, Clus
ter

Present Omitted Selects a specific attribute
within the specified Node, End
point, Cluster.

Present Present Selects a specific list item
within a top-level attribute of
type list.

This does not allow expressing all possible paths defined in the interaction model. Only paths that
can be expressed MAY be used.

• The ListIndex tag is nullable. The null value SHALL only be used when this AttributePathIB is
used in an AttributeDataIB and indicates a list append operation. See Section 10.6.4.3.1, “Lists”
for more details.

10.6.2.5. WildcardPathFlags

• The meaning of the flags present in this tag is defined in WildcardPathFlagsBitmap.

• The absence of the WildcardPathFlags tag SHALL indicate that all flags are false.

• If the WildcardPathFlags value is zero, is SHOULD be omitted by clients.

• The effect of WildcardPathFlags on AttributePathIB processing is described in Section 8.2.1.7.1,
“Attribute Wildcard Path Flags”.

10.6.2.6. Examples

Select all attributes on a given cluster and endpoint:

AttributePath = [[Endpoint = 10, Cluster = Disco Ball]]

Select all attributes in all clusters on a given endpoint:

Path = [[Endpoint = 10]]

Select all attributes in all clusters on a given endpoint, except the EventList attribute, wherever it
appears:

Path = [[Endpoint = 10, WildcardPathFlags = (1 << 3) = 8]]

Select all attributes in all clusters on the node:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 636 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Path = [[]]

Select a specific attribute:

Path = [[Endpoint = 10, Cluster = Disco Ball, Attribute = Axis]]

Select a specific item in a top-level list:

Path = [[Endpoint = 10, Cluster = Disco Ball, Attribute = Pattern, ListIndex = 4]]

Select all attributes in all clusters on a given endpoint on a proxied node:

Path = [[Node = 0x18B430003020203, Endpoint = 10]]

Tag Compression Example #1:

Path1 = [[Node = 0x18B430003020203, Endpoint = 10, Cluster = Disco Ball, Attribute =
Pattern, ListIndex = 3]] // Start tracking path elements.
Path2 = [[EnableTagCompression = true, ListIndex = 4]] // Node, Endpoint, Cluster,
Attribute are re-used from Path1
Path3 = [[EnableTagCompression = true, ListIndex = 5]] // Node, Endpoint, Cluster,
Attribute are re-used from Path1
Path4 = [[EnableTagCompression = true, Attribute = Axis]] // Endpoint, Cluster are
re-used from Path1

Tag Compression Example #2:

Path1 = [[Node = 0x18B430003020203, Cluster = Disco Ball, Attribute = Pattern,
ListIndex = 3]] // Endpoint is wildcard, start tracking path elements.
Path2 = [[EnableTagCompression = true, ListIndex = 4]] // Node, Endpoint (including
wildcard), Cluster, Attribute are re-used from Path1
Path3 = [[EnableTagCompression = true, ListIndex = 5]] // Node, Endpoint (including
wildcard), Cluster, Attribute are re-used from Path1

Tag Compression Example #3:

Path1 = [[Node = 0x18B430003020203, Endpoint = 10, Cluster = Disco Ball, Attribute =
Pattern, ListIndex = 3]] // Start tracking path elements.
Path2 = [[EnableTagCompression = true, ListIndex = 4]] // Node, Endpoint, Cluster,
Attribute are re-used from Path1
Path3 = [[EnableTagCompression = true, ListIndex = 5]] // Node, Endpoint, Cluster,
Attribute are re-used from Path1
Path4 = [[Node = 0x18B430003020203, Endpoint = 20, Cluster = Disco Ball, Attribute =

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 637

Axis]] // Reset tracker variables
Path5 = [[EnableTagCompression = true, Attribute = Pattern, ListIndex = 5]] // Node,
Endpoint, Cluster are re-used from Path4.

10.6.3. DataVersionFilterIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

Path Context Tag 0 ClusterPathIB -

DataVersion Context Tag 1 Unsigned Int 32 bits

10.6.4. AttributeDataIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

DataVersion Context Tag 0 Unsigned Int 32 bits

Path Context Tag 1 Attribut
ePathIB

-

Data Context Tag 2 Variable (see
below)

-

• The Change field in the Interaction Model specification is not encoded directly. Instead, it is
encoded through the use of special values in the Path and Data fields (see Lists below).

10.6.4.1. DataVersion

This tag can be omitted if the value of EnableTagCompression in the Path field is true. In this case, the
value for the omitted tag SHALL be set to the value for that tag (if present) in the last Attribute
DataIB that had tag compression disabled (i.e EnableTagCompression not present or set to false) and
was seen in a message that is part of the same interaction model Action as the current message. If
this tag was not present and tag compression was disabled, it SHALL be interpreted as though a
data version was not specified in that, or subsequent AttributeDataIBs.

NOTE Support for encoding using the EnableTagCompression tag is provisional.

10.6.4.2. Path

In addition to the rules specified for AttributePathIB, the Attribute and 'Cluster' fields within that
element SHALL always be present.

10.6.4.3. Data

Upon path expansion of the value in Path, the hierarchy and structure of the encoded data for each
concrete Path SHALL be based on the schema description of the specified attribute within the speci
fied cluster. The TLV encoding of each element in the data SHALL follow the rules of encoding as

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 638 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

provided in Data Types.

10.6.4.3.1. Lists

The various values in the Change enumeration are realized as follows:

Change Type Realization

REPLACE Path SHALL refer to a list with ListIndex omitted
and Data SHALL contain new values that will
replace the existing contents of the list.

ADD Path SHALL refer to a list with ListIndex contain
ing a value of null and Data containing the new
value of the list item that will be added to the
list.

DELETE Path SHALL contain a non-null value for ListIn
dex and Data SHALL contain null.

MODIFY Path SHALL contain a non-null value for ListIn
dex and Data SHALL contain the new value for
the existing list item.

• A single AttributeDataIB containing a path to the list itself and Data that contains all items in the
list encoded as a TLV array. This option SHOULD be selected if it is possible to encode the
entirety of the list in a single AttributeDataIB that fits in a single message.

• A series of AttributeDataIBs, with the first containing a path to the list itself and Data that is an
empty array, which signals clearing the list, and subsequent AttributeDataIBs each containing a
path to each list item, in order, and Data that contains the value of the list item. This option
SHOULD be selected when it is not possible to encode the entirety of the list in a single Attrib
uteDataIB that fits in a single message.

10.6.4.4. Examples

10.6.4.4.1. Simple Types

Update a top-level attribute:

AttributeDataIB = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Axis]],
 Data = 90
}

10.6.4.5. Collection Types (List)

Modify a list item:

AttributeDataIB = {

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 639

 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern, ListIndex = 1]],
 Data = {
 Duration = 900,
 Rotate = Clockwise, // On the wire enum value (1) is used
 Speed = 12,
 Axis = 0,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "1234"
 }
}

Add an item to a list:

AttributeDataIB = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern, ListIndex =
null]],
 Data = {
 Duration = 100,
 Rotate = Counterclockwise, // On the wire enum value (2) is used
 Speed = 12,
 Axis = 90,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "9876"
 }
}

Delete an item in a list:

AttributeDataIB = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern, ListIndex = 0]],
 Data = null,
}

Replace a list (Single IB):

AttributeDataIB = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern]],
 Data = [[
 {
 Duration = 900,
 Rotate = Clockwise, // On the wire enum value (1) is used
 Speed = 12,
 Axis = 0,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 640 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "1234"
 }
 {
 Duration = 100,
 Rotate = Counterclockwise, // On the wire enum value (2) is used
 Speed = 12,
 Axis = 90,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "9876"
 },
]]
}

Replace a list (Multiple IBs):

AttributeDataIB1 = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern]],
 Data = [
]
}

AttributeDataIB2 = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern, ListIndex = 0]],
 Data = {
 Duration = 900,
 Rotate = Clockwise, // On the wire enum value (1) is used
 Speed = 12,
 Axis = 0,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "1234"
 }
}

AttributeDataIB3 = {
 DataVersion = 1,
 Path = [[Endpoint = 10, Cluster = Disco Ball, FieldID = Pattern, ListIndex = 1]],
 Data = {
 Duration = 100,
 Rotate = Counterclockwise, // On the wire enum value (2) is used
 Speed = 12,
 Axis = 90,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "9876"
 }
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 641

10.6.5. AttributeReportIB

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number TLV Type Range

AttributeSta
tus

Context Tag 0 AttributeSta
tusIB

-

AttributeData Context Tag 1 Attribute
DataIB

-

10.6.6. EventFilterIB

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number TLV Type Range

Node Context Tag 0 Unsigned Int 64 bits

EventMin Context Tag 1 Unsigned Int 64 bits

• The Node tag MAY be omitted if the target node of the path matches the NodeID of the server
involved in the interaction.

10.6.7. ClusterPathIB

TLV Type: List

Element Comments Tag Type Tag Number TLV Type Range

Node Context Tag 0 Unsigned Int 64 bits

Endpoint Context Tag 1 Unsigned Int 16 bits

Cluster Context Tag 2 Unsigned Int 32 bits

• The Node tag MAY be omitted if the target node of the path matches the NodeID of the server
involved in the interaction.

• If the Group field is present, the Group ID is encoded in the DST field in the message header and
elided from the encoding here.

10.6.8. EventPathIB

TLV Type: List

Element Comments Tag Type Tag Number TLV Type Range

Node Context Tag 0 Unsigned Int 64 bits

Endpoint Context Tag 1 Unsigned Int 16 bits

Cluster Context Tag 2 Unsigned Int 32 bits

Event Context Tag 3 Unsigned Int 32 bits

'IsUrgent' Context Tag 4 Boolean -

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 642 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• The contents of ClusterPathIB have been expanded here to increase encoding efficiency.

• The Node tag MAY be omitted if the target node of the path matches the NodeID of the server
involved in the interaction.

• Omission of the Endpoint, Cluster and Event tags SHALL have different interpretations depend
ing on where the EventPathIB is used. See Section 10.7.2.2, “EventRequests”, Section 10.7.4.1,
“EventRequests”, and Section 10.7.3.1, “EventReports” for the different contexts.

10.6.8.1. Examples

Select a particular event type:

Path = [[Endpoint = 10, Cluster = Disco Ball, Event = Pattern Change]]

Select all events on a given cluster (used in Read/Subscribe requests):

Path = [[Endpoint = 10, Cluster = Disco Ball]]

Select all events on a given cluster with urgency (used in Read/Subscribe requests):

Path = [[Endpoint = 10, Cluster = Disco Ball, IsUrgent = true]]

10.6.9. EventDataIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

Path Context Tag 0 EventPathIB -

EventNumber Context Tag 1 Unsigned Int 64 bits

Priority Context Tag 2 Unsigned Int 8 bits

one-of {

→ EpochTime
stamp

Context Tag 3 Unsigned Int 64 bits

→ SystemTime
stamp

Context Tag 4 Unsigned Int 64 bits

→ DeltaE
pochTimestamp

Optional Context Tag 5 Unsigned Int 64 bits

→ DeltaSystem
Timestamp

Optional Context Tag 6 Unsigned Int 64 bits

}

Data Context Tag 7 Variable (see
below)

-

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 643

10.6.9.1. DeltaEpochTimestamp

This tag is present when delta encoding the UTC timestamp relative to a prior event in a given
stream of events.

When this tag is present, all other timestamp tags SHALL be omitted.

This SHALL have the same units as EpochTimestamp.

10.6.9.2. DeltaSystemTimestamp

This tag is present when delta encoding the System timestamp relative to a prior event in a given
stream of events.

When this tag is present, all other timestamp tags SHALL be omitted.

This SHALL have the same units as SystemTimestamp.

10.6.9.3. Data

This contains the cluster-specific payload of the Event.

The entirety of the Event is represented as a TLV Structure type.

The TLV encoding of each field in the event SHALL follow the rules of encoding as provided in Data
Types.

If the cluster does not define any payload for the given event instance, this Data field SHALL be
encoded as a struct with no member elements.

10.6.9.4. Examples

Single event:

EventDataElement = {
 Path = [[Endpoint = 10, Cluster = Disco Ball, EventID = Started]],
 EventNumber = 1001,
 Priority = INFO,
 EpochTimestamp = 102340234293,
 Data = {
 // Started event contains no data
 }
}

10.6.10. EventReportIB

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number TLV Type Range

EventStatus Context Tag 0 EventStatusIB -

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 644 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

TLV Type: Structure (Anonymous)

EventData Context Tag 1 EventDataIB -

10.6.11. CommandPathIB

TLV Type: List

Element Comments Tag Type Tag Number TLV Type Range

Endpoint Context Tag 0 Unsigned Int 16 bits

Cluster Context Tag 1 Unsigned Int 32 bits

Command Context Tag 2 Unsigned Int 32 bits

• The contents of ClusterPathIB have been expanded into the CommandPathIB here to increase
encoding efficiency.

• Wildcarding is achieved by omission of the respective tag.

• The Node field in the IM representation is the NodeID of the server involved in the interaction.
This is omitted in the encoding here since it is retrievable from the message layer for the mes
sage containing this element.

• The Group field in the IM representation is encoded in the DST field in the message header.

10.6.11.1. Examples

Select a particular command:

Path = [[Endpoint = 10, Cluster = Disco Ball, Command = Stop Request]]

Select a particular command (addressed to a group):

Path = [[Cluster = Disco Ball, Command = Stop Request]]

10.6.12. CommandDataIB

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

CommandPath Context Tag 0 Command
PathIB

-

CommandFields Optional Context Tag 1 variable -

CommandRef Optional Context Tag 2 Unsigned Int 16 bits

10.6.12.1. CommandFields

This field SHALL contain the full set of arguments as specified in the description of the command

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 645

request/response. The arguments SHALL follow the rules of encoding as provided in Data Types.

The entirety of the arguments SHALL be encapsulated in a TLV structure, with each argument
encoded appropriately using its field id as the context tag number.

If there are no arguments in the Request or Response, this tag MAY be omitted entirely.

10.6.12.2. CommandRef

This field SHALL contain an unsigned integer used to correlate responses to commands with the
requests that led to those responses.

10.6.12.3. Examples

Request + Response:

RequestCommandElement = {
 CommandPath = [[Endpoint = 10, Cluster = Disco Ball, Command = Stats Request]],
 CommandFields = {} // Empty CommandFields MAY be encoded as an empty container
 CommandRef = 17
}

ResponseCommandElement = {
 CommandPath = [[Endpoint = 10, Cluster = Disco Ball, Command = Stats Response]],
 CommandFields = {
 LastRun = 100,
 Patterns = 1
 }
 CommandRef = 17 // the same number as in the request
}

Empty request:

RequestCommandElement = {
 CommandPath = [[Endpoint = 10, Cluster = Disco Ball, Command = Stop Request]]
 // Empty CommandFields MAY also be omitted entirely
 // CommandRef MAY be omitted when the request contains only a single CommandDataIB

}

// No cluster specific response is returned; a status is passed via Invoke Response at
the Interaction layer

10.6.13. InvokeResponseIB

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 646 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

TLV Type: Structure (Anonymous)

Command Context Tag 0 Command
DataIB

-

Status Context Tag 1 CommandSta
tusIB

-

10.6.14. CommandStatusIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

CommandPath Context Tag 0 Command
PathIB

-

Status Context Tag 1 StatusIB -

CommandRef Optional Context Tag 2 Unsigned Int 16 bits

10.6.14.1. CommandRef

This field SHALL contain an unsigned integer used to correlate responses to commands with the
requests that led to those responses.

10.6.15. EventStatusIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

Path Context Tag 0 EventPathIB -

Status Context Tag 1 StatusIB -

10.6.16. AttributeStatusIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

Path Context Tag 0 Attribut
ePathIB

-

Status Context Tag 1 StatusIB -

10.6.17. StatusIB

TLV Type: Structure

Element Comments Tag Type Tag Number Type Range

Status Context Tag 0 Unsigned Int 8 bits

ClusterStatus Context Tag 1 Unsigned Int 8 bits

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 647

10.7. Message Definitions
This section contains message definitions that correspond to their equivalent actions in the Interac
tion Model Specification. Unless specifically indicated, all fields in the ensuing definitions SHALL
match their equivalents in the appropriate Actions defined in the Interaction Model Specification.

10.7.1. StatusResponseMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

Status Context Tag 0 Unsigned Int 8-bits

10.7.2. ReadRequestMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

Attribut
eRequests

Optional Context Tag 0 Array of Attrib
utePathIB

-

EventRequests Optional Context Tag 1 Array of Event
PathIB

-

EventFilters Optional Context Tag 2 Array of Event
FilterIB

-

FabricFiltered Context Tag 3 boolean -

DataVersion
Filters

Optional Context Tag 4 Array of
DataVersionFil
terIB

-

10.7.2.1. AttributeRequests

• If not present SHALL be treated as an empty list.

10.7.2.2. EventRequests

• If not present SHALL be treated as an empty list.

• Omission of any of the Endpoint, Cluster, Event tags indicates wildcard semantics.

10.7.2.3. EventFilters

• If not present SHALL be treated as an empty list.

• MAY be ignored (i.e. not decoded) if EventRequests is empty.

10.7.2.4. DataVersionFilters

• If not present SHALL be treated as an empty list.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 648 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• MAY be ignored (i.e. not decoded) if AttributeRequests is empty.

10.7.3. ReportDataMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

SubscriptionID Optional Context Tag 0 Unsigned Inte
ger

32 bits

AttributeRe
ports

Optional Context Tag 1 Array of Attrib
uteReportIB

EventReports Optional Context Tag 2 Array of Even
tReportIB

MoreChun
kedMessages

Can be omitted
if false.

Context Tag 3 Boolean -

SuppressRe
sponse

Omit if 'false' Context Tag 4 Boolean -

• Multiple ReportDataMessages MAY be sent if a Report Data action does not fit into a single mes
sage.

• For each ReportDataMessage received, a successful StatusResponse message SHALL be sent
back to the sender unless SuppressResponse is true.

• SuppressResponse SHALL NOT be set to true when either AttributeReports or EventReports are
non-empty arrays.

10.7.3.1. EventReports

A list of EventReportIB encoded as a TLV array that have certain compression schemes applied to
them to reduce redundant data.

For each EventReportIB in the list:

• The Path tag SHALL utilize the same tag compression scheme as that utilized by the tags in
AttributePathIB. Specifically:

◦ The tag compression scheme SHALL only apply to the Node, Endpoint, Cluster and Event tags
within the EventPathIB element.

◦ The first element within the list SHALL specify all the necessary tags and hence serve as the
anchor on which subsequent items MAY rely for compression.

• The EventNumber MAY be omitted if it is exactly one greater than the EventNumber of the pre
vious Event.

• The 'Delta' tags SHALL be used to encode timestamps as deltas from the prior event to improve
compression of large timestamps.

NOTE Support for using the tag compression scheme for the Path is provisional.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 649

10.7.3.1.1. Examples

Event list (highlighting compressions):

EventReports = [
{
 Path = [[Endpoint = 10, Cluster = Disco Ball, EventID = Started]],
 ImportanceLevel = INFO,
 Number = 1001,
 UTCTimestamp = 102340234293,
 Data = {
 }
},
{
 Path = [[EventID = PatternChange]], // same endpoint and cluster but different
event type
 DeltaUTCTimestamp = 1000,
 Data = {
 PrevPattern = null,
 CurPattern = {
 Duration = 900,
 Rotate = Clockwise, // On the wire enum value (1) is used
 Speed = 12,
 Axis = 0,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "1234"
 },
 NextPattern = {
 Duration = 100,
 Rotate = Counterclockwise, // On the wire enum value (2) is used
 Speed = 12,
 Axis = 90,
 // WobbleSpeed omitted; this cluster instance does not support Wobble
 Passcode = "9876"
 }
 }
}
{
 Path = [[]], // same path as the previous path
 DeltaUTCTimestamp = 900000000,
 Data = {
 PrevPattern = {
 Duration = 900,
 Rotate = Clockwise,
 Speed = 12,
 Axis = 0,
 Passcode = "1234"
 },
 CurPattern = {
 Duration = 100,
 Rotate = Counterclockwise,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 650 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 Speed = 12,
 Axis = 90,
 Passcode = "9876"
 },
 NextPattern = null
 }
}
]

10.7.3.2. MoreChunkedMessages

This flag is set to ‘true’ when there are more chunked messages in a transaction.

10.7.4. SubscribeRequestMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

KeepSubscrip
tions

Context Tag 0 Boolean

MinInter
valFloor

Context Tag 1 Unsigned Int 16 bits

MaxInterval
Ceiling

Context Tag 2 Unsigned Int 16 bits

Attribut
eRequests

Optional Context Tag 3 Array of Attrib
utePathIB

-

EventRequests Optional Context Tag 4 Array of Event
PathIB

-

EventFilters Optional. Only
present if
EventRequests
is present.

Context Tag 5 Array of Event
FilterIB

-

FabricFiltered Context Tag 7 boolean -

DataVersion
Filters

Optional. Only
present if
Attribut
eRequests is
present.

Context Tag 8 Array of
DataVersionFil
terIB

-

10.7.4.1. EventRequests

• Omission of any of Endpoint, Cluster, Event tags indicates wildcard semantics.

10.7.5. SubscribeResponseMessage

This is sent after all Reports have been sent back to the client. The sole purpose of this is to convey
the final set of parameters for the subscription back to the client.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 651

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

SubscriptionID Context Tag 0 Unsigned Int 32 bits

MaxInterval Context Tag 2 Unsigned Int 16 bits

10.7.6. WriteRequestMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

SuppressRe
sponse

Omit if ‘false' Context Tag 0 Boolean -

TimedRequest Context Tag 1 Boolean -

WriteRequests Context Tag 2 Array of Attrib
uteDataIB

MoreChun
kedMessages

Can be omitted
if false

Context Tag 3 Boolean -

10.7.6.1. MoreChunkedMessages

• Like reports, multiple WriteRequestMessages MAY be sent in a single transaction if the set of
AttributeDataIBs have to be sent across multiple packets. All but the last message SHALL have
the MoreChunkedMessages flag set to true to indicate this situation. Before sending the next
WriteRequestMessage, the sender SHALL await the WriteResponseMessage associated with the
previous WriteRequestMessage.

• SuppressResponse SHALL NOT be set to true if MoreChunkedMessages is true.

• A Write Request action that is part of a Timed Write Interaction SHALL NOT be chunked.

10.7.7. WriteResponseMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

WriteResponses Context Tag 0 Array of Attrib
uteStatusIB

-

10.7.8. TimedRequestMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

Timeout Context Tag 0 Unsigned Int 16 bits

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 652 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

10.7.9. InvokeRequestMessage

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

SuppressRe
sponse

Context Tag 0 Boolean -

TimedRequest Context Tag 1 Boolean -

InvokeRequests Context Tag 2 Array of Com
mandDataIB

-

NOTE
In this version of the specification, InvokeRequestMessage contains no provisions
for spanning multiple messages (see Section 4.4.4, “Message Size Requirements”).

10.7.10. InvokeResponseMessage

NOTE

The interaction model is written at the abstract level of actions, and as such, it does
not address fragmentation. The interaction model describes a complete response to
the invoke interaction as a unit, the chunking protocol described here maintains
that illusion as much as possible. The status response messages (Status = SUCCESS)
are used for flow control. Status response messages with any other Status indicate
the sender of any further chunked InvokeResponseMessages must exit early. In exit
ing early, the sender MAY send an InvalidAction StatusResponse.

TLV Type: Structure (Anonymous)

Element Comments Tag Type Tag Number Type Range

SuppressRe
sponse

Context Tag 0 Boolean -

InvokeRe
sponses

Context Tag 1 Array of Invok
eResponseIB

-

MoreChun
kedMessages

Context Tag 2 Boolean -

10.7.10.1. InvokeResponses

If the InvokeResponseMessage is being generated in response to an InvokeRequestMessage contain
ing InvokeRequests of length 1, it SHALL contain an InvokeResponses element, and it SHALL NOT
contain MoreChunkedMessages.

10.7.10.2. MoreChunkedMessages

Like reports and write requests, multiple InvokeResponseMessages MAY be sent in a single transac
tion. All but the last message SHALL have the MoreChunkedMessages flag set to true to indicate this sit
uation, and the last message SHALL have the MoreChunkedMessages flag set to false. SuppressResponse
SHALL NOT be set to true if MoreChunkedMessages is true.

Implementations MAY choose to send the InvokeResponseMessage at any granularity, such as:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 653

• Responding with one InvokeResponseMessage to each CommandDataIB in the corresponding
InvokeRequestMessage;

• Waiting to batch the responses until a message full boundary is reached;

• Accumulating all responses to all CommandDataIBs from the InvokeRequestMessage, followed
by sending as many messages as needed to fit all the responses.

These different InvokeMessageResponse buffering strategies all have different buffering costs to
the server, different latency for the client, and different latency for command execution.

Upon reception of any InvokeResponseMessage with MoreChunkedResponses set to true, the receiver
SHALL respond with StatusResponseMessage. Before sending the next InvokeResponseMessage, the
sender SHALL await the StatusResponseMessage associated with the previous InvokeResponseMes
sage. If the Status field in the StatusResponseMessage is set to SUCCESS, that indicates the receiver
is ready to process the next InvokeResponseMessage in the chunked series, and in that case the
sender SHALL send the next chunk as soon as possible. Any other value of the Status field other
than SUCCESS in the StatusResponseMessage SHALL cause the sender of the InvokeResponseMes
sage to terminate further transmission of InvokeResponseMessages, close the exchange, and con
sider the Invoke Interaction completed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 654 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 11. Service and Device Management

11.1. Basic Information Cluster
This cluster provides attributes and events for determining basic information about Nodes, which
supports both Commissioning and operational determination of Node characteristics, such as Ven
dor ID, Product ID and serial number, which apply to the whole Node.

11.1.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Added ProductAppearance attribute

3 Added SpecificationVersion and MaxPathsPerIn
voke attributes

11.1.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node BINFO

11.1.3. Cluster ID

ID Name

0x0028 Basic Information

11.1.4. Data Types

11.1.4.1. ProductFinishEnum Type

The data type of ProductFinishEnum is derived from enum8.

Value Name Description Conformance

0 Other Product has some other
finish not listed below.

M

1 Matte Product has a matte fin
ish.

M

2 Satin Product has a satin fin
ish.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 655

Value Name Description Conformance

3 Polished Product has a polished
or shiny finish.

M

4 Rugged Product has a rugged
finish.

M

5 Fabric Product has a fabric
finish.

M

11.1.4.2. ColorEnum Type

The data type of ColorEnum is derived from enum8.

Value Name Description Conformance

0 Black Approximately RGB
#000000.

M

1 Navy Approximately RGB
#000080.

M

2 Green Approximately RGB
#008000.

M

3 Teal Approximately RGB
#008080.

M

4 Maroon Approximately RGB
#800080.

M

5 Purple Approximately RGB
#800080.

M

6 Olive Approximately RGB
#808000.

M

7 Gray Approximately RGB
#808080.

M

8 Blue Approximately RGB
#0000FF.

M

9 Lime Approximately RGB
#00FF00.

M

10 Aqua Approximately RGB
#00FFFF.

M

11 Red Approximately RGB
#FF0000.

M

12 Fuchsia Approximately RGB
#FF00FF.

M

13 Yellow Approximately RGB
#FFFF00.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 656 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Description Conformance

14 White Approximately RGB
#FFFFFF.

M

15 Nickel Typical hardware
"Nickel" color.

M

16 Chrome Typical hardware
"Chrome" color.

M

17 Brass Typical hardware
"Brass" color.

M

18 Copper Typical hardware "Cop
per" color.

M

19 Silver Typical hardware "Sil
ver" color.

M

20 Gold Typical hardware
"Gold" color.

M

11.1.4.3. ProductAppearanceStruct Type

This structure provides a description of the product’s appearance.

ID Name Type Constraint Quality Default Confor
mance

0 Finish ProductFin
ishEnum

all M

1 Primary
Color

ColorEnum all X M

Finish Field

This field SHALL indicate the visible finish of the product.

PrimaryColor Field

This field indicates the representative color of the visible parts of the product. If the product has no
representative color, the field SHALL be null.

11.1.4.4. CapabilityMinimaStruct Type

This structure provides constant values related to overall global capabilities of this Node, that are
not cluster-specific.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 657

ID Name Type Constraint Quality Default Access Confor
mance

0 CaseSes
sionsPer
Fabric

uint16 min 3 3 M

1 Subscrip
tionsPer
Fabric

uint16 min 3 3 M

CaseSessionsPerFabric Field

This field SHALL indicate the actual minimum number of concurrent CASE sessions that are sup
ported per fabric.

This value SHALL NOT be smaller than the required minimum indicated in Section 4.14.2.8, “Mini
mal Number of CASE Sessions”.

SubscriptionsPerFabric Field

This field SHALL indicate the actual minimum number of concurrent subscriptions supported per
fabric.

This value SHALL NOT be smaller than the required minimum indicated in Section 8.5.1, “Subscribe
Transaction”.

11.1.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 DataMod
elRevision

uint16 desc F MS R V M

0x0001 Vendor
Name

string max 32 F MS R V M

0x0002 VendorID vendor-id all F MS R V M

0x0003 Product
Name

string max 32 F MS R V M

0x0004 ProductID uint16 all F MS R V M

0x0005 NodeLabel string max 32 N "" RW VM M

0x0006 Location string 2 N "XX" RW VA M

0x0007 Hardware
Version

uint16 all F 0 R V M

0x0008 Hardware
Version
String

string 1 to 64 F MS R V M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 658 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0009 Software
Version

uint32 desc F 0 R V M

0x000A Software
Version
String

string 1 to 64 F MS R V M

0x000B Manufac
turing
Date

string 8 to 16 F MS R V O

0x000C PartNum
ber

string max 32 F MS R V O

0x000D Produc
tURL

string max 256 F MS R V O

0x000E Product
Label

string max 64 F MS R V O

0x000F Serial
Number

string max 32 F MS R V O

0x0010 LocalCon
figDis
abled

bool all N False RW VM O

0x0011 Reachable bool all True R V O

0x0012 UniqueID string max 32 F MS R V O

0x0013 Capabili
tyMinima

Capabili
tyMini
maStruct

all F MS R V M

0x0014 Produc
tAppear
ance

ProductAp
pearanceS
truct

all F MS R V O

0x0015 Specifica
tionVer
sion

uint32 desc F 0 R V M

0x0016 Max
PathsPer
Invoke

uint16 min 1 F 1 R V M

11.1.5.1. DataModelRevision Attribute

This attribute SHALL be set to the revision number of the Data Model against which the Node is cer
tified. The value of this attribute SHALL be one of the valid values listed in Section 7.1.1, “Revision
History”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 659

11.1.5.2. VendorName Attribute

This attribute SHALL specify a human readable (displayable) name of the vendor for the Node.

11.1.5.3. VendorID Attribute

This attribute SHALL specify the Vendor ID.

11.1.5.4. ProductName Attribute

This attribute SHALL specify a human readable (displayable) name of the model for the Node such
as the model number (or other identifier) assigned by the vendor.

11.1.5.5. ProductID Attribute

This attribute SHALL specify the Product ID assigned by the vendor that is unique to the specific
product of the Node.

11.1.5.6. NodeLabel Attribute

This attribute SHALL represent a user defined name for the Node. This attribute SHOULD be set
during initial commissioning and MAY be updated by further reconfigurations.

11.1.5.7. Location Attribute

This attribute SHALL be an ISO 3166-1 alpha-2 code to represent the country, dependent territory,
or special area of geographic interest in which the Node is located at the time of the attribute being
set. This attribute SHALL be set during initial commissioning (unless already set) and MAY be
updated by further reconfigurations. This attribute MAY affect some regulatory aspects of the
Node’s operation, such as radio transmission power levels in given spectrum allocation bands if
technologies where this is applicable are used. The Location’s region code SHALL be interpreted in
a case-insensitive manner. If the Node cannot understand the location code with which it was con
figured, or the location code has not yet been configured, it SHALL configure itself in a region-
agnostic manner as determined by the vendor, avoiding region-specific assumptions as much as is
practical. The special value XX SHALL indicate that region-agnostic mode is used.

11.1.5.8. HardwareVersion Attribute

This attribute SHALL specify the version number of the hardware of the Node. The meaning of its
value, and the versioning scheme, are vendor defined.

11.1.5.9. HardwareVersionString Attribute

This attribute SHALL specify the version number of the hardware of the Node. The meaning of its
value, and the versioning scheme, are vendor defined. The HardwareVersionString attribute SHALL
be used to provide a more user-friendly value than that represented by the HardwareVersion
attribute.

11.1.5.10. SoftwareVersion Attribute

This attribute SHALL contain the current version number for the software running on this Node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 660 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The version number can be compared using a total ordering to determine if a version is logically
newer than another one. A larger value of SoftwareVersion is newer than a lower value, from the
perspective of software updates (see Section 11.20.3.3, “Availability of Software Images”). Nodes
MAY query this field to determine the currently running version of software on another given
Node.

11.1.5.11. SoftwareVersionString Attribute

This attribute SHALL contain a current human-readable representation for the software running
on the Node. This version information MAY be conveyed to users. The maximum length of the Soft
wareVersionString attribute is 64 bytes of UTF-8 characters. The contents SHOULD only use simple
7-bit ASCII alphanumeric and punctuation characters, so as to simplify the conveyance of the value
to a variety of cultures.

Examples of version strings include "1.0", "1.2.3456", "1.2-2", "1.0b123", "1.2_3".

11.1.5.12. ManufacturingDate Attribute

This attribute SHALL specify the date that the Node was manufactured. The first 8 characters
SHALL specify the date of manufacture of the Node in international date notation according to ISO
8601, i.e., YYYYMMDD, e.g., 20060814. The final 8 characters MAY include country, factory, line, shift
or other related information at the option of the vendor. The format of this information is vendor
defined.

11.1.5.13. PartNumber Attribute

This attribute SHALL specify a human-readable (displayable) vendor assigned part number for the
Node whose meaning and numbering scheme is vendor defined.
Multiple products (and hence PartNumbers) can share a ProductID. For instance, there may be dif
ferent packaging (with different PartNumbers) for different regions; also different colors of a prod
uct might share the ProductID but may have a different PartNumber.

11.1.5.14. ProductURL Attribute

This attribute SHALL specify a link to a product specific web page. The syntax of the ProductURL
attribute SHALL follow the syntax as specified in RFC 3986 [https://tools.ietf.org/html/rfc3986]. The speci
fied URL SHOULD resolve to a maintained web page available for the lifetime of the product. The
maximum length of the ProductUrl attribute is 256 ASCII characters.

11.1.5.15. ProductLabel Attribute

This attribute SHALL specify a vendor specific human readable (displayable) product label. The
ProductLabel attribute MAY be used to provide a more user-friendly value than that represented by
the ProductName attribute. The ProductLabel attribute SHOULD NOT include the name of the ven
dor as defined within the VendorName attribute.

11.1.5.16. SerialNumber Attribute

This attribute SHALL specify a human readable (displayable) serial number.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 661

https://tools.ietf.org/html/rfc3986

11.1.5.17. LocalConfigDisabled Attribute

This attribute SHALL allow a local Node configuration to be disabled. When this attribute is set to
True the Node SHALL disable the ability to configure the Node through an on-Node user interface.
The value of the LocalConfigDisabled attribute SHALL NOT in any way modify, disable, or otherwise
affect the user’s ability to trigger a factory reset on the Node.

11.1.5.18. Reachable Attribute

This attribute (when used) SHALL indicate whether the Node can be reached. For a native Node this
is implicitly True (and its use is optional).
Its main use case is in the derived Bridged Device Basic Information cluster where it is used to indi
cate whether the bridged device is reachable by the bridge over the non-native network.

11.1.5.19. UniqueID Attribute

This attribute (when used) SHALL indicate a unique identifier for the device, which is constructed
in a manufacturer specific manner.
It MAY be constructed using a permanent device identifier (such as device MAC address) as basis.
In order to prevent tracking,

• it SHOULD NOT be identical to (or easily derived from) such permanent device identifier

• it SHOULD be updated when the device is factory reset

• it SHALL not be identical to the SerialNumber attribute

• it SHALL not be printed on the product or delivered with the product

The value does not need to be human readable.

11.1.5.20. CapabilityMinima Attribute

This attribute SHALL provide the minimum guaranteed value for some system-wide resource capa
bilities that are not otherwise cluster-specific and do not appear elsewhere. This attribute MAY be
used by clients to optimize communication with Nodes by allowing them to use more than the strict
minimum values required by this specification, wherever available.

The values supported by the server in reality MAY be larger than the values provided in this
attribute, such as if a server is not resource-constrained at all. However, clients SHOULD only rely
on the amounts provided in this attribute.

Note that since the fixed values within this attribute MAY change over time, both increasing and
decreasing, as software versions change for a given Node, clients SHOULD take care not to assume
forever unchanging values and SHOULD NOT cache this value permanently at Commissioning time.

11.1.5.21. ProductAppearance Attribute

This attribute SHALL provide information about the appearance of the product, which could be
useful to a user trying to locate or identify the node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 662 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.1.5.22. SpecificationVersion Attribute

This attribute SHALL contain the current version number for the specification version this Node
was certified against. The version number can be compared using a total ordering to determine if a
version is logically newer than another one. A larger value of SpecificationVersion is newer than a
lower value.

Nodes MAY query this field to determine the currently supported version of the specification on
another given Node.

The format of this number is segmented as its four component bytes.

Bit positions for the fields are as follows:

Bits Name Summary

31 .. 24 Major Major version of specification.

23 .. 16 Minor Minor version of specification.

15 .. 8 Patch Patch version of the specifica
tion.

7 .. 0 Reserved1 Future reserved version field 1,
set to 0 until defined.

For example, a SpecificationVersion value of 0x0102AA00 is composed of 4 version components,
representing a version 1.2.170.0.

In the example above:

• Major version is the uppermost byte (0x01).

• Minor version is the following byte (0x02).

• Patch version is 170/0xAA.

• Reserved1 value is 0.

The initial revision (1.0) of this specification (1.0) was 0x01000000. Matter Spring 2024 release (1.3)
was 0x01030000.

If the SpecificationVersion is absent or zero, such as in Basic Information cluster revisions prior to
Revision 3, the specification version cannot be properly inferred unless other heuristics are
employed.

Comparison of SpecificationVersion SHALL always include the total value over 32 bits, without
masking reserved parts.

11.1.5.23. MaxPathsPerInvoke Attribute

This attribute SHALL indicate the maximum number of elements in a single InvokeRequests list
(see Section 8.8.2, “Invoke Request Action”) that the Node is able to process. Note that since this
attribute MAY change over time, both increasing and decreasing, as software versions change for a
given Node, clients SHOULD take care not to assume forever unchanging values and SHOULD NOT

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 663

cache this value permanently at Commissioning time.

If the MaxPathsPerInvoke attribute is absent or zero, such as in Basic Information cluster revisions
prior to Revision 3, clients SHALL assume a value of 1.

11.1.6. Events

ID Name Priority Access Conformance

0x00 StartUp CRITICAL V M

0x01 ShutDown CRITICAL V O

0x02 Leave INFO V O

0x03 Reach
ableChanged

INFO V desc

11.1.6.1. StartUp Event

The StartUp event SHALL be generated by a Node as soon as reasonable after completing a boot or
reboot process. The StartUp event SHOULD be the first Data Model event recorded by the Node after
it completes a boot or reboot process.

The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Software
Version

uint32 M

SoftwareVersion Field

This field SHALL be set to the same value as the one available in the SoftwareVersion attribute.

11.1.6.2. ShutDown Event

The ShutDown event SHOULD be generated by a Node prior to any orderly shutdown sequence on a
best-effort basis. When a ShutDown event is generated, it SHOULD be the last Data Model event
recorded by the Node. This event SHOULD be delivered urgently to current subscribers on a best-
effort basis. Any subsequent incoming interactions to the Node MAY be dropped until the comple
tion of a future boot or reboot process.

11.1.6.3. Leave Event

The Leave event SHOULD be generated by a Node prior to permanently leaving a given Fabric, such
as when the RemoveFabric command is invoked for a given fabric, or triggered by factory reset or
some other manufacturer specific action to disable or reset the operational data in the Node. When
a Leave event is generated, it SHOULD be assumed that the fabric recorded in the event is no longer
usable, and subsequent interactions targeting that fabric will most likely fail.

Upon receipt of Leave Event on a subscription, the receiving Node MAY update other nodes in the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 664 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

fabric by removing related bindings, access control list entries and other data referencing the leav
ing Node.

The data of this event SHALL contain the following information:

ID Field Type Constraint Quality Default Confor
mance

0 FabricIndex fabric-idx 1 to 254 M

FabricIndex Field

This field SHALL contain the local Fabric Index of the fabric which the node is about to leave.

11.1.6.4. ReachableChanged Event

This event SHALL be supported if and only if the Reachable attribute is supported.
This event (when supported) SHALL be generated when there is a change in the Reachable
attribute.
Its main use case is in the derived Bridged Device Basic Information cluster.
The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Reachable
NewValue

bool M

ReachableNewValue Field

This field SHALL indicate the value of the Reachable attribute after it was changed.

11.2. Group Key Management Cluster
The Group Key Management cluster manages group keys for the node. The cluster is scoped to the
node and is a singleton for the node. This cluster maintains a list of groups supported by the node.
Each group list entry supports a single group, with a single group ID and single group key. Duplicate
groups are not allowed in the list. Additions or removal of a group entry are performed via modifi
cations of the list. Such modifications require Administer privilege.

Each group entry includes a membership list of zero of more endpoints that are members of the
group on the node. Modification of this membership list is done via the Groups cluster, which is
scoped to an endpoint. Please see the System Model specification for more information on groups.

11.2.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 665

Revision Description

1 Initial Release

2 Clarify KeySetWrite validation and behavior on
invalid epoch key lengths

11.2.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node GRPKEY

11.2.3. Cluster ID

ID Name

0x003F GroupKeyManagement

11.2.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 CS CacheAndSync The ability to support
CacheAndSync security
policy and MCSP.

11.2.5. Data Types

11.2.5.1. GroupKeySecurityPolicyEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 TrustFirst Message counter syn
chronization using
trust-first

M

1 CacheAndSync Message counter syn
chronization using
cache-and-sync

CS

11.2.5.2. GroupKeyMulticastPolicyEnum Type

This data type is derived from enum8.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 666 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

0 PerGroupID Indicates filtering of
multicast messages for
a specific Group ID

M

1 AllNodes Indicates not filtering
of multicast messages

M

PerGroupID Value

The 16-bit Group Identifier of the Multicast Address SHALL be the Group ID of the group.

AllNodes Value

The 16-bit Group Identifier of the Multicast Address SHALL be 0xFFFF.

11.2.5.3. GroupKeyMapStruct Type

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 GroupId group-id all M

2 GroupKey
SetID

uint16 1 to 65535 M

GroupId Field

This field uniquely identifies the group within the scope of the given Fabric.

GroupKeySetID Field

This field references the set of group keys that generate operational group keys for use with this
group, as specified in Section 4.16.3.5.1, “Group Key Set ID”.

A GroupKeyMapStruct SHALL NOT accept GroupKeySetID of 0, which is reserved for the IPK.

11.2.5.4. GroupKeySetStruct Type

ID Name Type Constraint Quality Default Access Confor
mance

0 GroupKey
SetID

uint16 all M

1 GroupKey
Security
Policy

GroupKey
Security
Poli
cyEnum

all S M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 667

ID Name Type Constraint Quality Default Access Confor
mance

2 EpochKey
0

octstr 16 X S M

3 EpochStar
tTime0

epoch-us all X S M

4 EpochKey
1

octstr 16 X S M

5 EpochStar
tTime1

epoch-us all X S M

6 EpochKey
2

octstr 16 X S M

7 EpochStar
tTime2

epoch-us all X S M

8 GroupKey
Multicast
Policy

GroupKey
Multicast
Poli
cyEnum

all S P, M

GroupKeySetID Field

This field SHALL provide the fabric-unique index for the associated group key set, as specified in
Section 4.16.3.5.1, “Group Key Set ID”.

GroupKeySecurityPolicy Field

This field SHALL provide the security policy for an operational group key set.

When CacheAndSync is not supported in the FeatureMap of this cluster, any action attempting to
set CacheAndSync in the GroupKeySecurityPolicy field SHALL fail with an INVALID_COMMAND
error.

EpochKey0 Field

This field, if not null, SHALL be the root credential used in the derivation of an operational group
key for epoch slot 0 of the given group key set. If EpochKey0 is not null, EpochStartTime0 SHALL
NOT be null.

EpochStartTime0 Field

This field, if not null, SHALL define when EpochKey0 becomes valid as specified by Section 4.16.3,
“Epoch Keys”. Units are absolute UTC time in microseconds encoded using the epoch-us representa
tion.

EpochKey1 Field

This field, if not null, SHALL be the root credential used in the derivation of an operational group

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 668 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

key for epoch slot 1 of the given group key set. If EpochKey1 is not null, EpochStartTime1 SHALL
NOT be null.

EpochStartTime1 Field

This field, if not null, SHALL define when EpochKey1 becomes valid as specified by Section 4.16.3,
“Epoch Keys”. Units are absolute UTC time in microseconds encoded using the epoch-us representa
tion.

EpochKey2 Field

This field, if not null, SHALL be the root credential used in the derivation of an operational group
key for epoch slot 2 of the given group key set. If EpochKey2 is not null, EpochStartTime2 SHALL
NOT be null.

EpochStartTime2 Field

This field, if not null, SHALL define when EpochKey2 becomes valid as specified by Section 4.16.3,
“Epoch Keys”. Units are absolute UTC time in microseconds encoded using the epoch-us representa
tion.

GroupKeyMulticastPolicy Field

This field specifies how the IPv6 Multicast Address SHALL be formed for groups using this opera
tional group key set.

The PerGroupID method maximizes filtering of multicast messages, so that receiving nodes receive
only multicast messages for groups to which they are subscribed.

The AllNodes method minimizes the number of multicast addresses to which a receiver node needs
to subscribe.

NOTE
Support for GroupKeyMulticastPolicy is provisional. Correct default behavior is that
implied by value PerGroupID.

11.2.5.5. GroupInfoMapStruct Type

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 GroupId group-id all M

2 Endpoints list[end
point-no]

min 1 M

3 Group
Name

string max 16 O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 669

GroupId Field

This field uniquely identifies the group within the scope of the given Fabric.

Endpoints Field

This field provides the list of Endpoint IDs on the Node to which messages to this group SHALL be
forwarded.

GroupName Field

This field provides a name for the group. This field SHALL contain the last GroupName written for
a given GroupId on any Endpoint via the Groups cluster.

11.2.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Group
KeyMap

list[Group
KeyMap
Struct]

desc N empty RW VM F M

0x0001 GroupT
able

list[GroupI
nfoMap
Struct]

desc empty R V F M

0x0002 Max
GroupsPer
Fabric

uint16 all F 0 R V M

0x0003 Max
Group
KeysPer
Fabric

uint16 1 to 65535 F 1 R V M

11.2.6.1. GroupKeyMap Attribute

This attribute is a list of GroupKeyMapStruct entries. Each entry associates a logical Group Id with a
particular group key set.

11.2.6.2. GroupTable Attribute

This attribute is a list of GroupInfoMapStruct entries. Each entry provides read-only information
about how a given logical Group ID maps to a particular set of endpoints, and a name for the group.
The content of this attribute reflects data managed via the Groups cluster (see AppClusters), and is
in general terms referred to as the 'node-wide Group Table'.

The GroupTable SHALL NOT contain any entry whose GroupInfoMapStruct has an empty Endpoints
list. If a RemoveGroup or RemoveAllGroups command causes the removal of a group mapping from
its last mapped endpoint, the entire GroupTable entry for that given GroupId SHALL be removed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 670 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.2.6.3. MaxGroupsPerFabric Attribute

This attribute SHALL indicate the maximum number of groups that this node supports per fabric.
The value of this attribute SHALL be set to be no less than the required minimum supported groups
as specified in Group Limits. The length of the GroupKeyMap and GroupTable list attributes SHALL
NOT exceed the value of the MaxGroupsPerFabric attribute multiplied by the number of supported
fabrics.

11.2.6.4. MaxGroupKeysPerFabric Attribute

This attribute SHALL indicate the maximum number of group key sets this node supports per fab
ric. The value of this attribute SHALL be set according to the minimum number of group key sets to
support as specified in Group Limits.

11.2.7. Commands

All commands in this cluster SHALL be scoped to the accessing fabric.

ID Name Direction Response Access Conformance

0x00 KeySetWrite client ⇒ server Y A F M

0x01 KeySetRead client ⇒ server KeySetRead
Response

A F M

0x02 KeySetRead
Response

client ⇐ server N M

0x03 KeySe
tRemove

client ⇒ server Y A F M

0x04 KeySe
tReadAllIndic
es

client ⇒ server KeySe
tReadAllIndice
sResponse

A F M

0x05 KeySe
tReadAllIndic
esResponse

client ⇐ server N M

11.2.7.1. KeySetWrite Command

This command is used by Administrators to set the state of a given Group Key Set, including atomi
cally updating the state of all epoch keys.

ID Name Type Constraint Quality Default Confor
mance

0 GroupKey
Set

GroupKey
SetStruct

M

Effect on Receipt

The following validations SHALL be done against the content of the GroupKeySet field:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 671

• If the EpochKey0 field is null or its associated EpochStartTime0 field is null, then this command
SHALL fail with an INVALID_COMMAND status code responded to the client.

• If the EpochKey0 field’s length is not exactly 16 bytes, then this command SHALL fail with a
CONSTRAINT_ERROR status code responded to the client.

• If the EpochStartTime0 is set to 0, then this command SHALL fail with an INVALID_COMMAND
status code responded to the client. Note that internally, a GroupKeySetStruct’s EpochStartTime0
MAY be set to zero, due to the behavior of the AddNOC command which synthesizes a Group
KeySetStruct (see IPKValue). However, the value 0 is illegal in the GroupKeySet field sent by a
client.

• If the EpochKey1 field is not null, then the EpochKey0 field SHALL NOT be null. Otherwise this
command SHALL fail with an INVALID_COMMAND status code responded to the client.

• If the EpochKey1 field is not null, and the field’s length is not exactly 16 bytes, then this com
mand SHALL fail with a CONSTRAINT_ERROR status code responded to the client.

• If the EpochKey1 field is not null, its associated EpochStartTime1 field SHALL NOT be null and
SHALL contain a later epoch start time than the epoch start time found in the EpochStartTime0
field. Otherwise this command SHALL fail with an INVALID_COMMAND status code responded
to the client.

• If exactly one of the EpochKey1 or EpochStartTime1 is null, rather than both being null, or nei
ther being null, then this command SHALL fail with an INVALID_COMMAND status code
responded to the client.

• If the EpochKey2 field is not null, then the EpochKey1 and EpochKey0 fields SHALL NOT be null.
Otherwise this command SHALL fail with an INVALID_COMMAND status code responded to the
client.

• If the EpochKey2 field is not null, and the field’s length is not exactly 16 bytes, then this com
mand SHALL fail with a CONSTRAINT_ERROR status code responded to the client.

• If the EpochKey2 field is not null, its associated EpochStartTime2 field SHALL NOT be null and
SHALL contain a later epoch start time than the epoch start time found in the EpochStartTime1
field. Otherwise this command SHALL fail with an INVALID_COMMAND status code responded
to the client.

• If exactly one of the EpochKey2 or EpochStartTime2 is null, rather than both being null, or nei
ther being null, then this command SHALL fail with an INVALID_COMMAND status code
responded to the client.

If there exists a Group Key Set associated with the accessing fabric which has the same GroupKey
SetID as that provided in the GroupKeySet field, then the contents of that group key set SHALL be
replaced. A replacement SHALL be done by executing the equivalent of entirely removing the pre
vious Group Key Set with the given GroupKeySetID, followed by an addition of a Group Key Set with
the provided configuration. Otherwise, if the GroupKeySetID did not match an existing entry, a new
Group Key Set associated with the accessing fabric SHALL be created with the provided data. The
Group Key Set SHALL be written to non-volatile storage.

Upon completion, this command SHALL send a status code back to the initiator:

• If the Group Key Set was properly installed or updated on the Node, the status code SHALL be

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 672 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

set to SUCCESS.

• If there are insufficient resources on the receiver to store an additional Group Key Set, the sta
tus code SHALL be set to RESOURCE_EXHAUSTED (see group key limits);

• Otherwise, this status code SHALL be set to FAILURE.

11.2.7.2. KeySetRead Command

This command is used by Administrators to read the state of a given Group Key Set.

ID Name Type Constraint Quality Default Confor
mance

0 GroupKey
SetID

uint16 all M

Effect on Receipt

If there exists a Group Key Set associated with the accessing fabric which has the same GroupKey
SetID as that provided in the GroupKeySetID field, then the contents of that Group Key Set SHALL
be sent in a KeySetReadResponse command, but with the EpochKey0, EpochKey1 and EpochKey2
fields replaced by null.

Otherwise, if the GroupKeySetID does not refer to a Group Key Set associated with the accessing
fabric, then this command SHALL fail with a NOT_FOUND status code.

11.2.7.3. KeySetReadResponse Command

This command SHALL be generated in response to the KeySetRead command, if a valid Group Key
Set was found. It SHALL contain the configuration of the requested Group Key Set, with the
EpochKey0, EpochKey1 and EpochKey2 key contents replaced by null.

ID Name Type Constraint Quality Default Confor
mance

0 GroupKey
Set

GroupKey
SetStruct

M

11.2.7.4. KeySetRemove Command

This command is used by Administrators to remove all state of a given Group Key Set.

ID Name Type Constraint Quality Default Confor
mance

0 GroupKey
SetID

uint16 all M

Effect on Receipt

If there exists a Group Key Set associated with the accessing fabric which has the same GroupKey

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 673

SetID as that provided in the GroupKeySetID field, then the contents of that Group Key Set SHALL
be removed, including all epoch keys it contains.

If there exist any entries for the accessing fabric within the GroupKeyMap attribute that refer to the
GroupKeySetID just removed, then these entries SHALL be removed from that list.

This command SHALL fail with an INVALID_COMMAND status code back to the initiator if the
GroupKeySetID being removed is 0, which is the Key Set associated with the Identity Protection Key
(IPK). The only method to remove the IPK is usage of the RemoveFabric command or any operation
which causes the equivalent of a RemoveFabric to occur by side-effect.

This command SHALL send a SUCCESS status code back to the initiator on success, or NOT_FOUND
if the GroupKeySetID requested did not exist.

11.2.7.5. KeySetReadAllIndices Command

This command is used by Administrators to query a list of all Group Key Sets associated with the
accessing fabric.

ID Name Type Constraint Quality Default Confor
mance

0 reserved X

NOTE Field 0 for this command is reserved and SHALL NOT be used.

Effect on Receipt

Upon receipt, this command SHALL iterate all stored GroupKeySetStruct associated with the access
ing fabric and generate a KeySetReadAllIndicesResponse command containing the list of GroupKey
SetID values from those structs.

11.2.7.6. KeySetReadAllIndicesResponse Command

This command SHALL be generated in response to KeySetReadAllIndices and it SHALL contain the
list of GroupKeySetID for all Group Key Sets associated with the scoped Fabric.

ID Name Type Constraint Quality Default Confor
mance

0 GroupKey
SetIDs

list[uint16] M

GroupKeySetIDs Field

This field references the set of group keys that generate operational group keys for use with the
accessing fabric.

Each entry in GroupKeySetIDs is a GroupKeySetID field.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 674 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.3. Localization Configuration Cluster
Nodes should be expected to be deployed to any and all regions of the world. These global regions
may have differing common languages, units of measurements, and numerical formatting stan
dards. As such, Nodes that visually or audibly convey information need a mechanism by which they
can be configured to use a user’s preferred language, units, etc.

This cluster supports an interface to a Node. It provides attributes for determining and configuring
localization information that a Node SHALL utilize when conveying values to a user.

11.3.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.3.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node LCFG

11.3.3. Cluster ID

ID Name

0x002B Localization Configuration

11.3.4. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 ActiveLo
cale

string max 35 N MS RW VM M

0x0001 Support
edLocales

list[string] max
32[max 35]

F MS R V M

11.3.4.1. ActiveLocale Attribute

The ActiveLocale attribute SHALL represent the locale that the Node is currently configured to use
when conveying information. The ActiveLocale attribute SHALL be a Language Tag as defined by
BCP47 [https://tools.ietf.org/rfc/bcp/bcp47.txt]. The ActiveLocale attribute SHALL have a default value
assigned by the Vendor and SHALL be a value contained within the SupportedLocales attribute.

An attempt to write a value to ActiveLocale that is not present in SupportedLocales SHALL result in

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 675

https://tools.ietf.org/rfc/bcp/bcp47.txt

a CONSTRAINT_ERROR error.

11.3.4.2. SupportedLocales Attribute

The SupportedLocales attribute SHALL represent a list of locale strings that are valid values for the
ActiveLocale attribute. The list SHALL NOT contain any duplicate entries. The ordering of items
within the list SHOULD NOT express any meaning.

11.4. Time Format Localization Cluster
Nodes should be expected to be deployed to any and all regions of the world. These global regions
may have differing preferences for how dates and times are conveyed. As such, Nodes that visually
or audibly convey time information need a mechanism by which they can be configured to use a
user’s preferred format.

This cluster supports an interface to a Node. It provides attributes for determining and configuring
time and date formatting information that a Node SHALL utilize when conveying values to a user.

11.4.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.4.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node LTIME

11.4.3. Cluster ID

ID Name

0x002C Time Format Localization

11.4.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 CALFMT CalendarFormat The Node can be con
figured to use different
calendar formats when
conveying values to a
user.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 676 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.4.5. Data Types

11.4.5.1. HourFormatEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 12hr Time conveyed with a
12-hour clock

M

1 24hr Time conveyed with a
24-hour clock

M

255 UseActiveLocale Use active locale clock M

11.4.5.2. CalendarTypeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Buddhist Dates conveyed using
the Buddhist calendar

O.a+

1 Chinese Dates conveyed using
the Chinese calendar

O.a+

2 Coptic Dates conveyed using
the Coptic calendar

O.a+

3 Ethiopian Dates conveyed using
the Ethiopian calendar

O.a+

4 Gregorian Dates conveyed using
the Gregorian calendar

O.a+

5 Hebrew Dates conveyed using
the Hebrew calendar

O.a+

6 Indian Dates conveyed using
the Indian calendar

O.a+

7 Islamic Dates conveyed using
the Islamic calendar

O.a+

8 Japanese Dates conveyed using
the Japanese calendar

O.a+

9 Korean Dates conveyed using
the Korean calendar

O.a+

10 Persian Dates conveyed using
the Persian calendar

O.a+

11 Taiwanese Dates conveyed using
the Taiwanese calendar

O.a+

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 677

Value Name Summary Conformance

255 UseActiveLocale calendar implied from
active locale

O.a+

11.4.6. Attributes

ID Name Type Constraint Quality Access Default Confor
mance

0x0000 HourFor
mat

HourFor
matEnum

all N RW VM M

0x0001 ActiveCal
endarType

Calendar
TypeEnum

all N RW VM CALFMT

0x0002 Support
edCalen
darTypes

list[Calen
darType
Enum]

desc F R V N/A CALFMT

11.4.6.1. HourFormat Attribute

This attribute SHALL represent the format that the Node is currently configured to use when con
veying the hour unit of time.

If not UseActiveLocale, this value SHALL take priority over any unit implied through the ActiveLo
cale attribute.
If UseActiveLocale, any unit implied through the ActiveLocale attribute is used as the hour format,
and if ActiveLocale is not present, the hour format is unknown.

11.4.6.2. ActiveCalendarType Attribute

This attribute SHALL represent the calendar format that the Node is currently configured to use
when conveying dates.

If not UseActiveLocale, this value SHALL take priority over any unit implied through the ActiveLo
cale attribute.
If UseActiveLocale, any unit implied through the ActiveLocale attribute is used as the calendar type,
and if ActiveLocale is not present, the calendar type is unknown.

11.4.6.3. SupportedCalendarTypes Attribute

This attribute SHALL represent a list of CalendarTypeEnum values that are supported by the Node.
The list SHALL NOT contain any duplicate entries. The ordering of items within the list SHOULD
NOT express any meaning. The maximum length of the SupportedCalendarTypes list SHALL be
equivalent to the number of enumerations within CalendarTypeEnum.

11.5. Unit Localization Cluster
Nodes should be expected to be deployed to any and all regions of the world. These global regions
may have differing preferences for the units in which values are conveyed in communication to a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 678 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

user. As such, Nodes that visually or audibly convey measurable values to the user need a mecha
nism by which they can be configured to use a user’s preferred unit.

This cluster supports an interface to a Node. It provides attributes for determining and configuring
the units that a Node SHALL utilize when conveying values in communication to a user.

11.5.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.5.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node LUNIT

11.5.3. Cluster ID

ID Name

0x002D Unit Localization

11.5.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 TEMP TemperatureUnit The Node can be con
figured to use different
units of temperature
when conveying values
to a user.

11.5.5. Data Types

11.5.5.1. TempUnitEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Fahrenheit Temperature conveyed
in Fahrenheit

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 679

Value Name Summary Conformance

1 Celsius Temperature conveyed
in Celsius

M

2 Kelvin Temperature conveyed
in Kelvin

M

11.5.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Tempera
tureUnit

Tem
pUnitEnu
m

all N RW VM TEMP

11.5.6.1. TemperatureUnit Attribute

The TemperatureUnit attribute SHALL indicate the unit for the Node to use only when conveying
temperature in communication to the user. If provided, this value SHALL take priority over any
unit implied through the ActiveLocale Attribute.

11.6. Power Source Configuration Cluster
This cluster is used to describe the configuration and capabilities of a Device’s power system. It pro
vides an ordering overview as well as linking to the one or more endpoints each supporting a
Power Source cluster.

11.6.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.6.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node PSCFG

11.6.3. Cluster ID

ID Name

0x002E Power Source Configuration

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 680 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.6.4. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Sources list[end
point-no]

max 6 N R V M

11.6.4.1. Sources Attribute

This list SHALL contain the set of all power sources capable of participating in the power system of
this Node. Each entry in the list SHALL be the endpoint number of an endpoint having a Power
Source cluster, which corresponds to a physical power source. The endpoint number SHALL be
unique within the list.

The order of power sources on a Node is defined by the Order attribute of its associated Power
Source cluster provided on the endpoint. List entries SHALL be sorted in increasing order, that is,
an entry with a lower order SHALL have a lower index than any entry with a higher order. Multiple
entries MAY have the same order, there are no restrictions on their relative sorting.

11.7. Power Source Cluster
This cluster is used to describe the configuration and capabilities of a physical power source that
provides power to one or more endpoints on a node. In case the node has multiple power sources,
each is described by its own cluster instance. Each instance of this cluster may be associated with
one or more endpoints or the entire node.

11.7.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Added EndpointList attribute that maps a power
source to a list of endpoints

11.7.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node PS

11.7.3. Cluster ID

ID Name

0x002F Power Source

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 681

11.7.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Conformance Summary

0 WIRED Wired O A wired power
source

1 BAT Battery O A battery power
source

2 RECHG Rechargeable [BAT] A rechargeable
battery power
source

3 REPLC Replaceable [BAT] A replaceable bat
tery power source

11.7.5. Dependencies

This cluster SHOULD be on an endpoint that supports a device type that requires this cluster. This
cluster SHOULD NOT be just added as an extra cluster to an endpoint to conserve endpoint
instances.

11.7.6. Data Types

11.7.6.1. WiredFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node detects an
unspecified fault on
this wired power
source.

M

1 OverVoltage The Node detects the
supplied voltage is
above maximum sup
ported value for this
wired power source.

M

2 UnderVoltage The Node detects the
supplied voltage is
below maximum sup
ported value for this
wired power source.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 682 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.7.6.2. BatFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node detects an
unspecified fault on
this battery power
source.

M

1 OverTemp The Node detects the
temperature of this bat
tery power source is
above ideal operating
conditions.

M

2 UnderTemp The Node detects the
temperature of this bat
tery power source is
below ideal operating
conditions.

M

11.7.6.3. BatChargeFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node detects an
unspecified fault on
this battery source.

M

1 AmbientTooHot The Node detects the
ambient temperature is
above the nominal
range for this battery
source.

M

2 AmbientTooCold The Node detects the
ambient temperature is
below the nominal
range for this battery
source.

M

3 BatteryTooHot The Node detects the
temperature of this bat
tery source is above the
nominal range.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 683

Value Name Summary Conformance

4 BatteryTooCold The Node detects the
temperature of this bat
tery source is below the
nominal range.

M

5 BatteryAbsent The Node detects this
battery source is not
present.

M

6 BatteryOverVoltage The Node detects this
battery source is over
voltage.

M

7 BatteryUnderVoltage The Node detects this
battery source is under
voltage.

M

8 ChargerOverVoltage The Node detects the
charger for this battery
source is over voltage.

M

9 ChargerUnderVoltage The Node detects the
charger for this battery
source is under voltage.

M

10 SafetyTimeout The Node detects a
charging safety timeout
for this battery source.

M

11.7.6.4. PowerSourceStatusEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified Indicate the source sta
tus is not specified

M

1 Active Indicate the source is
available and currently
supplying power

M

2 Standby Indicate the source is
available, but is not
currently supplying
power

M

3 Unavailable Indicate the source is
not currently available
to supply power

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 684 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.7.6.5. WiredCurrentTypeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 AC Indicates AC current M

1 DC Indicates DC current M

11.7.6.6. BatChargeLevelEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 OK Charge level is nominal M

1 Warning Charge level is low,
intervention may soon
be required.

M

2 Critical Charge level is critical,
immediate intervention
is required

M

11.7.6.7. BatReplaceabilityEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The replaceability is
unspecified or
unknown.

M

1 NotReplaceable The battery is not
replaceable.

M

2 UserReplaceable The battery is replace
able by the user or cus
tomer.

M

3 FactoryReplaceable The battery is replace
able by an authorized
factory technician.

M

11.7.6.8. BatCommonDesignationEnum Type

This data type is derived from enum16.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 685

Value Name Summary Conformance

0 Unspecified Common type is
unknown or unspeci
fied

M

1 AAA Common type is as
specified

M

2 AA Common type is as
specified

M

3 C Common type is as
specified

M

4 D Common type is as
specified

M

5 4v5 Common type is as
specified

M

6 6v0 Common type is as
specified

M

7 9v0 Common type is as
specified

M

8 1_2AA Common type is as
specified

M

9 AAAA Common type is as
specified

M

10 A Common type is as
specified

M

11 B Common type is as
specified

M

12 F Common type is as
specified

M

13 N Common type is as
specified

M

14 No6 Common type is as
specified

M

15 SubC Common type is as
specified

M

16 A23 Common type is as
specified

M

17 A27 Common type is as
specified

M

18 BA5800 Common type is as
specified

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 686 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

19 Duplex Common type is as
specified

M

20 4SR44 Common type is as
specified

M

21 523 Common type is as
specified

M

22 531 Common type is as
specified

M

23 15v0 Common type is as
specified

M

24 22v5 Common type is as
specified

M

25 30v0 Common type is as
specified

M

26 45v0 Common type is as
specified

M

27 67v5 Common type is as
specified

M

28 J Common type is as
specified

M

29 CR123A Common type is as
specified

M

30 CR2 Common type is as
specified

M

31 2CR5 Common type is as
specified

M

32 CR_P2 Common type is as
specified

M

33 CR_V3 Common type is as
specified

M

34 SR41 Common type is as
specified

M

35 SR43 Common type is as
specified

M

36 SR44 Common type is as
specified

M

37 SR45 Common type is as
specified

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 687

Value Name Summary Conformance

38 SR48 Common type is as
specified

M

39 SR54 Common type is as
specified

M

40 SR55 Common type is as
specified

M

41 SR57 Common type is as
specified

M

42 SR58 Common type is as
specified

M

43 SR59 Common type is as
specified

M

44 SR60 Common type is as
specified

M

45 SR63 Common type is as
specified

M

46 SR64 Common type is as
specified

M

47 SR65 Common type is as
specified

M

48 SR66 Common type is as
specified

M

49 SR67 Common type is as
specified

M

50 SR68 Common type is as
specified

M

51 SR69 Common type is as
specified

M

52 SR516 Common type is as
specified

M

53 SR731 Common type is as
specified

M

54 SR712 Common type is as
specified

M

55 LR932 Common type is as
specified

M

56 A5 Common type is as
specified

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 688 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

57 A10 Common type is as
specified

M

58 A13 Common type is as
specified

M

59 A312 Common type is as
specified

M

60 A675 Common type is as
specified

M

61 AC41E Common type is as
specified

M

62 10180 Common type is as
specified

M

63 10280 Common type is as
specified

M

64 10440 Common type is as
specified

M

65 14250 Common type is as
specified

M

66 14430 Common type is as
specified

M

67 14500 Common type is as
specified

M

68 14650 Common type is as
specified

M

69 15270 Common type is as
specified

M

70 16340 Common type is as
specified

M

71 RCR123A Common type is as
specified

M

72 17500 Common type is as
specified

M

73 17670 Common type is as
specified

M

74 18350 Common type is as
specified

M

75 18500 Common type is as
specified

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 689

Value Name Summary Conformance

76 18650 Common type is as
specified

M

77 19670 Common type is as
specified

M

78 25500 Common type is as
specified

M

79 26650 Common type is as
specified

M

80 32600 Common type is as
specified

M

11.7.6.9. BatApprovedChemistryEnum Type

This data type is derived from enum16.

Value Name Summary Conformance

0 Unspecified Cell chemistry is
unspecified or
unknown

M

1 Alkaline Cell chemistry is alka
line

M

2 LithiumCarbonFluo
ride

Cell chemistry is
lithium carbon fluoride

M

3 LithiumChromiumOx
ide

Cell chemistry is
lithium chromium
oxide

M

4 LithiumCopperOxide Cell chemistry is
lithium copper oxide

M

5 LithiumIronDisulfide Cell chemistry is
lithium iron disulfide

M

6 LithiumManganese
Dioxide

Cell chemistry is
lithium manganese
dioxide

M

7 LithiumThionylChlo
ride

Cell chemistry is
lithium thionyl chloride

M

8 Magnesium Cell chemistry is mag
nesium

M

9 MercuryOxide Cell chemistry is mer
cury oxide

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 690 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

10 NickelOxyhydride Cell chemistry is nickel
oxyhydride

M

11 SilverOxide Cell chemistry is silver
oxide

M

12 ZincAir Cell chemistry is zinc
air

M

13 ZincCarbon Cell chemistry is zinc
carbon

M

14 ZincChloride Cell chemistry is zinc
chloride

M

15 ZincManganeseDiox
ide

Cell chemistry is zinc
manganese dioxide

M

16 LeadAcid Cell chemistry is lead
acid

M

17 LithiumCobaltOxide Cell chemistry is
lithium cobalt oxide

M

18 LithiumIon Cell chemistry is
lithium ion

M

19 LithiumIonPolymer Cell chemistry is
lithium ion polymer

M

20 LithiumIronPhos
phate

Cell chemistry is
lithium iron phosphate

M

21 LithiumSulfur Cell chemistry is
lithium sulfur

M

22 LithiumTitanate Cell chemistry is
lithium titanate

M

23 NickelCadmium Cell chemistry is nickel
cadmium

M

24 NickelHydrogen Cell chemistry is nickel
hydrogen

M

25 NickelIron Cell chemistry is nickel
iron

M

26 NickelMetalHydride Cell chemistry is nickel
metal hydride

M

27 NickelZinc Cell chemistry is nickel
zinc

M

28 SilverZinc Cell chemistry is silver
zinc

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 691

Value Name Summary Conformance

29 SodiumIon Cell chemistry is
sodium ion

M

30 SodiumSulfur Cell chemistry is
sodium sulfur

M

31 ZincBromide Cell chemistry is zinc
bromide

M

32 ZincCerium Cell chemistry is zinc
cerium

M

11.7.6.10. BatChargeStateEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unknown Unable to determine
the charging state

M

1 IsCharging The battery is charging M

2 IsAtFullCharge The battery is at full
charge

M

3 IsNotCharging The battery is not
charging

M

11.7.7. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Status Power
SourceSta
tusEnum

desc R V M

0x0001 Order uint8 all N R V M

0x0002 Descrip
tion

string max 60 F R V M

0x0003 WiredAsse
ssedInput
Voltage

uint32 all X C R V [WIRED]

0x0004 WiredAsse
ssedInput
Frequency

uint16 all X C R V [WIRED]

0x0005 WiredCur
rentType

WiredCur
rentType
Enum

desc F R V WIRED

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 692 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0006 WiredAsse
ssedCur
rent

uint32 all X C R V [WIRED]

0x0007 Wired
Nominal
Voltage

uint32 all F R V [WIRED]

0x0008 Wired
Maxi
mumCur
rent

uint32 all F R V [WIRED]

0x0009 WiredPre
sent

bool all R V [WIRED]

0x000A ActiveWir
edFaults

list[Wired
Fault
Enum]

max 8 R V [WIRED]

0x000B BatVoltage uint32 all X C R V [BAT]

0x000C BatPer
centRemai
ning

uint8 0 to 200 X C R V [BAT]

0x000D Bat
TimeRe
maining

uint32 all X C R V [BAT]

0x000E BatCharge
Level

BatCharge
LevelEnum

desc R V BAT

0x000F BatRe
place
ment
Needed

bool all R V BAT

0x0010 BatRe
placeabil
ity

BatRe
placeabili
tyEnum

all F R V BAT

0x0011 BatPre
sent

bool all R V [BAT]

0x0012 ActiveBat
Faults

list[Bat
Fault
Enum]

max 8 R V [BAT]

0x0013 BatRe
place
mentDe
scription

string max 60 F R V REPLC

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 693

ID Name Type Constraint Quality Default Access Confor
mance

0x0014 BatCom
monDesig
nation

BatCom
monDesig
natio
nEnum

desc F R V [REPLC]

0x0015 BatANSID
esignation

string max 20 F R V [REPLC]

0x0016 BatIECDes
ignation

string max 20 F R V [REPLC]

0x0017 BatAp
proved
Chemistry

BatAp
proved
Chem
istryEnum

desc F R V [REPLC]

0x0018 BatCapac
ity

uint32 all F R V [REPLC |
RECHG]

0x0019 BatQuan
tity

uint8 all F R V REPLC

0x001A BatCharge
State

BatCharge
StateEnum

desc R V RECHG

0x001B Bat
TimeTo
FullCharg
e

uint32 all X C R V [RECHG]

0x001C BatFunc
tional
WhileChar
ging

bool all R V RECHG

0x001D BatCharg
ingCur
rent

uint32 all X C R V [RECHG]

0x001E Active
BatCharge
Faults

list[BatCha
rgeFault
Enum]

max 16 R V [RECHG]

0x001F End
pointList

list[end
point-no]

R V M

11.7.7.1. Status Attribute

This attribute SHALL indicate the participation of this power source in providing power to the Node
as specified in PowerSourceStatusEnum.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 694 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.7.7.2. Order Attribute

This attribute SHALL indicate the relative preference with which the Node will select this source to
provide power. A source with a lower order SHALL be selected by the Node to provide power
before any other source with a higher order, if the lower order source is available (see Status).

Note, Order is read-only and therefore NOT intended to allow clients control over power source
selection.

11.7.7.3. Description Attribute

This attribute SHALL provide a user-facing description of this source, used to distinguish it from
other power sources, e.g. "DC Power", "Primary Battery" or "Battery back-up". This attribute SHALL
NOT be used to convey information such as battery form factor, or chemistry.

11.7.7.4. WiredAssessedInputVoltage Attribute

This attribute SHALL indicate the assessed RMS or DC voltage currently provided by the hard-wired
source, in mV (millivolts). A value of NULL SHALL indicate the Node is currently unable to assess
the value. If the wired source is not connected, but the Node is still able to assess a value, then the
assessed value MAY be reported.

11.7.7.5. WiredAssessedInputFrequency Attribute

This attribute SHALL indicate the assessed frequency of the voltage, currently provided by the
hard-wired source, in Hz. A value of NULL SHALL indicate the Node is currently unable to assess
the value. If the wired source is not connected, but the Node is still able to assess a value, then the
assessed value MAY be reported.

11.7.7.6. WiredCurrentType Attribute

This attribute SHALL indicate the type of current the Node expects to be provided by the hard-
wired source as specified in WiredCurrentTypeEnum.

11.7.7.7. WiredAssessedCurrent Attribute

This attribute SHALL indicate the assessed instantaneous current draw of the Node on the hard-
wired source, in mA (milliamps). A value of NULL SHALL indicate the Node is currently unable to
assess the value. If the wired source is not connected, but the Node is still able to assess a value,
then the assessed value MAY be reported.

11.7.7.8. WiredNominalVoltage Attribute

This attribute SHALL indicate the nominal voltage, printed as part of the Node’s regulatory compli
ance label in mV (millivolts), expected to be provided by the hard-wired source.

11.7.7.9. WiredMaximumCurrent Attribute

This attribute SHALL indicate the maximum current, printed as part of the Node’s regulatory com
pliance label in mA (milliamps), expected to be provided by the hard-wired source.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 695

11.7.7.10. WiredPresent Attribute

This attribute SHALL indicate if the Node detects that the hard-wired power source is properly con
nected.

11.7.7.11. ActiveWiredFaults Attribute

This attribute SHALL indicate the set of wired faults currently detected by the Node on this power
source. This set is represented as a list of WiredFaultEnum. When the Node detects a fault has been
raised, the appropriate WiredFaultEnum value SHALL be added to this list, provided it is not
already present. This list SHALL NOT contain more than one instance of a specific WiredFaultEnum
value. When the Node detects all conditions contributing to a fault have been cleared, the corre
sponding WiredFaultEnum value SHALL be removed from this list. An empty list SHALL indicate
there are currently no active faults. The order of this list SHOULD have no significance. Clients
interested in monitoring changes in active faults MAY subscribe to this attribute, or they MAY sub
scribe to WiredFaultChange.

11.7.7.12. BatVoltage Attribute

This attribute SHALL indicate the currently measured output voltage of the battery in mV (milli
volts). A value of NULL SHALL indicate the Node is currently unable to assess the value.

11.7.7.13. BatPercentRemaining Attribute

This attribute SHALL indicate the estimated percentage of battery charge remaining until the bat
tery will no longer be able to provide power to the Node. Values are expressed in half percent units,
ranging from 0 to 200. E.g. a value of 48 is equivalent to 24%. A value of NULL SHALL indicate the
Node is currently unable to assess the value.

11.7.7.14. BatTimeRemaining Attribute

This attribute SHALL indicate the estimated time in seconds before the battery will no longer be
able to provide power to the Node. A value of NULL SHALL indicate the Node is currently unable to
assess the value.

11.7.7.15. BatChargeLevel Attribute

This attribute SHALL indicate a coarse ranking of the charge level of the battery, used to indicate
when intervention is required as specified in BatChargeLevelEnum.

11.7.7.16. BatReplacementNeeded Attribute

This attribute SHALL indicate if the battery needs to be replaced. Replacement MAY be simple rou
tine maintenance, such as with a single use, non-rechargeable cell. Replacement, however, MAY
also indicate end of life, or serious fault with a rechargeable or even non-replaceable cell.

11.7.7.17. BatReplaceability Attribute

This attribute SHALL indicate the replaceability of the battery as specified in BatReplaceabili
tyEnum.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 696 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.7.7.18. BatPresent Attribute

This attribute SHALL indicate whether the Node detects that the batteries are properly installed.

11.7.7.19. ActiveBatFaults Attribute

This attribute SHALL indicate the set of battery faults currently detected by the Node on this power
source. This set is represented as a list of BatFaultEnum. When the Node detects a fault has been
raised, the appropriate BatFaultEnum value SHALL be added to this list, provided it is not already
present. This list SHALL NOT contain more than one instance of a specific BatFaultEnum value.
When the Node detects all conditions contributing to a fault have been cleared, the corresponding
BatFaultEnum value SHALL be removed from this list. An empty list SHALL indicate there are cur
rently no active faults. The order of this list SHOULD have no significance. Clients interested in
monitoring changes in active faults MAY subscribe to this attribute, or they MAY subscribe to Bat
FaultChange.

11.7.7.20. BatReplacementDescription Attribute

This attribute SHALL provide a user-facing description of this battery, which SHOULD contain
information required to identify a replacement, such as form factor, chemistry or preferred manu
facturer.

11.7.7.21. BatCommonDesignation Attribute

This attribute SHALL indicate the ID of the common or colloquial designation of the battery, as
specified in BatCommonDesignationEnum.

11.7.7.22. BatANSIDesignation Attribute

This attribute SHALL indicate the string representing the ANSI designation for the battery as speci
fied in ANSI C18.

11.7.7.23. BatIECDesignation Attribute

This attribute SHALL indicate the string representing the IEC designation for the battery as speci
fied in IEC 60086.

11.7.7.24. BatApprovedChemistry Attribute

This attribute SHALL indicate the ID of the preferred chemistry of the battery source as specified in
BatApprovedChemistryEnum.

11.7.7.25. BatCapacity Attribute

This attribute SHALL indicate the preferred minimum charge capacity rating in mAh of individual,
user- or factory-serviceable battery cells or packs in the battery source.

11.7.7.26. BatQuantity Attribute

This attribute SHALL indicate the quantity of individual, user- or factory-serviceable battery cells
or packs in the battery source.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 697

11.7.7.27. BatChargeState Attribute

This attribute SHALL indicate the current state of the battery source with respect to charging as
specified in BatChargeStateEnum.

11.7.7.28. BatTimeToFullCharge Attribute

This attribute SHALL indicate the estimated time in seconds before the battery source will be at full
charge. A value of NULL SHALL indicate the Node is currently unable to assess the value.

11.7.7.29. BatFunctionalWhileCharging Attribute

This attribute SHALL indicate whether the Node can remain operational while the battery source is
charging.

11.7.7.30. BatChargingCurrent Attribute

This attribute SHALL indicate assessed current in mA (milliamps) presently supplied to charge the
battery source. A value of NULL SHALL indicate the Node is currently unable to assess the value.

11.7.7.31. ActiveBatChargeFaults Attribute

This attribute SHALL indicate the set of charge faults currently detected by the Node on this power
source. This set is represented as a list of BatChargeFaultEnum. When the Node detects a fault has
been raised, the appropriate BatChargeFaultEnum value SHALL be added to this list, provided it is
not already present. This list SHALL NOT contain more than one instance of a specific BatCharge
FaultEnum value. When the Node detects all conditions contributing to a fault have been cleared,
the corresponding BatChargeFaultEnum value SHALL be removed from this list. An empty list
SHALL indicate there are currently no active faults. The order of this list SHOULD have no signifi
cance. Clients interested in monitoring changes in active faults MAY subscribe to this attribute, or
they MAY subscribe to the BatFaultChange event.

11.7.7.32. EndpointList Attribute

This attribute SHALL indicate a list of endpoints that are powered by the source defined by this
cluster. Multiple instances of this cluster MAY list the same endpoint, because it is possible for
power for an endpoint to come from multiple sources. In that case the Order attribute indicates
their priority.

For each power source on a node, there SHALL only be one instance of this cluster.

A cluster instance with an empty list SHALL indicate that the power source is for the entire node,
which includes all endpoints.

A cluster instance with a non-empty list SHALL include the endpoint, upon which the cluster
instance resides.

The above rules allow that some endpoints can have an unknown power source, and therefore
would not be indicated by any instance of this cluster.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 698 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Legacy Implementations

Legacy implementations of this cluster before revision 2, before this attribute was defined,
would have implemented this cluster on an application endpoint without indicating it in End
pointList (since that attribute did not exist in revision 1), because it represented a power
source for the endpoint, not the entire node.

For example: Bridge implementations support endpoints for bridged devices that have differ
ent power sources.

Such implementations followed device type requirements and semantics outside of this clus
ter, because this attribute did not exist.

Future updates of such a cluster instance on the same endpoint, would allow that same end
point to be an entry in the EndpointList attribute. Therefore it is valid to list the endpoint
upon which the cluster instance exists.

Empty list examples

Typically, there is one power source for the node. Also common is mains power for the node
with battery backup power for the node. In both these common cases, for each cluster instance
described, the list is empty.

Populated list example

A node has a mains power source with Order as 0 (zero), but some application endpoints (not
all) have a battery back up source with Order as 1, which means this list is empty for the Power
Source cluster associated with the mains power, because it indicates the entire node, but the
Power Source cluster instance associated with the battery backup would list the endpoints that
have a battery backup.

11.7.8. Events

ID Name Priority Access Conformance

0x00 WiredFault
Change

INFO V [WIRED]

0x01 BatFaultChange INFO V [BAT]

0x02 BatChargeFault
Change

INFO V [RECHG]

11.7.8.1. WiredFaultChange Event

The WiredFaultChange Event SHALL be generated when the set of wired faults currently detected
by the Node on this wired power source changes. This event SHALL correspond to a change in
value of ActiveWiredFaults.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 699

ID Name Type Constraint Quality Default Confor
mance

0 Current list[Wired
FaultEnum]

max 8 empty M

1 Previous list[Wired
FaultEnum]

max 8 empty M

Current Field

This field SHALL represent the set of faults currently detected, as per ActiveWiredFaults.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per ActiveWired
Faults.

11.7.8.2. BatFaultChange Event

The BatFaultChange Event SHALL be generated when the set of battery faults currently detected by
the Node on this battery power source changes. This event SHALL correspond to a change in value
of ActiveBatFaults.

ID Name Type Constraint Quality Default Confor
mance

0 Current list[BatFault
Enum]

max 8 empty M

1 Previous list[BatFault
Enum]

max 8 empty M

Current Field

This field SHALL represent the set of faults currently detected, as per ActiveBatFaults.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per ActiveBat
Faults.

11.7.8.3. BatChargeFaultChange Event

The BatChargeFaultChange Event SHALL be generated when the set of charge faults currently
detected by the Node on this battery power source changes. This event SHALL correspond to a
change in value of ActiveBatChargeFaults.

ID Name Type Constraint Quality Default Confor
mance

0 Current list[BatCharg
eFaultEnum]

max 16 empty M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 700 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

1 Previous list[BatCharg
eFaultEnum]

max 16 empty M

Current Field

This field SHALL represent the set of faults currently detected, as per ActiveBatChargeFaults.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per Active
BatChargeFaults.

11.7.9. Configuration Examples

The following examples illustrate use of the Order attribute in the Power Source Cluster.

11.7.9.1. Example: Redundant Mains Power Sources

This example describes a design with symmetric, dual-redundant mains power sources, where the
system is powered by either one of the power sources. The Node must define two Power Source
Clusters, one for each mains source. The system indicates no preference for either source, so the
sources have the same Order.

Power Source (on Endpoint 2)

Description: "Mains A"
Order: 0

Power Source (on Endpoint 5)

Description: "Mains B"
Order: 0

11.7.9.2. Example: Battery with Mains Power Back-up

This example describes a design with a built-in battery as the primary source, where the mains
power serves to keep the battery charged and act as back-up if the battery fails. The Node must
define two Power Source Clusters, one for the battery and another for the mains. Since the battery
is primary, it must have a lower Order than the mains source.

Power Source (on Endpoint 2)

Description: "Primary Battery"
Order: 0

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 701

Power Source (on Endpoint 5)

Description: "Mains"
Order: 1

11.7.9.3. Example: Mains Power with Battery Back-up

This example describes a design where the system always runs from the a mains power source and
the back-up battery is out-of-circuit until mains power fails at which point the back-up battery pow
ers the system. The Node must define two Power Source Clusters, one for the mains and another for
the battery. Since the mains source is primary, it must have a lower Order than the battery source.

Power Source (on Endpoint 2)

Description: "Mains"
Order: 0

Power Source (on Endpoint 5)

Description: "Battery Back-up"
Order: 1

11.7.9.4. Example: Battery with Dual Back-up

This example describes a design with a built-in battery as the primary source, and where two wired
sources, USB and a DC adapter, redundantly serve to keep the battery charged and act as back-up if
the battery fails. The Node must define three Power Source Clusters, one for each of the battery, the
USB source, and the DC adapter. Since the battery is primary, the battery source must have a lower
Order than the other sources. This system has no preference between the DC Adapter and USB
sources, so these sources will have the same Order.

Power Source (on Endpoint 2)

Description: "Primary Battery"
Order: 0

Power Source (on Endpoint 5)

Description: "DC Adapter"
Order: 1

Power Source (on Endpoint 7)

Description: "USB Power"
Order: 1

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 702 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.7.9.5. Example: Mains Power with Battery Powered Peripheral

This example describes a design with a mains powered core and battery powered peripheral. In
this example both power sources are required for proper operation. The Node must define two
Power Source Clusters, one for the wired source and one for the battery. Since both sources are
required, both sources will have the same Order. We will use Endpoint 2 for the mains power and
Endpoint 7 for the battery.

Power Source (on Endpoint 2)

Description: "Mains Power"
Order: 0

Power Source (on Endpoint 7)

Description: "Peripheral Battery"
Order: 0

11.8. Power Topology Cluster
The Power Topology Cluster provides a mechanism for expressing how power is flowing between
endpoints.

11.8.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.8.2. Classification

Hierarchy Role Scope PICS Code

Base Application Endpoint PWRTL

11.8.3. Cluster ID

ID Name

0x009C Power Topology

11.8.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 703

Bit Code Feature Conformance Summary

0 NODE NodeTopology O.a This endpoint pro
vides or consumes
power to/from the
entire node

1 TREE TreeTopology O.a This endpoint pro
vides or consumes
power to/from
itself and its child
endpoints

2 SET SetTopology O.a This endpoint pro
vides or consumes
power to/from a
specified set of
endpoints

3 DYPF DynamicPower
Flow

[SET] The specified set
of endpoints may
change

11.8.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Avail
ableEnd
points

list[end
point-no]

max 20 F R V SET

0x0001 ActiveEnd
points

list[end
point-no]

max 20 N R V DYPF

11.8.5.1. AvailableEndpoints Attribute

This attribute SHALL indicate the list of endpoints capable of providing power to and/or consuming
power from the endpoint hosting this server.

11.8.5.2. ActiveEndpoints Attribute

This attribute SHALL indicate the current list of endpoints currently providing or consuming power
to or from the endpoint hosting this server. This list SHALL be a subset of the value of the Avail
ableEndpoints attribute.

11.9. Network Commissioning Cluster
Network commissioning is part of the overall Node commissioning. The main goal of Network Com
missioning Cluster is to associate a Node with or manage a Node’s one or more network interfaces.
These network interfaces can include the following types.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 704 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Wi-Fi (IEEE 802.11-2020)

• Ethernet (802.3)

• Thread (802.15.4)

An instance of the Network Commissioning Cluster only applies to a single network interface
instance present. An interface, in this context, is a unique entity that can have an IPv6 address
assigned to it and ingress and egress IP packets.

11.9.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Support determining capabilities for Wi-Fi and
Thread interfaces. Additional Wi-Fi directed
scanning requirements.

11.9.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node CNET

11.9.3. Cluster ID

ID Name

0x0031 Network Commissioning

11.9.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Conformance Summary

0 WI WiFiNetworkIn
terface

O.a Wi-Fi related fea
tures

1 TH ThreadNetworkIn
terface

O.a Thread related
features

2 ET EthernetNetwork
Interface

O.a Ethernet related
features

11.9.5. Data Types

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 705

11.9.5.1. WiFiSecurityBitmap Type

This data type is derived from map8.

WiFiSecurityBitmap encodes the supported Wi-Fi security types present in the Security field of the
WiFiInterfaceScanResultStruct.

Bit Name Summary

0 Unencrypted Supports unencrypted Wi-Fi

1 WEP Supports Wi-Fi using WEP secu
rity

2 WPA-PERSONAL Supports Wi-Fi using WPA-Per
sonal security

3 WPA2-PERSONAL Supports Wi-Fi using WPA2-Per
sonal security

4 WPA3-PERSONAL Supports Wi-Fi using WPA3-Per
sonal security

11.9.5.2. ThreadCapabilitiesBitmap Type

This data type is derived from map16.

The ThreadCapabilitiesBitmap encodes the supported Thread features and capabilities of a Thread-
enabled network interface.

Bit Name Summary Conformance

0 IsBorderRouterCa
pable

Thread Border Router
functionality is present

O

1 IsRouterCapable Router mode is sup
ported (interface could
be in router or REED
mode)

O

2 IsSleepyEndDeviceCa
pable

Sleepy end-device
mode is supported

O

3 IsFullThreadDevice Device is a full Thread
device (opposite of Min
imal Thread Device)

O

4 IsSynchronizedSleep
yEndDeviceCapable

Synchronized sleepy
end-device mode is
supported

O

NOTE
The valid combinations of capabilities are restricted and dependent on Thread ver
sion.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 706 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.9.5.3. WiFiBandEnum Type

This data type is derived from enum8.

WiFiBandEnum encodes a supported Wi-Fi frequency band present in the WiFiBand field of the
WiFiInterfaceScanResultStruct.

Value Name Summary Conformance

0 2G4 2.4GHz - 2.401GHz to
2.495GHz
(802.11b/g/n/ax)

O.a+

1 3G65 3.65GHz - 3.655GHz to
3.695GHz (802.11y)

O.a+

2 5G 5GHz - 5.150GHz to
5.895GHz
(802.11a/n/ac/ax)

O.a+

3 6G 6GHz - 5.925GHz to
7.125GHz (802.11ax /
Wi-Fi 6E)

O.a+

4 60G 60GHz - 57.24GHz to
70.20GHz (802.11ad/ay)

O.a+

5 1G Sub-1GHz - 755MHz to
931MHz (802.11ah)

O.a+

11.9.5.4. NetworkCommissioningStatusEnum Type

This data type is derived from enum8.

Value Name Summary

0 Success OK, no error

1 OutOfRange Value Outside Range

2 BoundsExceeded A collection would exceed its
size limit

3 NetworkIDNotFound The NetworkID is not among
the collection of added net
works

4 DuplicateNetworkID The NetworkID is already
among the collection of added
networks

5 NetworkNotFound Cannot find AP: SSID Not found

6 RegulatoryError Cannot find AP: Mismatch on
band/channels/regulatory
domain / 2.4GHz vs 5GHz

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 707

Value Name Summary

7 AuthFailure Cannot associate due to authen
tication failure

8 UnsupportedSecurity Cannot associate due to unsup
ported security mode

9 OtherConnectionFailure Other association failure

10 IPV6Failed Failure to generate an IPv6
address

11 IPBindFailed Failure to bind Wi-Fi <-> IP
interfaces

12 UnknownError Unknown error

11.9.5.5. NetworkInfoStruct Type

NetworkInfoStruct struct describes an existing network configuration, as provided in the Networks
attribute.

ID Name Type Constraint Quality Default Access Confor
mance

0 Net
workID

octstr 1 to 32 M

1 Connected bool M

NetworkID Field

Every network is uniquely identified (for purposes of commissioning) by a NetworkID mapping to
the following technology-specific properties:

• SSID for Wi-Fi

• Extended PAN ID for Thread

• Network interface instance name at operating system (or equivalent unique name) for Ethernet.

The semantics of the NetworkID field therefore varies between network types accordingly. It con
tains SSID for Wi-Fi networks, Extended PAN ID (XPAN ID) for Thread networks and netif name for
Ethernet networks.

NOTE

SSID in Wi-Fi is a collection of 1-32 bytes, the text encoding of which is not specified.
Implementations must be careful to support reporting byte strings without requir
ing a particular encoding for transfer. Only the commissioner should try to poten
tially decode the bytes. The most common encoding is UTF-8, however this is just a
convention. Some configurations may use Latin-1 or other character sets. A commis
sioner MAY decode using UTF-8, replacing encoding errors with "?" at the applica
tion level while retaining the underlying representation.

XPAN ID is a big-endian 64-bit unsigned number, represented on the first 8 octets of the octet string.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 708 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Connected Field

This field SHALL indicate the connected status of the associated network, where "connected" means
currently linked to the network technology (e.g. Associated for a Wi-Fi network, media connected
for an Ethernet network).

11.9.5.6. WiFiInterfaceScanResultStruct Type

WiFiInterfaceScanResultStruct represents a single Wi-Fi network scan result.

ID Name Type Constraint Quality Default Access Confor
mance

0 Security WiFiSecu
rityBitmap

all WI

1 SSID octstr max 32 WI

2 BSSID octstr 6 WI

3 Channel uint16 all WI

4 WiFiBand WiFiBan
dEnum

all [WI]

5 RSSI int8 all [WI]

WiFiBand Field

This field, if present, MAY be used to differentiate overlapping channel number values across dif
ferent Wi-Fi frequency bands.

RSSI Field

This field, if present, SHALL denote the signal strength in dBm of the associated scan result.

11.9.5.7. ThreadInterfaceScanResultStruct Type

ThreadInterfaceScanResultStruct represents a single Thread network scan result.

ID Name Type Constraint Quality Default Access Confor
mance

0 PanId uint16 0 to 65534 TH

1 Extended
PanId

uint64 all TH

2 Network
Name

string 1 to 16 TH

3 Channel uint16 all TH

4 Version uint8 all TH

5 Extended
Address

hwadr all TH

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 709

ID Name Type Constraint Quality Default Access Confor
mance

6 RSSI int8 all TH

7 LQI uint8 all TH

ExtendedAddress Field

ExtendedAddress stands for an IEEE 802.15.4 Extended Address.

11.9.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 MaxNet
works

uint8 min 1 F R A M

0x0001 Networks list[Net
workInfoS
truct]

max
MaxNet
works

empty R A M

0x0002 ScanMax
TimeSec
onds

uint8 desc F R V WI | TH

0x0003 Connect
Max
TimeSec
onds

uint8 desc F R V WI | TH

0x0004 Inter
faceEn
abled

bool N true RW VA M

0x0005 LastNet
work
ingStatus

Network
Commis
sioningSta
tusEnum

X null R A M

0x0006 LastNet
workID

octstr 1 to 32 X null R A M

0x0007 LastCon
nectError
Value

int32 X null R A M

0x0008 Support
ed
WiFiBand
s

list[WiFiBa
ndEnum]

min 1 F MS R V WI

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 710 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0009 Support
edThread
Features

ThreadCa
pabilities
Bitmap

F MS R V TH

0x000A Thread
Version

uint16 F MS R V TH

11.9.6.1. MaxNetworks Attribute

This SHALL indicate the maximum number of network configuration entries that can be added,
based on available device resources. The length of the Networks attribute SHALL be less than or
equal to this value.

11.9.6.2. Networks Attribute

This attribute SHALL indicate the network configurations that are usable on the network interface
represented by this cluster server instance.

The order of configurations in the list reflects precedence. That is, any time the Node attempts to
connect to the network it SHALL attempt to do so using the configurations in Networks Attribute in
the order as they appear in the list.

The order of list items SHALL only be modified by the AddOrUpdateThreadNetwork, AddOrUp
dateWiFiNetwork and ReorderNetwork commands. In other words, the list SHALL be stable over
time, unless mutated externally.

Ethernet networks SHALL be automatically populated by the cluster server. Ethernet Network Com
missioning Cluster instances SHALL always have exactly one NetworkInfoStruct instance in their
Networks attribute. There SHALL be no way to add, update or remove Ethernet network configura
tions to those Cluster instances.

11.9.6.3. ScanMaxTimeSeconds Attribute

This attribute SHALL indicate the maximum duration taken, in seconds, by the network interface
on this cluster server instance to provide scan results.

See Section 11.9.7.1, “ScanNetworks Command” for usage.

11.9.6.4. ConnectMaxTimeSeconds Attribute

This attribute SHALL indicate the maximum duration taken, in seconds, by the network interface
on this cluster server instance to report a successful or failed network connection indication. This
maximum time SHALL account for all operations needed until a successful network connection is
deemed to have occurred, including, for example, obtaining IP addresses, or the execution of neces
sary internal retries.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 711

11.9.6.5. InterfaceEnabled Attribute

This attribute SHALL indicate whether the associated network interface is enabled or not. By
default all network interfaces SHOULD be enabled during initial commissioning (InterfaceEnabled
set to true).

It is undefined what happens if InterfaceEnabled is written to false on the same interface as that
which is used to write the value. In that case, it is possible that the Administrator would have to
await expiry of the fail-safe, and associated recovery of network configuration to prior safe values,
before being able to communicate with the node again (see Section 11.10.6.2, “ArmFailSafe Com
mand”).

It MAY be possible to disable Ethernet interfaces but it is implementation-defined. If not supported,
a write to this attribute with a value of false SHALL fail with a status of INVALID_ACTION. When
disabled, an Ethernet interface would longer employ media detection. That is, a simple unplug and
replug of the cable SHALL NOT re-enable the interface.

On Ethernet-only Nodes, there SHALL always be at least one of the Network Commissioning server
cluster instances with InterfaceEnabled set to true.

11.9.6.6. LastNetworkingStatus Attribute

This attribute SHALL indicate the status of the last attempt either scan or connect to an operational
network, using this interface, whether by invocation of the ConnectNetwork command or by
autonomous connection after loss of connectivity or during initial establishment. If no such attempt
was made, or no network configurations exist in the Networks attribute, then this attribute SHALL
be set to null.

This attribute is present to assist with error recovery during Network commissioning and to assist
in non-concurrent networking commissioning flows.

11.9.6.7. LastNetworkID Attribute

This attribute SHALL indicate the NetworkID used in the last attempt to connect to an operational
network, using this interface, whether by invocation of the ConnectNetwork command or by
autonomous connection after loss of connectivity or during initial establishment. If no such attempt
was made, or no network configurations exist in the Networks attribute, then this attribute SHALL
be set to null.

If a network configuration is removed from the Networks attribute using the RemoveNetwork com
mand after a connection attempt, this field MAY indicate a NetworkID that is no longer configured
on the Node.

This attribute is present to assist with error recovery during Network commissioning and to assist
in non-concurrent networking commissioning flows.

11.9.6.8. LastConnectErrorValue Attribute

This attribute SHALL indicate the ErrorValue used in the last failed attempt to connect to an opera
tional network, using this interface, whether by invocation of the ConnectNetwork command or by

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 712 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

autonomous connection after loss of connectivity or during initial establishment. If no such attempt
was made, or no network configurations exist in the Networks attribute, then this attribute SHALL
be set to null.

If the last connection succeeded, as indicated by a value of Success in the LastNetworkingStatus
attribute, then this field SHALL be set to null.

This attribute is present to assist with error recovery during Network commissioning and to assist
in non-concurrent networking commissioning flows.

11.9.6.9. SupportedWiFiBands Attribute

This attribute SHALL indicate all the frequency bands supported by the Wi-Fi interface configured
by the cluster instance.

11.9.6.10. SupportedThreadFeatures Attribute

This attribute SHALL indicate all of the Thread features supported by the Thread interface config
ured by the cluster instance.

This attribute is primarily used to determine the most important general capabilities of the Thread
interface associated with the cluster instance, as opposed to the current runtime dynamic configu
ration. Note that most run-time details of the actual Thread interface are found in the Thread Net
work Diagnostics cluster, if supported.

11.9.6.11. ThreadVersion Attribute

This attribute SHALL indicate the Thread version supported by the Thread interface configured by
the cluster instance.

The format SHALL match the value mapping found in the "Version TLV" section of Thread specifica
tion. For example, Thread 1.3.0 would have ThreadVersion set to 4.

11.9.7. Commands

ID Name Direction Response Access Conformance

0x00 ScanNetworks client ⇒ server ScanNetwork
sResponse

A WI | TH

0x01 ScanNetwork
sResponse

client ⇐ server N WI | TH

0x02 AddOrUp
dateWiFiNet
work

client ⇒ server NetworkConfi
gResponse

A WI

0x03 AddOrUp
dateThread
Network

client ⇒ server NetworkConfi
gResponse

A TH

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 713

ID Name Direction Response Access Conformance

0x04 RemoveNet
work

client ⇒ server NetworkConfi
gResponse

A WI | TH

0x05 NetworkConfi
gResponse

client ⇐ server N WI | TH

0x06 ConnectNet
work

client ⇒ server ConnectNet
workResponse

A WI | TH

0x07 ConnectNet
workResponse

client ⇐ server N WI | TH

0x08 ReorderNet
work

client ⇒ server NetworkConfi
gResponse

A WI | TH

11.9.7.1. ScanNetworks Command

This command SHALL scan on the Cluster instance’s associated network interface for either of:

• All available networks (non-directed scanning)

• Specific networks (directed scanning)

Scanning for available networks detects all networks of the type corresponding to the cluster server
instance’s associated network interface that are possible to join, such as all visible Wi-Fi access
points for Wi-Fi cluster server instances, all Thread PANs for Thread cluster server instances,
within bounds of the maximum response size.

Scanning for a specific network (i.e. directed scanning) takes place if a network identifier (e.g. Wi-Fi
SSID) is provided in the command arguments. Directed scanning SHALL restrict the result set to the
specified network only.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

The client SHALL NOT expect the server to be done scanning and have responded with ScanNet
worksResponse before ScanMaxTimeSeconds seconds have elapsed. Enough transport time affor
dances for retries SHOULD be expected before a client determines the operation to have timed-out.

This command SHALL fail with a status code of BUSY if the server determines that it will fail to reli
ably send a response due to changes of networking interface configuration at runtime for the inter
face over which the command was invoked, or if it is currently unable to proceed with such an
operation.

For Wi-Fi-supporting servers (WI feature) the server SHALL always honor directed scans, and
attempt to provide all matching BSSID which are reachable on the bands which would otherwise be
attempted if a ConnectNetwork having the specified SSID were to take place. This command is use
ful for clients to determine reachability capabilities as seen by the server’s own radios.

For Wi-Fi-supporting servers the server SHALL always scan on all bands supported by the interface

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 714 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

associated with the cluster instance on which the command was invoked.

If the command was invoked over the same link whose configuration is managed by a given server
cluster instance, there MAY be an impact on other communication from the invoking client, as well
as other clients, while the network interface is processing the scan. Clients SHOULD NOT use this
command unless actively in the process of re-configuring network connectivity.

The arguments for this command are as follows:

ID Name Type Constraint Quality Default Confor
mance

0 SSID octstr 1 to 32 X null [WI]

1 Bread
crumb

uint64 all O

SSID Field

This field, if present, SHALL contain the SSID for a directed scan of that particular Wi-Fi SSID. Oth
erwise, if the field is absent, or if it is null, this SHALL indicate scanning of all BSSID in range. This
field SHALL be ignored for ScanNetworks invocations on non-Wi-Fi server instances.

Breadcrumb Field

The Breadcrumb field, if present, SHALL be used to atomically set the Breadcrumb attribute in the
General Commissioning cluster on success of the associated command. If the command fails, the
Breadcrumb attribute in the General Commissioning cluster SHALL be left unchanged.

11.9.7.2. ScanNetworksResponse Command

This command SHALL contain the status of the last ScanNetworks command, and the associated
scan results if the operation was successful.

ID Name Type Constraint Quality Default Confor
mance

0 Network
ingStatus

Network
Commission
ingSta
tusEnum

desc M

1 DebugText string max 512 O

2 WiFiScan
Results

list[WiFiIn
terfaceScan
ResultStruct]

desc WI

3 Thread
ScanResults

list[Thread
InterfaceS
canResult
Struct]

desc TH

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 715

Results are valid only if NetworkingStatus is Success.

Before generating a ScanNetworksResponse, the server SHALL set the LastNetworkingStatus
attribute value to the NetworkingStatus matching the response.

NetworkingStatus Field

The NetworkingStatus field SHALL indicate the status of the last scan operation, taking one of these
values:

• Success: Scanning succeeded.

• NetworkNotFound: No instance of an explicitly-provided network identifier was found during
the scan. This error cannot occur if no network identifier was provided, such as when scanning
for all available networks.

• OutOfRange: Network identifier was invalid (e.g. empty, too long, etc).

• RegulatoryError: Could not scan on any bands due to lack of regulatory configuration.

• UnknownError: An internal error occurred during scanning.

DebugText Field

This field, if present and non-empty, MAY contain error information which MAY be communicated
to the user in case the NetworkingStatus was not Success. Its purpose is to help developers in trou
bleshooting errors and MAY go into logs or crash reports.

WiFiScanResults Field

If NetworkingStatus was Success, this field SHALL contain the Wi-Fi network scan results. The list
MAY be empty if none were found in range on the bands supported by the interface, or if directed
scanning had been used and the desired SSID was not found in range.

The maximum number of results present in the result list supported MAY depend on memory and
MAY contain a subset of possibilities, to avoid memory exhaustion on the cluster server and avoid
crossing the maximum command response size supported (see Section 4.4.4, “Message Size Require
ments”).

The order in which results are reported is implementation-specific. Results SHOULD be reported in
decreasing RSSI order, even if RSSI is not reported in the response, to maximize the likelihood that
most likely to be reachable elements are included within the size limits of the response.

ThreadScanResults Field

If NetworkingStatus was Success, this field SHALL contain the Thread network scan results. The list
MAY be empty if none were found in range on the bands supported by the interface.

The maximum number of results present in the result list supported MAY depend on memory and
MAY contain a subset of possibilities, to avoid memory exhaustion on the cluster server and avoid
crossing the maximum command response size supported (see Section 4.4.4, “Message Size Require
ments”).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 716 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The order in which results are reported is implementation-specific. Results SHOULD be reported in
decreasing LQI order, to maximize the likelihood that most likely to be reachable elements are
included within the size limits of the response.

11.9.7.3. AddOrUpdateWiFiNetwork Command

This command SHALL be used to add or modify Wi-Fi network configurations.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

The Credentials associated with the network are not readable after execution of this command, as
they do not appear in the Networks attribute, for security reasons.

If this command contains a ClientIdentifier, and the Networks list does not contain an entry with a
matching ClientIdentifier, then this command SHALL fail with a status of NOT_FOUND.

See Section 11.9.7.5, “Common processing of AddOrUpdateWiFiNetwork and AddOrUpdateThread
Network” for behavior of addition/update.

The data for this command is as follows:

ID Name Type Constraint Default Conformance

0 SSID octstr max 32 M

1 Credentials octstr max 64 M

2 Breadcrumb uint64 all O

SSID Field

This field SHALL contain the SSID to which to attempt connection. Specific BSSID selection is not
supported by this cluster.

Credentials Field

Credentials is the passphrase or PSK for the network (if any is needed).

Security type, cipher and credential format (passphrase or PSK) SHALL be contextually auto-
selected during execution of the ConnectNetwork Command and during subsequent operational
state network connections, based on the most secure Wi-Fi security type available within beacons
and probe responses for the set of all discovered BSSIDs for the configured SSID. The type of PSK or
passphrase used SHALL be inferred based on the length and contents of the Credentials field pro
vided, matching the security type chosen.

Valid Credentials length are:

• 0 bytes: Unsecured (open) connection

• 5 bytes: WEP-64 passphrase

• 10 hexadecimal ASCII characters: WEP-64 40-bit hex raw PSK

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 717

• 13 bytes: WEP-128 passphrase

• 26 hexadecimal ASCII characters: WEP-128 104-bit hex raw PSK

• 8..63 bytes: WPA/WPA2/WPA3 passphrase

• 64 bytes: WPA/WPA2/WPA3 raw hex PSK

These lengths SHALL be contextually interpreted based on the security type of the BSSID where
connection will occur.

When the length of Credentials and available set of BSSID admits more than one option, such as the
presence of both WPA2 and WPA security type within the result set, WPA2 SHALL be considered
more secure.

Note that it MAY occur that a station cannot connect to a particular access point with higher secu
rity and selects a lower security connectivity type if the link quality is deemed to be too low to
achieve successful operation, or if all retry attempts fail.

Breadcrumb Field

See Section 11.9.7.1.2, “Breadcrumb Field” for usage.

11.9.7.4. AddOrUpdateThreadNetwork Command

This command SHALL be used to add or modify Thread network configurations.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

See Section 11.9.7.5, “Common processing of AddOrUpdateWiFiNetwork and AddOrUpdateThread
Network” for behavior of addition/update.

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Opera
tional
Dataset

octstr max 254 M

1 Bread
crumb

uint64 all O

The XPAN ID in the OperationalDataset serves as the NetworkID for the network configuration to be
added or updated.

If the Networks attribute does not contain an entry with the same NetworkID as the one provided
in the OperationalDataset, the operation SHALL be considered an addition, otherwise, it SHALL be
considered an update.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 718 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

OperationalDataset Field

The OperationalDataset field SHALL contain the Thread Network Parameters, including channel,
PAN ID, and Extended PAN ID.

The encoding for the OperationalDataset field is defined in the Thread specification.

The client SHALL pass the OperationalDataset as an opaque octet string.

Breadcrumb Field

See Section 11.9.7.1.2, “Breadcrumb Field” for usage.

11.9.7.5. Common processing of AddOrUpdateWiFiNetwork and AddOrUpdateThreadNetwork

Both AddOrUpdateWiFiNetwork and AddOrUpdateThreadNetwork operate similarly, against differ
ent underlying technologies. The processing of these commands in the addition and update case is
covered by the following subsections.

Processing an addition

If the Networks attribute is already full, the command SHALL immediately respond with Network
ConfigResponse having NetworkingStatus status field set to BoundsExceeded.

If any of the parameters in the OperationalDataset are invalid, the command SHALL immediately
respond with NetworkConfigResponse having NetworkingStatus status field set to a value different
than Success and consistent with the error.

If validation of all parameters has succeeded, this command SHALL append the configuration at the
end of the existing list in the Networks attribute, making this new network the one with least prior
ity.

On success, the NetworkConfigResponse command SHALL have its NetworkIndex field set to the 0-
based index of the entry in the Networks attribute that was just added.

Processing an update

If any of the parameters in the OperationalDataset are invalid, the command SHALL immediately
respond with NetworkConfigResponse having NetworkingStatus status field set to a value different
than Success and consistent with the error.

If validation of all parameters has succeeded, this command SHALL update the existing entry
indexed by NetworkId in the Networks attribute, keeping existing position within the list.

On success, the NetworkConfigResponse command SHALL have its NetworkIndex field set to the 0-
based index of the entry in the Networks attribute that was just updated, and a NetworkingStatus
status field set to Success.

11.9.7.6. RemoveNetwork Command

This command SHALL remove the network configuration from the Cluster if there was already a
network configuration with the same NetworkID. The relative order of the entries in the Networks

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 719

attribute SHALL remain unchanged, except for the removal of the requested network configura
tion.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 NetworkID octstr 1 to 32 M

1 Bread
crumb

uint64 all O

If the Networks attribute does not contain a matching entry, the command SHALL immediately
respond with NetworkConfigResponse having NetworkingStatus status field set to NetworkIdNot
Found.

On success, the NetworkConfigResponse command SHALL have its NetworkIndex field set to the 0-
based index of the entry in the Networks attribute that was just removed, and a NetworkingStatus
status field set to Success.

NetworkID Field

This field SHALL contain the NetworkID for the entry to remove: the SSID for Wi-Fi and XPAN ID
for Thread.

Breadcrumb Field

See Section 11.9.7.1.2, “Breadcrumb Field” for usage.

11.9.7.7. NetworkConfigResponse Command

This response command relates status information for some commands which require it as their
response command. See each individual cluster server command for the situations that may cause
a NetworkingStatus different than Success.

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Network
ingStatus

Network
Commission
ingSta
tusEnum

desc M

1 DebugText string max 512 O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 720 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

2 Net
workIndex

uint8 0 to
(MaxNet
works - 1)

O

Before generating a NetworkConfigResponse, the server SHALL set the LastNetworkingStatus
attribute value to the NetworkingStatus matching the response.

Before generating a NetworkConfigResponse, the server SHALL set the LastNetworkID attribute
value to the NetworkID that was used in the command for which an invocation caused the response
to be generated.

NetworkingStatus Field

The NetworkingStatus field SHALL indicate the status of the last operation attempting to modify the
Networks attribute configuration, taking one of these values:

• Success: Operation succeeded.

• OutOfRange: Network identifier was invalid (e.g. empty, too long, etc).

• BoundsExceeded: Adding this network configuration would exceed the limit defined by Section
11.9.6.1, “MaxNetworks Attribute”.

• NetworkIdNotFound: The network identifier was expected to be found, but was not found
among the added network configurations in Networks attribute.

• UnknownError: An internal error occurred during the operation.

DebugText Field

See Section 11.9.7.2.2, “DebugText Field” for usage.

NetworkIndex Field

When the NetworkingStatus is Success, this field SHALL be present. It SHALL contain the 0-based
index of the entry in the Networks attribute that was last added, updated or removed successfully
by the associated request command.

11.9.7.8. ConnectNetwork Command

This command SHALL attempt to connect to a network whose configuration was previously added
by either the AddOrUpdateWiFiNetwork or AddOrUpdateThreadNetwork commands. Network is
identified by its NetworkID.

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 NetworkID octstr 1 to 32 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 721

ID Name Type Constraint Quality Default Confor
mance

1 Bread
crumb

uint64 all O

This command SHALL fail with a BUSY status code returned to the initiator if the server is currently
unable to proceed with such an operation, such as if it is currently attempting to connect in the
background, or is already proceeding with a prior ConnectNetwork.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

Success or failure of this command SHALL be communicated by the ConnectNetworkResponse com
mand, unless some data model validations caused a FAILURE status to be sent prior to finishing
execution of the command. The ConnectNetworkResponse SHALL indicate the value Success in the
NetworkingStatus field on successful connection. On failure to connect, the ConnectNetworkRe
sponse SHALL contain an appropriate NetworkingStatus, DebugText and ErrorValue indicating the
reason for failure.

The amount of time needed to determine successful or failing connectivity on the cluster server’s
associated interface is provided by the ConnectMaxTimeSeconds attribute. Clients SHALL NOT con
sider the connection to have timed-out until at least that duration has taken place. For non-concur
rent commissioning situations, the client SHOULD allow additional margin of time to account for its
delay in executing operational discovery of the Node once it is connected to the new network.

On successful connection, the entry associated with the given Network configuration in the Net
works attribute SHALL indicate its Connected field set to true, and all other entries, if any exist,
SHALL indicate their Connected field set to false.

On failure to connect, the entry associated with the given Network configuration in the Networks
attribute SHALL indicate its Connected field set to false.

The precedence order of any entry subject to ConnectNetwork SHALL NOT change within the Net
works attribute.

Even after successfully connecting to a network, the configuration SHALL revert to the prior state
of configuration if the CommissioningComplete command (see Section 11.10.6.6, “Commissioning
Complete Command”) is not successfully invoked before expiry of the Fail-Safe timer.

When non-concurrent commissioning is being used by a Commissioner or Administrator, the Con
nectNetworkResponse SHALL be sent with the NetworkingStatus field set to Success prior to closing
the commissioning channel, even if not yet connected to the operational network, unless the device
would be incapable of joining that network, in which case the usual failure path described in the
prior paragraphs SHALL be followed. Once the commissioning channel is closed, the operational
channel will be started. It is possible that the only method to determine success of the operation is
operational discovery of the Node on the new operational network. Therefore, before invoking the
ConnectNetwork command, the client SHOULD re-invoke the Arm Fail-Safe command with a dura
tion that meets the following:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 722 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

1. Sufficient time to meet the minimum required time (see Section 11.9.6.4, “ConnectMaxTimeSec
onds Attribute”) that may be taken by the server to connect to the desired network.

2. Sufficient time to account for possible message-layer retries when a response is requested.

3. Sufficient time to allow operational discovery on the new network by a Commissioner or
Administrator.

4. Sufficient time to establish a CASE session after operational discovery

5. Not so long that, in error situations, the delay to reverting back to being discoverable for com
missioning with a previous configuration would cause significant user-perceived delay.

Note as well that the CommissioningTimeout duration provided in a prior OpenCommissioningWin
dow or OpenBasicCommissioningWindow command may impact the total time available to proceed
with error recovery after a connection failure.

The LastNetworkingStatus, LastNetworkID and LastConnectErrorValue attributes MAY assist the
client in determining the reason for a failure after reconnecting over a Commissioning channel,
especially in non-concurrent commissioning situations.

NetworkID Field

This field SHALL contain the NetworkID for the entry used to configure the connection: the SSID for
Wi-Fi and XPAN ID for Thread.

Breadcrumb Field

See Section 11.9.7.1.2, “Breadcrumb Field” for usage.

11.9.7.9. ConnectNetworkResponse Command

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Network
ingStatus

Network
Commission
ingSta
tusEnum

all M

1 DebugText string O

2 ErrorValue int32 all X M

Before generating a ConnectNetworkResponse, the server SHALL:

• Set the LastNetworkingStatus attribute value to the NetworkingStatus matching the response.

• Set the LastNetworkID attribute value to the NetworkID that was used in the ConnectNetwork
command which caused the response to be generated.

• Set the LastConnectErrorValue attribute value to the ErrorValue matching the response, includ
ing setting it to null if the ErrorValue is not applicable.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 723

NetworkingStatus Field

The NetworkingStatus field SHALL indicate the status of the last connection attempt, taking one of
these values:

• Success: Connection succeeded.

• NetworkNotFound: No instance of an explicitly-provided network identifier was found during
the attempt to join the network.

• OutOfRange: Network identifier was invalid (e.g. empty, too long, etc).

• NetworkIdNotFound: The network identifier was not found among the added network configu
rations in Networks attribute.

• RegulatoryError: Could not connect to a network due to lack of regulatory configuration.

• UnknownError: An internal error occurred during the operation.

• Association errors (see also description of errors in Section 11.9.5.4, “NetworkCommission
ingStatusEnum Type”): AuthFailure, UnsupportedSecurity, OtherConnectionFailure, IPV6Failed,
IPBindFailed

DebugText Field

See Section 11.9.7.2.2, “DebugText Field” for usage.

ErrorValue Field

• ErrorValue interpretation for Wi-Fi association errors:

◦ On any association failure during enabling of a network, the ErrorValue field SHALL be set
to the Status Code value that was present in the last frame related to association where Sta
tus Code was not equal to zero and which caused the failure of a final retry attempt, if this
final failure was due to one of the following Management frames:

▪ Association Response (Type 0, Subtype 1)

▪ Reassociation Response (Type 0, Subtype 3)

▪ Authentication (Type 0, Subtype 11)

◦ Table 9-50 "Status Codes" in IEEE 802.11-2020 contains a description of all values possible,
which can unambiguously be used to determine the cause, such as an invalid security type,
unsupported rate, etc.

• Otherwise, the ErrorValue field SHALL contain an implementation-dependent value which MAY
be used by a reader of the structure to record, report or diagnose the failure.

11.9.7.10. ReorderNetwork Command

This command SHALL set the specific order of the network configuration selected by its NetworkID
in the Networks attribute to match the position given by NetworkIndex.

The data for this command is as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 724 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 NetworkID octstr 1 to 32 M

1 Net
workIndex

uint8 desc M

2 Bread
crumb

uint64 all O

NetworkID Field

This field SHALL contain the NetworkID for the entry to reorder: the SSID for Wi-Fi and XPAN ID
for Thread.

NetworkIndex Field

This field SHALL contain the 0-based index of the new desired position of the entry in the Networks
attribute.

Breadcrumb Field

See Section 11.9.7.1.2, “Breadcrumb Field” for usage.

Effect when received

If the Networks attribute does not contain a matching entry, the command SHALL immediately
respond with NetworkConfigResponse having NetworkingStatus status field set to NetworkIdNot
Found.

If the NetworkIndex field has a value larger or equal to the current number of entries in the Net
works attribute, the command SHALL immediately respond with NetworkConfigResponse having
NetworkingStatus status field set to OutOfRange.

On success, the NetworkConfigResponse command SHALL have its NetworkIndex field set to the 0-
based index of the entry in the Networks attribute that was just updated, matching the incoming
NetworkIndex, and a NetworkingStatus status field set to Success.

The entry selected SHALL be inserted at the new position in the list. All other entries, if any exist,
SHALL be moved to allow the insertion, in a way that they all retain their existing relative order
between each other, with the exception of the newly re-ordered entry.

Re-ordering to the same NetworkIndex as the current location SHALL be considered as a success
and yield no visible changes of the Networks attribute.

Examples of re-ordering

To better illustrate the re-ordering operation, consider this initial state, exemplary of a Wi-Fi
device:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 725

Index in list NetworkID field Connected field

0 FancyCat false

1 BlueDolphin true

2 Home-Guest false

3 WillowTree false

On receiving ReorderNetwork with:

• NetworkId = Home-Guest

• NetworkIndex = 0

The outcome, after applying to the initial state would be:

Index in list NetworkID field Connected field

0 Home-Guest false

1 FancyCat false

2 BlueDolphin true

3 WillowTree false

In the above outcome, FancyCat and BlueDolphin moved "down" and Home-Guest became the high
est priority network in the list.

On receiving ReorderNetwork with:

• NetworkId = FancyCat

• NetworkIndex = 3

The outcome, after applying to the initial state would be:

Index in list NetworkID field Connected field

0 BlueDolphin true

1 Home-Guest false

2 WillowTree false

3 FancyCat false

In the above outcome, BlueDolphin, Home-Guest and WillowTree moved "up" and FancyCat became
the lowest priority network in the list.

11.9.8. Usage of networking configurations

This section describes how to ensure deterministic and well-behaved network connectivity, both
when concurrent and non-concurrent commissioning flows (see Section 5.5, “Commissioning
Flows”) are used.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 726 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Operational Networking configuration is managed by the set of Network Commissioning cluster
server instances distributed on a Node’s Endpoints.

Since Matter employs IPv6 communication and DNS-SD for operational Discovery, there is a funda
mental aspect of multi-homing present, where a Node with multiple concurrently operated net
work interfaces device may be reachable using a variety of addresses on different network tech
nologies. Care SHOULD be taken by Administrators and Commissioners to avoid making strong
assumptions about single address reachability. Administrators and Commissioners SHOULD be pre
pared to attempt reachability tests against specific network technologies if the final desired state of
networking requires a specific reachable path.

The primary network interface of a Node SHOULD be the one present on the root node endpoint
(see Section 9.2, “Endpoint Composition”). This interface SHOULD be the one most likely to yield an
operational reachable state if appropriately configured. Secondary network interfaces SHOULD be
additional technologies that MAY increase reachability or support a stub router feature.

A Node MAY be configured in such a way that there are no Network Commissioning cluster server
instances present, in which case the remainder of this section SHALL NOT apply.

11.9.8.1. Order of connectivity during connection establishment

When at least one Network Commissioning cluster server instance (hereafter, "Network Commis
sioning cluster" for short), the following behavior SHOULD take place for each interface associated
with a Network Commissioning cluster, in increasing order of associated endpoint number:

1. If the Network Commissioning cluster’s InterfaceEnabled attribute is set to false, skip the pro
cessing the interface altogether.

2. Set all configurations of the Networks attribute entry’s Connected field to false

3. Iterate through all configurations in the Networks attribute

a. If there was a "last known good" network configuration, that is, the one which was both last
successfully connected during prior boot and over which at least one secure channel
exchange message was received, it MAY be used as the first attempt. Otherwise, iterate
through all configurations in the precedence order of the list, starting at index 0.

4. Attempt to connect to the technology, using the current iteration’s network configuration

5. On success, set the Connected state of the list entry to true, and stop attempting further connec
tion. Otherwise, on failure, move to the next configuration.

11.9.8.2. Connectivity management during commissioning or administration

When a network interface is configured during commissioning or reconfigured during ongoing
administration, behavior is different than for the startup case described previously, since there are
tentative attempts being made to make a Node reachable on an operational network.

Network configuration can be seen as:

• A list of existing configurations, reflected by the Networks attribute.

◦ The list SHALL be managed by the AddOrUpdateWiFiNetwork, AddOrUpdateThreadNet

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 727

work, RemoveNetwork and ReorderNetwork commands.

◦ The list SHALL be tentative until committed by successful invocation of the Commissioning
Complete command, or reverted to prior configuration by the expiry of the Fail-Safe timer
(see Section 11.10.6.2, “ArmFailSafe Command”).

• A current candidate configuration, the subject of the most recent ConnectNetwork command.

◦ There SHALL NOT be new connections to any network during the Fail-Safe timer period
unless attempted by invocation of the ConnectNetwork command.

Failures of connection during the Fail-Safe timer window SHALL cause the Node to follow the steps
in Section 5.5.1, “Commissioning Flows Error Handling” after recording the cause of the failure in
the LastNetworkingStatus, LastNetworkID and LastConnectErrorValue attributes.

After Commissioning or reconfiguration ends successfully, because of successful invocation of the
CommissioningComplete command, the cluster server SHOULD NOT attempt to change connected
network until connectivity failure or restart occurs, but rather it SHALL commit the tentative con
figuration to persistent storage so that it is usable the next time connectivity establishment is
needed.

After Commissioning or reconfiguration ends in failure due to expiry of the Fail-Safe timer, the
Node SHALL revert to the network configuration present prior to the Fail-Safe timer being armed.

Because it is possible that multiple network configurations being present could successfully result
in an established operational network connection, but only some of these configurations actually
have the desired reachability by Administrators on certain fabrics, the following precautions
SHOULD be taken to avoid a situation where a Node forever dwells on a network with successful
connectivity, but no reachable peers:

• Commissioners and Administrators MAY notify users if multiple independent configurations
exist that could cause an alternate configuration to make the device unreachable for reconfigu
ration by Nodes on the current client’s fabric in the future.

• Commissioners and Administrators SHOULD avoid configuring Nodes in ways where it may be
ambiguous to end-users which final network configuration will take place.

• Cluster servers on devices with no user interface to express current network configuration to
an end-user SHOULD be configured to only support a single entry in the Networks attribute.

• Upon discovering that a user is desiring to configure a Network in a way that would change the
set of configured networks, and there are multiple fabrics configured in the Fabrics attribute of
the Node Operational Credentials cluster, the client SHOULD notify the user that some other
Administrators on other fabrics MAY fail to reach the Node and report connectivity failures.

11.10. General Commissioning Cluster
This cluster is used to manage basic commissioning lifecycle.

This cluster also represents responsibilities related to commissioning that don’t well fit other com
missioning clusters, like Section 11.9, “Network Commissioning Cluster”. It also hosts functionalities
those other clusters may depend on.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 728 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.10.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.10.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node CGEN

11.10.3. Cluster ID

ID Name

0x0030 General Commissioning

11.10.4. Data Types

11.10.4.1. CommissioningErrorEnum Type

This data type is derived from enum8.

This enumeration is used by several response commands in this cluster to indicate particular
errors.

Value Name Summary Conformance

0 OK No error M

1 ValueOutsideRange Attempting to set regu
latory configuration to
a region or indoor/out
door mode for which
the server does not
have proper configura
tion.

M

2 InvalidAuthentication Executed Commission
ingComplete outside
CASE session.

M

3 NoFailSafe Executed Commission
ingComplete when
there was no active
Fail-Safe context.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 729

Value Name Summary Conformance

4 BusyWithOtherAdmin Attempting to arm fail-
safe or execute Com
missioningComplete
from a fabric different
than the one associated
with the current fail-
safe context.

M

11.10.4.2. RegulatoryLocationTypeEnum Type

This data type is derived from enum8.

This enumeration is used by the RegulatoryConfig and LocationCapability attributes to indicate pos
sible radio usage.

Value Name Summary Conformance

0 Indoor Indoor only M

1 Outdoor Outdoor only M

2 IndoorOutdoor Indoor/Outdoor M

11.10.4.3. BasicCommissioningInfo Type

This structure provides some constant values that MAY be of use to all commissioners.

ID Name Type Constraint Quality Default Access Confor
mance

0 FailSafe
Ex
piryLengt
hSeconds

uint16 all M

1 MaxCu
mulative
Fail
safeSec
onds

uint16 desc M

FailSafeExpiryLengthSeconds Field

This field SHALL contain a conservative initial duration (in seconds) to set in the FailSafe for the
commissioning flow to complete successfully. This may vary depending on the speed or sleepiness
of the Commissionee. This value, if used in the ArmFailSafe command’s ExpiryLengthSeconds field
SHOULD allow a Commissioner to proceed with a nominal commissioning without having to-rearm
the fail-safe, with some margin.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 730 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

MaxCumulativeFailsafeSeconds Field

This field SHALL contain a conservative value in seconds denoting the maximum total duration for
which a fail safe timer can be re-armed. See Section 11.10.6.2.1, “Fail Safe Context”.

The value of this field SHALL be greater than or equal to the FailSafeExpiryLengthSeconds. Absent
additional guidelines, it is RECOMMENDED that the value of this field be aligned with the initial
Announcement Duration and default to 900 seconds.

11.10.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x00 Bread
crumb

uint64 all 0 RW VA M

0x01 BasicCom
mis
sioning
Info

BasicCom
mis
sioningInfo

desc F R V M

0x02 Regulato
ryConfig

Regulato
ryLoca
tionType
Enum

all Location
Capability

R V M

0x03 Location
Capability

Regulato
ryLoca
tionType
Enum

all F IndoorOut
door

R V M

0x04 Support
sConcur
rentCon
nection

bool all F true R V M

11.10.5.1. Breadcrumb Attribute

This attribute allows for the storage of a client-provided small payload which Administrators and
Commissioners MAY write and then subsequently read, to keep track of their own progress. This
MAY be used by the Commissioner to avoid repeating already-executed actions upon re-establishing
a commissioning link after an error.

On start/restart of the server, such as when a device is power-cycled, this attribute SHALL be reset
to zero.

Some commands related to commissioning also have a side-effect of updating or resetting this
attribute and this is specified in their respective functional descriptions.

The format of the value within this attribute is unspecified and its value is not otherwise used by
the functioning of any cluster, other than being set as a side-effect of commands where this behav

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 731

ior is described.

11.10.5.2. BasicCommissioningInfo Attribute

This attribute SHALL describe critical parameters needed at the beginning of commissioning flow.
See BasicCommissioningInfo for more information.

11.10.5.3. RegulatoryConfig Attribute

This attribute SHALL indicate the regulatory configuration for the product.

Note that the country code is part of Basic Information Cluster and therefore NOT listed on the Reg
ulatoryConfig attribute.

11.10.5.4. LocationCapability Attribute

LocationCapability is statically set by the manufacturer and indicates if this Node needs to be told
an exact RegulatoryLocation. For example a Node which is "Indoor Only" would not be certified for
outdoor use at all, and thus there is no need for a commissioner to set or ask the user about
whether the device will be used inside or outside. However a device which states its capability is
"Indoor/Outdoor" means it would like clarification if possible.

For Nodes without radio network interfaces (e.g. Ethernet-only devices), the value IndoorOutdoor
SHALL always be used.

The default value of the RegulatoryConfig attribute is the value of LocationCapability attribute. This
means devices always have a safe default value, and Commissioners which choose to implement
smarter handling can.

11.10.5.5. SupportsConcurrentConnection Attribute

This attribute SHALL indicate whether this device supports "concurrent connection flow" commis
sioning mode (see Section 5.5, “Commissioning Flows”). If false, the device only supports "non-con
current connection flow" mode.

11.10.6. Commands

For all client-to-server commands in this cluster, if the client deems that it has timed-out in receiv
ing the corresponding response command to any request, the corresponding step in the commis
sioning flow SHALL be considered to have failed, with the error handled as described in Section
5.5.1, “Commissioning Flows Error Handling”.

ID Name Direction Response Access Conformance

0x00 ArmFailSafe client ⇒ server ArmFailSafeRe
sponse

A M

0x01 ArmFailSafeR
esponse

client ⇐ server N M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 732 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Direction Response Access Conformance

0x02 SetRegulato
ryConfig

client ⇒ server SetRegulato
ryConfigRe
sponse

A M

0x03 SetRegulato
ryConfigRe
sponse

client ⇐ server N M

0x04 Commission
ingComplete

client ⇒ server Commission
ingCom
pleteResponse

A F M

0x05 Commission
ingCom
pleteResponse

client ⇐ server N M

11.10.6.1. Common fields in General Commissioning cluster responses

Some response commands have a DebugText argument which SHOULD NOT be presented directly
in user interfaces. Its purpose is to help developers in troubleshooting errors. The value MAY go
into logs or crash reports.

11.10.6.2. ArmFailSafe Command

The arguments for this command are as follows:

ID Name Type Constraint Quality Default Confor
mance

0 ExpiryLengt
hSeconds

uint16 900 M

1 Bread
crumb

uint64 M

Success or failure of this command SHALL be communicated by the ArmFailSafeResponse com
mand, unless some data model validations caused a failure status code to be issued during the pro
cessing of the command.

If the fail-safe timer is not currently armed, the commissioning window is open, and the command
was received over a CASE session, the command SHALL leave the current fail-safe state unchanged
and immediately respond with an ArmFailSafeResponse containing an ErrorCode value of Busy
WithOtherAdmin. This is done to allow commissioners, which use PASE connections, the opportu
nity to use the failsafe during the relatively short commissioning window.

Otherwise, the command SHALL arm or re-arm the "fail-safe timer" with an expiry time set for a
duration of ExpiryLengthSeconds, or disarm it, depending on the situation:

• If ExpiryLengthSeconds is 0 and the fail-safe timer was already armed and the accessing fabric
matches the Fabric currently associated with the fail-safe context, then the fail-safe timer

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 733

SHALL be immediately expired (see further below for side-effects of expiration).

• If ExpiryLengthSeconds is 0 and the fail-safe timer was not armed, then this command invoca
tion SHALL lead to a success response with no side-effects against the fail-safe context.

• If ExpiryLengthSeconds is non-zero and the fail-safe timer was not currently armed, then the
fail-safe timer SHALL be armed for that duration.

• If ExpiryLengthSeconds is non-zero and the fail-safe timer was currently armed, and the access
ing Fabric matches the fail-safe context’s associated Fabric, then the fail-safe timer SHALL be re-
armed to expire in ExpiryLengthSeconds.

• Otherwise, the command SHALL leave the current fail-safe state unchanged and immediately
respond with ArmFailSafeResponse containing an ErrorCode value of BusyWithOtherAdmin,
indicating a likely conflict between commissioners.

The value of the Breadcrumb field SHALL be written to the Breadcrumb Attribute on successful
execution of the command.

If the receiver restarts unexpectedly (e.g., power interruption, software crash, or other reset) the
receiver SHALL behave as if the fail-safe timer expired and perform the sequence of clean-up steps
listed below.

On successful execution of the command, the ErrorCode field of the ArmFailSafeResponse SHALL
be set to OK.

Fail Safe Context

When first arming the fail-safe timer, a 'Fail Safe Context' SHALL be created on the receiver, to
track the following state information while the fail-safe is armed:

• The fail-safe timer duration.

• The state of all Network Commissioning Networks attribute configurations, to allow recovery of
connectivity after Fail-Safe expiry.

• Whether an AddNOC command or UpdateNOC command has taken place.

• A Fabric Index for the fabric-scoping of the context, starting at the accessing fabric index for the
ArmFailSafe command, and updated with the Fabric Index associated with an AddNOC com
mand or an UpdateNOC command being invoked successfully during the ongoing Fail-Safe
timer period.

• The operational credentials associated with any Fabric whose configuration is affected by the
UpdateNOC command.

• Optionally: the previous state of non-fabric-scoped data that is mutated during the fail-safe
period.

Note the following to assist in understanding the above state-keeping, which summarizes other nor
mative requirements in the respective sections:

• The AddNOC command can only be invoked once per contiguous non-expiring fail-safe timer
period, and only if no UpdateNOC command was previously processed within the same fail-safe
timer period.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 734 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• The UpdateNOC command can only be invoked once per contiguous non-expiring fail-safe timer
period, can only be invoked over a CASE session, and only if no AddNOC command was previ
ously processed in the same fail-safe timer period.

On creation of the Fail Safe Context a second timer SHALL be created to expire at MaxCumulative
FailsafeSeconds as specified in BasicCommissioningInfo. This Cumulative Fail Safe Context timer
(CFSC timer) serves to limit the lifetime of any particular Fail Safe Context; it SHALL NOT be
extended or modified on subsequent invocations of ArmFailSafe associated with this Fail Safe Con
text. Upon expiry of the CFSC timer, the receiver SHALL execute cleanup behavior equivalent to
that of fail-safe timer expiration as detailed in Section 11.10.6.2.2, “Behavior on expiry of Fail-Safe
timer”. Termination of the session prior to the expiration of that timer for any reason (including a
successful end of commissioning or an expiry of a fail-safe timer) SHALL also delete the CFSC timer.

Behavior on expiry of Fail-Safe timer

If the fail-safe timer expires before the CommissioningComplete command is successfully invoked,
the following sequence of clean-up steps SHALL be executed, in order, by the receiver:

1. Terminate any open PASE secure session by clearing any associated Secure Session Context at
the Server.

2. Revoke the temporary administrative privileges granted to any open PASE session (see Section
6.6.2.8, “Bootstrapping of the Access Control Cluster”) at the Server.

3. If an AddNOC or UpdateNOC command has been successfully invoked, terminate all CASE ses
sions associated with the Fabric whose Fabric Index is recorded in the Fail-Safe context (see Sec
tion 11.10.6.2, “ArmFailSafe Command”) by clearing any associated Secure Session Context at
the Server.

4. Reset the configuration of all Network Commissioning Networks attribute to their state prior to
the Fail-Safe being armed.

5. If an UpdateNOC command had been successfully invoked, revert the state of operational key
pair, NOC and ICAC for that Fabric to the state prior to the Fail-Safe timer being armed, for the
Fabric Index that was the subject of the UpdateNOC command.

6. If an AddNOC command had been successfully invoked, achieve the equivalent effect of invok
ing the RemoveFabric command against the Fabric Index stored in the Fail-Safe Context for the
Fabric Index that was the subject of the AddNOC command. This SHALL remove all associations
to that Fabric including all fabric-scoped data, and MAY possibly factory-reset the device
depending on current device state. This SHALL only apply to Fabrics added during the fail-safe
period as the result of the AddNOC command.

7. If the CSRRequest command had been successfully invoked, but no AddNOC or UpdateNOC com
mand had been successfully invoked, then the new operational key pair temporarily generated
for the purposes of NOC addition or update (see Node Operational CSR Procedure) SHALL be
removed as it is no longer needed.

8. Remove any RCACs added by the AddTrustedRootCertificate command that are not currently
referenced by any entry in the Fabrics attribute.

9. Reset the Breadcrumb attribute to zero.

10. Optionally: if no factory-reset resulted from the previous steps, it is RECOMMENDED that the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 735

Node rollback the state of all non fabric-scoped data present in the Fail-Safe context.

11.10.6.3. ArmFailSafeResponse Command

ID Name Type Constraint Quality Default Confor
mance

0 ErrorCode Commis
sioningEr
rorEnum

OK M

1 DebugText String max 128 "" M

ErrorCode Field

This field SHALL contain the result of the operation, based on the behavior specified in the func
tional description of the ArmFailSafe command.

DebugText Field

See Section 11.10.6.1, “Common fields in General Commissioning cluster responses”.

11.10.6.4. SetRegulatoryConfig Command

This SHALL add or update the regulatory configuration in the RegulatoryConfig Attribute to the
value provided in the NewRegulatoryConfig field.

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 NewRegula
toryConfig

Regulatory
Location
TypeEnum

M

1 Coun
tryCode

string 2 M

2 Bread
crumb

uint64 M

Success or failure of this command SHALL be communicated by the SetRegulatoryConfigResponse
command, unless some data model validations caused a failure status code to be issued during the
processing of the command.

The CountryCode field SHALL conforms to ISO 3166-1 alpha-2 and SHALL be used to set the Loca
tion attribute reflected by the Basic Information Cluster.

If the server limits some of the values (e.g. locked to a particular country, with no regulatory data
for others), then setting regulatory information outside a valid country or location SHALL still set
the Location attribute reflected by the Basic Information Cluster configuration, but the SetRegulato
ryConfigResponse replied SHALL have the ErrorCode field set to ValueOutsideRange error.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 736 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

If the LocationCapability attribute is not Indoor/Outdoor and the NewRegulatoryConfig value
received does not match either the Indoor or Outdoor fixed value in LocationCapability, then the
SetRegulatoryConfigResponse replied SHALL have the ErrorCode field set to ValueOutsideRange
error and the RegulatoryConfig attribute and associated internal radio configuration SHALL remain
unchanged.

If the LocationCapability attribute is set to Indoor/Outdoor, then the RegulatoryConfig attribute
SHALL be set to match the NewRegulatoryConfig field.

On successful execution of the command, the ErrorCode field of the SetRegulatoryConfigResponse
SHALL be set to OK.

The Breadcrumb field SHALL be used to atomically set the Breadcrumb attribute on success of this
command, when SetRegulatoryConfigResponse has the ErrorCode field set to OK. If the command
fails, the Breadcrumb attribute SHALL be left unchanged.

11.10.6.5. SetRegulatoryConfigResponse Command

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 ErrorCode Commis
sioningEr
rorEnum

OK M

1 DebugText String "" M

ErrorCode Field

This field SHALL contain the result of the operation, based on the behavior specified in the func
tional description of the SetRegulatoryConfig command.

DebugText Field

See Section 11.10.6.1, “Common fields in General Commissioning cluster responses”.

11.10.6.6. CommissioningComplete Command

This command has no data.

Success or failure of this command SHALL be communicated by the CommissioningCompleteRe
sponse command, unless some data model validations caused a failure status code to be issued dur
ing the processing of the command.

This command signals the Server that the Commissioner or Administrator has successfully com
pleted all steps needed during the Fail-Safe period, such as commissioning (see Section 5.5, “Com
missioning Flows”) or other Administrator operations requiring usage of the Fail Safe timer. It
ensures that the Server is configured in a state such that it still has all necessary elements to be
fully operable within a Fabric, such as ACL entries (see Access Control Cluster) and operational cre
dentials (see Section 6.4, “Node Operational Credentials Specification”), and that the Node is reach

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 737

able using CASE (see Section 4.14.2, “Certificate Authenticated Session Establishment (CASE)”) over
an operational network.

An ErrorCode of NoFailSafe SHALL be responded to the invoker if the CommissioningComplete
command was received when no Fail-Safe context exists.

This command is fabric-scoped, so cannot be issued over a session that does not have an associated
fabric, i.e. over PASE session prior to an AddNOC command. In addition, this command is only per
mitted over CASE and must be issued by a node associated with the ongoing Fail-Safe context. An
ErrorCode of InvalidAuthentication SHALL be responded to the invoker if the CommissioningCom
plete command was received outside a CASE session (e.g., over Group messaging, or PASE session
after AddNOC), or if the accessing fabric is not the one associated with the ongoing Fail-Safe con
text.

This command SHALL only result in success with an ErrorCode value of OK in the Commissioning
CompleteResponse if received over a CASE session and the accessing fabric index matches the Fab
ric Index associated with the current Fail-Safe context. In other words:

• If no AddNOC command had been successfully invoked, the CommissioningComplete command
must originate from the Fabric that initiated the Fail-Safe context.

• After an AddNOC command has been successfully invoked, the CommissioningComplete com
mand must originate from the Fabric which was joined through the execution of that command,
which updated the Fail-Safe context’s Fabric Index.

On successful execution of the CommissioningComplete command, where the CommissioningCom
pleteResponse has an ErrorCode of OK, the following actions SHALL be undertaken on the Server:

1. The Fail-Safe timer associated with the current Fail-Safe context SHALL be disarmed.

2. The commissioning window at the Server SHALL be closed.

3. Any temporary administrative privileges automatically granted to any open PASE session
SHALL be revoked (see Section 6.6.2.8, “Bootstrapping of the Access Control Cluster”).

4. The Secure Session Context of any PASE session still established at the Server SHALL be cleared.

5. The Breadcrumb attribute SHALL be reset to zero.

After receipt of a CommissioningCompleteResponse with an ErrorCode value of OK, a client cannot
expect any previously established PASE session to still be usable, due to the server having cleared
such sessions.

11.10.6.7. CommissioningCompleteResponse Command

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 ErrorCode Commis
sioningEr
rorEnum

OK M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 738 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

1 DebugText String "" M

ErrorCode Field

This field SHALL contain the result of the operation, based on the behavior specified in the func
tional description of the CommissioningComplete command.

DebugText Field

See Section 11.10.6.1, “Common fields in General Commissioning cluster responses”.

11.11. Diagnostic Logs Cluster
This Cluster supports an interface to a Node. It provides commands for retrieving unstructured
diagnostic logs from a Node that may be used to aid in diagnostics. It will often be the case that
unstructured diagnostic logs will be Node-wide and not specific to any subset of Endpoints. When
present, this Cluster SHALL be implemented once for the Node. The Node SHOULD also implement
the BDX Initiator and BDX Sender roles as defined in the BDX Protocol.

NOTE Support for Diagnostic Logs cluster is provisional.

11.11.1. Revision History

The global ClusterRevision Attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.11.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node DLOG

11.11.3. Cluster ID

ID Name Conformance

0x0032 Diagnostic Logs P

11.11.4. Data Types

11.11.4.1. IntentEnum Type

This data type is derived from enum8.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 739

Value Name Summary Conformance

0 EndUserSupport Logs to be used for end-
user support

M

1 NetworkDiag Logs to be used for net
work diagnostics

M

2 CrashLogs Obtain crash logs from
the Node

M

EndUserSupport Value

SHALL indicate that the purpose of the log request is to retrieve logs for the intention of providing
support to an end-user.

NetworkDiag Value

SHALL indicate that the purpose of the log request is to diagnose the network(s) for which the Node
is currently commissioned (and/or connected) or has previously been commissioned (and/or con
nected).

CrashLogs Value

SHALL indicate that the purpose of the log request is to retrieve any crash logs that may be present
on a Node.

11.11.4.2. StatusEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Success Successful transfer of
logs

M

1 Exhausted All logs has been trans
ferred

M

2 NoLogs No logs of the
requested type avail
able

M

3 Busy Unable to handle
request, retry later

M

4 Denied The request is denied,
no logs being trans
ferred

M

Success Value

SHALL be used if diagnostic logs will be or are being transferred.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 740 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Exhausted Value

SHALL be used when a BDX session is requested, however, all available logs were provided in a
LogContent field.

NoLogs Value

SHALL be used if the Node does not currently have any diagnostic logs of the requested type
(Intent) to transfer.

Busy Value

SHALL be used if the Node is unable to handle the request (e.g. in the process of another transfer)
and the Client SHOULD re-attempt the request later.

Denied Value

SHALL be used if the Node is denying the current transfer of diagnostic logs for any reason.

11.11.4.3. TransferProtocolEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 ResponsePayload Logs to be returned as a
response

M

1 BDX Logs to be returned
using BDX

M

ResponsePayload Value

SHALL be used by a Client to request that logs are transferred using the LogContent attribute of the
response

BDX Value

SHALL be used by a Client to request that logs are transferred using BDX as defined in BDX Protocol

11.11.5. Commands

ID Name Direction Response Access Conformance

0x00 RetrieveL
ogsRequest

client ⇒ server RetrieveL
ogsResponse

O M

0x01 RetrieveL
ogsResponse

client ⇐ server N M

11.11.5.1. RetrieveLogsRequest Command

Reception of this command starts the process of retrieving diagnostic logs from a Node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 741

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Intent IntentEnum all M

1 Requested
Protocol

TransferPro
tocolEnum

all M

2 Transfer
FileDesigna
tor

string max 32 O

Intent Field

This field SHALL indicate why the diagnostic logs are being retrieved from the Node. A Node MAY
utilize this field to selectively determine the logs to transfer.

RequestedProtocol Field

This field SHALL be used to indicate how the log transfer is to be realized. If the field is set to BDX,
then if the receiving Node supports BDX it SHALL attempt to use BDX to transfer any potential diag
nostic logs; if the receiving Node does not support BDX then the Node SHALL follow the require
ments defined for a TransferProtocolEnum of ResponsePayload. If this field is set to ResponsePay
load the receiving Node SHALL only utilize the LogContent field of the RetrieveLogsResponse com
mand to transfer diagnostic log information.

TransferFileDesignator Field

This field SHALL be present if the RequestedProtocol is BDX. The TransferFileDesignator SHALL be
set as the File Designator of the BDX transfer if initiated.

Effect on Receipt

On receipt of this command, the Node SHALL respond with a RetrieveLogsResponse command.

If the RequestedProtocol is set to BDX the Node SHOULD immediately realize the RetrieveLogsRe
sponse command by initiating a BDX Transfer, sending a BDX SendInit message with the File Desig
nator field of the message set to the value of the TransferFileDesignator field of the RetrieveLogsRe
quest. On reception of a BDX SendAccept message the Node SHALL send a RetrieveLogsResponse
command with a Status field set to Success and proceed with the log transfer over BDX. If a failure
StatusReport is received in response to the SendInit message, the Node SHALL send a RetrieveL
ogsResponse command with a Status of Denied. In the case where the Node is able to fit the entirety
of the requested logs within the LogContent field, the Status field of the RetrieveLogsResponse
SHALL be set to Exhausted and a BDX session SHALL NOT be initiated.

If the RequestedProtocol is set to BDX and either the Node does not support BDX or it is not possible
for the Node to establish a BDX session, then the Node SHALL utilize the LogContent field of the
RetrieveLogsResponse command to transfer as much of the current logs as it can fit within the
response, and the Status field of the RetrieveLogsResponse SHALL be set to Exhausted.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 742 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

If the RequestedProtocol is set to ResponsePayload the Node SHALL utilize the LogContent field of
the RetrieveLogsResponse command to transfer as much of the current logs as it can fit within the
response, and a BDX session SHALL NOT be initiated.

If the RequestedProtocol is set to BDX and there is no TransferFileDesignator the command SHALL
fail with a Status Code of INVALID_COMMAND.

If the Intent and/or the RequestedProtocol arguments contain invalid (out of range) values the com
mand SHALL fail with a Status Code of INVALID_COMMAND.

11.11.5.2. RetrieveLogsResponse Command

This SHALL be generated as a response to the RetrieveLogsRequest.

The data for this command is shown in the following.

ID Name Type Constraint Quality Default Confor
mance

0 Status StatusEnum all M

1 LogContent octstr max 1024 M

2 UTCTime
Stamp

epoch-us all O

3 TimeSince
Boot

system-us all O

Status Field

This field SHALL indicate the result of an attempt to retrieve diagnostic logs.

LogContent Field

This field SHALL be included in the command if the Status field has a value of Success or
Exhausted. A Node SHOULD utilize this field to transfer the newest diagnostic log entries. This field
SHALL be empty if BDX is requested and the Status field has a value of Success.

UTCTimeStamp Field

This field SHOULD be included in the command if the Status field has a value of Success and the
Node maintains a wall clock. When included, the UTCTimeStamp field SHALL contain the value of
the oldest log entry in the diagnostic logs that are being transferred.

TimeSinceBoot Field

This field SHOULD be included in the command if the Status field has a value of Success. When
included, the TimeSinceBoot field SHALL contain the time of the oldest log entry in the diagnostic
logs that are being transferred represented by the number of microseconds since the last time the
Node went through a reboot.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 743

11.12. General Diagnostics Cluster
The General Diagnostics Cluster, along with other diagnostics clusters, provide a means to acquire
standardized diagnostics metrics that MAY be used by a Node to assist a user or Administrator in
diagnosing potential problems. The General Diagnostics Cluster attempts to centralize all metrics
that are broadly relevant to the majority of Nodes.

11.12.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 UpTime attribute now mandatory, and added
TimeSnapshot command, added DMTEST fea
ture.

11.12.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node DGGEN

11.12.3. Cluster ID

ID Name

0x0033 General Diagnostics

11.12.4. Features

The following table indicates the features for this cluster:

Bit Code Feature Conformance Summary

0 DMTEST DataModelTest desc Support specific
testing needs for
extended Data
Model features

11.12.4.1. DataModelTest Feature

This feature indicates support for extended Data Model testing commands, which are required in
some situations.

This feature SHALL be supported if the MaxPathsPerInvoke attribute of the Basic Information Clus
ter has a value > 1.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 744 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.12.5. Data Types

11.12.5.1. HardwareFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node has encoun
tered an unspecified
fault.

M

1 Radio The Node has encoun
tered a fault with at
least one of its radios.

O

2 Sensor The Node has encoun
tered a fault with at
least one of its sensors.

O

3 ResettableOverTemp The Node has encoun
tered an over-tempera
ture fault that is reset
table.

O

4 NonReset
tableOverTemp

The Node has encoun
tered an over-tempera
ture fault that is not
resettable.

O

5 PowerSource The Node has encoun
tered a fault with at
least one of its power
sources.

O

6 VisualDisplayFault The Node has encoun
tered a fault with at
least one of its visual
displays.

O

7 AudioOutputFault The Node has encoun
tered a fault with at
least one of its audio
outputs.

O

8 UserInterfaceFault The Node has encoun
tered a fault with at
least one of its user
interfaces.

O

9 NonVolatileMemory
Error

The Node has encoun
tered a fault with its
non-volatile memory.

O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 745

Value Name Summary Conformance

10 TamperDetected The Node has encoun
tered disallowed physi
cal tampering.

O

11.12.5.2. RadioFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node has encoun
tered an unspecified
radio fault.

M

1 WiFiFault The Node has encoun
tered a fault with its
Wi-Fi radio.

O

2 CellularFault The Node has encoun
tered a fault with its
cellular radio.

O

3 ThreadFault The Node has encoun
tered a fault with its
802.15.4 radio.

O

4 NFCFault The Node has encoun
tered a fault with its
NFC radio.

O

5 BLEFault The Node has encoun
tered a fault with its
BLE radio.

O

6 EthernetFault The Node has encoun
tered a fault with its
Ethernet controller.

O

11.12.5.3. NetworkFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node has encoun
tered an unspecified
fault.

M

1 HardwareFailure The Node has encoun
tered a network fault as
a result of a hardware
failure.

O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 746 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

2 NetworkJammed The Node has encoun
tered a network fault as
a result of a jammed
network.

O

3 ConnectionFailed The Node has encoun
tered a network fault as
a result of a failure to
establish a connection.

O

11.12.5.4. InterfaceTypeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified Indicates an interface
of an unspecified type.

M

1 WiFi Indicates a Wi-Fi inter
face.

O

2 Ethernet Indicates a Ethernet
interface.

O

3 Cellular Indicates a Cellular
interface.

O

4 Thread Indicates a Thread
interface.

O

11.12.5.5. BootReasonEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified The Node is unable to
identify the Power-On
reason as one of the
other provided enu
meration values.

M

1 PowerOnReboot The Node has booted as
the result of physical
interaction with the
device resulting in a
reboot.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 747

Value Name Summary Conformance

2 BrownOutReset The Node has rebooted
as the result of a
brown-out of the
Node’s power supply.

M

3 SoftwareWatchdogRe
set

The Node has rebooted
as the result of a soft
ware watchdog timer.

M

4 HardwareWatchdo
gReset

The Node has rebooted
as the result of a hard
ware watchdog timer.

M

5 SoftwareUpdateCom
pleted

The Node has rebooted
as the result of a com
pleted software update.

M

6 SoftwareReset The Node has rebooted
as the result of a soft
ware initiated reboot.

M

11.12.5.6. NetworkInterface Type

This structure describes a network interface supported by the Node, as provided in the NetworkIn
terfaces attribute.

ID Name Type Constraint Quality Default Access Confor
mance

0 Name string max 32 M

1 IsOpera
tional

bool M

2 Off
Premis
eServices
Reach
ableIPv4

bool X null M

3 Off
Premis
eServices
Reach
ableIPv6

bool X null M

4 Hard
wareAd
dress

Hardware
Address

M

5 IPv4Ad
dresses

list[ipv4ad
r]

max 4 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 748 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

6 IPv6Ad
dresses

list[ipv6ad
r]

max 8 M

7 Type Interface
TypeEnum

M

Name Field

This field SHALL indicate a human-readable (displayable) name for the network interface, that is
different from all other interfaces.

IsOperational Field

This field SHALL indicate if the Node is currently advertising itself operationally on this network
interface and is capable of successfully receiving incoming traffic from other Nodes.

OffPremiseServicesReachableIPv4 Field

This field SHALL indicate whether the Node is currently able to reach off-premise services it uses
by utilizing IPv4. The value SHALL be null if the Node does not use such services or does not know
whether it can reach them.

OffPremiseServicesReachableIPv6 Field

This field SHALL indicate whether the Node is currently able to reach off-premise services it uses
by utilizing IPv6. The value SHALL be null if the Node does not use such services or does not know
whether it can reach them.

HardwareAddress Field

This field SHALL contain the current link-layer address for a 802.3 or IEEE 802.11-2020 network
interface and contain the current extended MAC address for a 802.15.4 interface. The byte order of
the octstr SHALL be in wire byte order. For addresses values less than 64 bits, the first two bytes
SHALL be zero.

IPv4Addresses Field

This field SHALL provide a list of the IPv4 addresses that are currently assigned to the network
interface.

IPv6Addresses Field

This field SHALL provide a list of the unicast IPv6 addresses that are currently assigned to the net
work interface. This list SHALL include the Node’s link-local address and SHOULD include any
assigned GUA and ULA addresses. This list SHALL NOT include any multicast group addresses to
which the Node is subscribed.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 749

Type Field

This field SHALL indicate the type of the interface using the InterfaceTypeEnum.

11.12.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Network
Interfaces

list[Net
workInter
face]

max 8 R V M

0x0001 Reboot
Count

uint16 N R V M

0x0002 UpTime uint64 C R V M

0x0003 TotalOper
ational
Hours

uint32 N C R V O

0x0004 BootRea
son

BootReaso
nEnum

R V O

0x0005 Active
Hardware
Faults

list[Hard
wareFault
Enum]

max 11 R V O

0x0006 ActiveRa
dioFaults

list[Radio
Fault
Enum]

max 7 R V O

0x0007 ActiveNet
work
Faults

list[Net
workFault
Enum]

max 4 R V O

0x0008 TestEvent
Trig
gersEn
abled

bool all R V M

0x0009 DoNotUse X

Attribute 0x0009 SHALL not be used in any implementation of previous, current or future version
of this specification.

11.12.6.1. NetworkInterfaces Attribute

The NetworkInterfaces attribute SHALL be a list of NetworkInterface structs. Each logical network
interface on the Node SHALL be represented by a single entry within the NetworkInterfaces
attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 750 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.12.6.2. RebootCount Attribute

The RebootCount attribute SHALL indicate a best-effort count of the number of times the Node has
rebooted. The RebootCount attribute SHOULD be incremented each time the Node reboots. The
RebootCount attribute SHALL NOT be incremented when a Node wakes from a low-power or sleep
state. The RebootCount attribute SHALL only be reset to 0 upon a factory reset of the Node.

11.12.6.3. UpTime Attribute

The UpTime attribute SHALL indicate a best-effort assessment of the length of time, in seconds,
since the Node’s last reboot. This attribute SHOULD be incremented to account for the periods of
time that a Node is in a low-power or sleep state. This attribute SHALL only be reset upon a device
reboot. This attribute SHALL be based on the same System Time source as those used to fulfill any
usage of the system-us and system-ms data types within the server.

11.12.6.4. TotalOperationalHours Attribute

The TotalOperationalHours attribute SHALL indicate a best-effort attempt at tracking the length of
time, in hours, that the Node has been operational. The TotalOperationalHours attribute SHOULD
be incremented to account for the periods of time that a Node is in a low-power or sleep state. The
TotalOperationalHours attribute SHALL only be reset upon a factory reset of the Node.

11.12.6.5. BootReason Attribute

The BootReason attribute SHALL indicate the reason for the Node’s most recent boot.

11.12.6.6. ActiveHardwareFaults Attribute

The ActiveHardwareFaults attribute SHALL indicate the set of faults currently detected by the
Node. When the Node detects a fault has been raised, the appropriate HardwareFaultEnum value
SHALL be added to this list. This list SHALL NOT contain more than one instance of a specific Hard
wareFaultEnum value. When the Node detects that all conditions contributing to a fault has been
cleared, the corresponding HardwareFaultEnum value SHALL be removed from this list. An empty
list SHALL indicate there are currently no active faults. The order of this list SHOULD have no sig
nificance. Clients interested in monitoring changes in active faults MAY subscribe to this attribute,
or they MAY subscribe to HardwareFaultChange.

11.12.6.7. ActiveRadioFaults Attribute

The ActiveRadioFaults attribute SHALL indicate the set of faults currently detected by the Node.
When the Node detects a fault has been raised, the appropriate RadioFaultEnum value SHALL be
added to this list. This list SHALL NOT contain more than one instance of a specific RadioFaultEnum
value. When the Node detects that all conditions contributing to a fault has been cleared, the corre
sponding RadioFaultEnum value SHALL be removed from this list. An empty list SHALL indicate
there are currently no active faults. The order of this list SHOULD have no significance. Clients
interested in monitoring changes in active faults MAY subscribe to this attribute, or they MAY sub
scribe to RadioFaultChange.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 751

11.12.6.8. ActiveNetworkFaults Attribute

The ActiveNetworkFaults attribute SHALL indicate the set of faults currently detected by the Node.
When the Node detects a fault has been raised, the appropriate NetworkFaultEnum value SHALL be
added to this list. This list SHALL NOT contain more than one instance of a specific NetworkFault
Enum value. When the Node detects that all conditions contributing to a fault has been cleared, the
corresponding NetworkFaultEnum value SHALL be removed from this list. An empty list SHALL
indicate there are currently no active faults. The order of this list SHOULD have no significance.
Clients interested in monitoring changes in active faults MAY subscribe to this attribute, or they
MAY subscribe to NetworkFaultChange.

11.12.6.9. TestEventTriggersEnabled Attribute

The TestEventTriggersEnabled attribute SHALL indicate whether the Node has any TestEventTrig
ger configured. When this attribute is true, the Node has been configured with one or more test
event triggers by virtue of the internally programmed EnableKey value (see Section 11.12.7.1,
“TestEventTrigger Command”) being set to a non-zero value. This attribute can be used by Adminis
trators to detect if a device was inadvertently commissioned with test event trigger mode enabled,
and take appropriate action (e.g. warn the user and/or offer to remove all fabrics on the Node).

11.12.7. Commands

ID Name Direction Response Access Conformance

0x00 TestEventTrig
ger

client ⇒ server Y M M

0x01 TimeSnapshot client ⇒ server TimeSnap
shotResponse

O M

0x02 TimeSnap
shotResponse

client ⇐ server N M

0x03 Payload
TestRequest

client ⇒ server PayloadTestRe
sponse

M DMTEST

0x04 Payload
TestResponse

server ⇒ client N M DMTEST

11.12.7.1. TestEventTrigger Command

This command SHALL be supported to provide a means for certification tests to trigger some test-
plan-specific events, necessary to assist in automation of device interactions for some certification
test cases. This command SHALL NOT cause any changes to the state of the device that persist after
the last fabric is removed.

The fields for the TestEventTrigger command are as follows:

ID Name Type Constraint Quality Default Confor
mance

0 EnableKey octstr 16 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 752 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

1 EventTrig
ger

uint64 M

EnableKey Field

The EnableKey is a 128 bit value provided by the client in this command, which needs to match a
value chosen by the manufacturer and configured on the server using manufacturer-specific
means, such as pre-provisioning. The value of all zeroes is reserved to indicate that no EnableKey is
set. Therefore, if the EnableKey field is received with all zeroes, this command SHALL FAIL with a
response status of CONSTRAINT_ERROR.

The EnableKey SHOULD be unique per exact set of devices going to a certification test.

Devices not targeted towards going to a certification test event SHALL NOT have a non-zero
EnableKey value configured, so that only devices in test environments are responsive to this com
mand.

In order to prevent unwittingly actuating a particular trigger, this command SHALL respond with a
response status of CONSTRAINT_ERROR if the EnableKey field does not match the a-priori value
configured on the device.

EventTrigger Field

This field SHALL indicate the test or test mode which the client wants to trigger.

The expected side-effects of EventTrigger values are out of scope of this specification and will be
described within appropriate certification test literature provided to manufacturers by the Connec
tivity Standards Alliance, in conjunction with certification test cases documentation.

Values of EventTrigger in the range 0xFFFF_FFFF_0000_0000 through 0xFFFF_FFFF_FFFF_FFFF are
reserved for testing use by manufacturers and will not appear in CSA certification test literature.

If the value of EventTrigger received is not supported by the receiving Node, this command SHALL
fail with a status code of INVALID_COMMAND.

Otherwise, if the EnableKey value matches the configured internal value for a particular Node, and
the EventTrigger value matches a supported test event trigger value, the command SHALL succeed
and execute the expected trigger action.

If no specific test event triggers are required to be supported by certification test requirements for
the features that a given product will be certified against, this command MAY always fail with the
INVALID_COMMAND status, equivalent to the situation of receiving an unknown EventTrigger, for
all possible EventTrigger values.

11.12.7.2. TimeSnapshot Command

This command MAY be used by a client to obtain a correlated view of both System Time, and, if cur
rently synchronized and supported, "wall clock time" of the server. This can help clients establish

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 753

time correlation between their concept of time and the server’s concept of time. This is especially
useful when processing event histories where some events only contain System Time.

Upon command invocation, the server SHALL respond with a TimeSnapshotResponse.

11.12.7.3. TimeSnapshotResponse Command

This command SHALL be generated in response to a TimeSnapshot command.

When generating this response, all fields SHALL be gathered as close together in time as possible,
so that the time jitter between the values is minimized.

If the Time Synchronization cluster is supported by the node, the PosixTimeMs field SHALL NOT be
null unless the UTCTime attribute in the Time Synchronization cluster is also null.

ID Name Type Constraint Quality Default Confor
mance

0x00 System
TimeMs

system-ms all MS M

0x01 Posix
TimeMs

posix-ms all X null M

SystemTimeMs Field

This SHALL indicate the current System Time in milliseconds (type system-ms), with the value
taken at the time of processing of the TimeSnapshot command that generated this response.

The value SHALL be taken from the same clock which populates the Timestamp field in events
when using System Time for the field.

PosixTimeMs Field

This SHALL indicate the current time in POSIX Time in milliseconds, with the value taken from the
same source that could populate the Timestamp field of events. This value SHALL only be null
when any the following are true:

• The node doesn’t support the Time Synchronization cluster.

• The node’s Time Synchronization cluster instance’s UTCTime attribute is null.

11.12.7.4. PayloadTestRequest Command

This command provides a means for certification tests or manufacturer’s internal tests to validate
particular command handling and encoding constraints by generating a response of a given size.

This command SHALL use the same EnableKey behavior as the TestEventTrigger command, whereby
processing of the command is only enabled when the TestEventTriggersEnabled field is true, which
SHALL NOT be true outside of certification testing or manufacturer’s internal tests.

The fields for the PayloadTestRequest command are as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 754 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0x00 EnableKey octstr 16 M

0x01 Value uint8 M

0x02 Count uint16 max 2048 M

EnableKey field

This field SHALL have the same meaning and usage as the TestEventTrigger EnableKey field.

Value field

This field SHALL indicate the value to use in every byte of the PayloadTestResponse’s Payload field.

Count field

This field SHALL indicate the number of times to repeat the Value in the PayloadTestResponse’s
Payload field.

Effect upon receipt

This command SHALL respond with a response status of CONSTRAINT_ERROR if either:

• The EnableKey field does not match the a-priori value configured on the device.

• The TestEventTriggersEnabled field is currently false.

Otherwise, the server SHALL respond with a PayloadTestResponse command with a Payload field
value containing Count instances of the Value byte. If the response is too large to send, the server
SHALL fail the command and respond with a response status of RESOURCE_EXHAUSTED.

For example:

• If Value is 0x55 and the Count is zero, then the PayloadTestResponse would have the Payload
field set to an empty octet string.

• If Value is 0xA5 and the Count is 10, the PayloadTestResponse would have the Payload field set
to a content whose hexadecimal representation would be A5A5A5A5A5A5A5A5A5A5, and base64 rep
resentation would be paWlpaWlpaWlpQ==.

11.12.7.5. PayloadTestResponse Command

This command is sent by the server on receipt of the PayloadTestRequest command.

This command SHALL have the following data fields:

ID Name Type Constraint Quality Default Confor
mance

0x00 Payload octstr max 2048 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 755

Payload Field

This field SHALL contain the computed response of the PayloadTestRequest command.

11.12.8. Events

ID Name Priority Access Conformance

0x00 HardwareFault
Change

CRITICAL V O

0x01 RadioFault
Change

CRITICAL V O

0x02 NetworkFault
Change

CRITICAL V O

0x03 BootReason CRITICAL V M

11.12.8.1. HardwareFaultChange Event

The HardwareFaultChange Event SHALL indicate a change in the set of hardware faults currently
detected by the Node.

The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Current list[Hard
wareFault
Enum]

max 11 M

1 Previous list[Hard
wareFault
Enum]

max 11 M

Current Field

This field SHALL represent the set of faults currently detected, as per Section 11.12.5.1, “Hardware
FaultEnum Type”.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per Section
11.12.5.1, “HardwareFaultEnum Type”.

11.12.8.2. RadioFaultChange Event

The RadioFaultChange Event SHALL indicate a change in the set of radio faults currently detected
by the Node.

The data of this event SHALL contain the following information:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 756 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 Current list[Radio
FaultEnum]

max 7 M

1 Previous list[Radio
FaultEnum]

max 7 M

Current Field

This field SHALL represent the set of faults currently detected, as per Section 11.12.5.2, “RadioFault
Enum Type”.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per Section
11.12.5.2, “RadioFaultEnum Type”.

11.12.8.3. NetworkFaultChange Event

The NetworkFaultChange Event SHALL indicate a change in the set of network faults currently
detected by the Node.

The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Current list[Network
FaultEnum]

max 4 M

1 Previous list[Network
FaultEnum]

max 4 M

Current Field

This field SHALL represent the set of faults currently detected, as per Section 11.12.5.3, “Network
FaultEnum Type”.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per Section
11.12.5.3, “NetworkFaultEnum Type”.

11.12.8.4. BootReason Event

The BootReason Event SHALL indicate the reason that caused the device to start-up.

The data of this event SHALL contain the following information:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 757

ID Name Type Constraint Quality Default Confor
mance

0 BootReason BootReaso
nEnum

M

BootReason Field

This field SHALL contain the reason for this BootReason event.

11.13. Software Diagnostics Cluster
The Software Diagnostics Cluster provides a means to acquire standardized diagnostics metrics that
MAY be used by a Node to assist a user or Administrator in diagnosing potential problems. The Soft
ware Diagnostics Cluster attempts to centralize all metrics that are relevant to the software that
may be running on a Node.

11.13.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.13.2. Classification

Hierarchy Role Scope PICS Code Quality

Base Utility Node DGSW K

11.13.3. Cluster ID

ID Name

0x0034 Software Diagnostics

11.13.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 WTRMRK Watermarks Node makes available
the metrics for high
watermark related to
memory consumption.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 758 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.13.5. Data Types

11.13.5.1. ThreadMetricsStruct Type

ID Name Type Constraint Quality Default Access Confor
mance

0 ID uint64 all M

1 Name string max 8 empty O

2 Stack
FreeCur
rent

uint32 all MS O

3 Stack
FreeMini
mum

uint32 all MS O

4 StackSize uint32 all MS O

ID Field

The Id field SHALL be a server-assigned per-thread unique ID that is constant for the duration of
the thread. Efforts SHOULD be made to avoid reusing ID values when possible.

Name Field

The Name field SHALL be set to a vendor defined name or prefix of the software thread that is sta
tic for the duration of the thread.

StackFreeCurrent Field

The StackFreeCurrent field SHALL indicate the current amount of stack memory, in bytes, that are
not being utilized on the respective thread.

StackFreeMinimum Field

The StackFreeMinimum field SHALL indicate the minimum amount of stack memory, in bytes, that
has been available at any point between the current time and this attribute being reset or initial
ized on the respective thread. This value SHALL only be reset upon a Node reboot or upon receiv
ing of the ResetWatermarks command.

StackSize Field

The StackSize field SHALL indicate the amount of stack memory, in bytes, that has been allocated
for use by the respective thread.

11.13.6. Attributes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 759

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Thread
Metrics

list[Thread
Metric
sStruct]

max 64 R V O

0x0001 Cur
rentHeapF
ree

uint64 R V O

0x0002 Cur
rentHea
pUsed

uint64 R V O

0x0003 Cur
rentHeap
HighWa
termark

uint64 R V WTRMRK

11.13.6.1. ThreadMetrics Attribute

The ThreadMetrics attribute SHALL be a list of ThreadMetricsStruct structs. Each active thread on
the Node SHALL be represented by a single entry within the ThreadMetrics attribute.

11.13.6.2. CurrentHeapFree Attribute

The CurrentHeapFree attribute SHALL indicate the current amount of heap memory, in bytes, that
are free for allocation. The effective amount MAY be smaller due to heap fragmentation or other
reasons.

11.13.6.3. CurrentHeapUsed Attribute

The CurrentHeapUsed attribute SHALL indicate the current amount of heap memory, in bytes, that
is being used.

11.13.6.4. CurrentHeapHighWatermark Attribute

The CurrentHeapHighWatermark attribute SHALL indicate the maximum amount of heap memory,
in bytes, that has been used by the Node. This value SHALL only be reset upon a Node reboot or
upon receiving of the ResetWatermarks command.

11.13.7. Commands

ID Name Direction Response Access Conformance

0x00 ResetWater
marks

client ⇒ server Y M WTRMRK

11.13.7.1. ResetWatermarks Command

Receipt of this command SHALL reset the following values which track high and lower watermarks:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 760 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• The StackFreeMinimum field of the ThreadMetrics attribute

• The CurrentHeapHighWatermark attribute

This command has no payload.

Effect on Receipt

On receipt of this command, the Node SHALL make the following modifications to attributes it sup
ports:

If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the
value of the CurrentHeapUsed attribute.

If implemented, the server SHALL set the value of the StackFreeMinimum field for every thread to
the value of the corresponding thread’s StackFreeCurrent field.

11.13.8. Events

ID Name Priority Access Conformance

0x00 SoftwareFault INFO V O

11.13.8.1. SoftwareFault Event

The SoftwareFault Event SHALL be generated when a software fault takes place on the Node.

The event’s data are as follows:

ID Name Type Constraint Quality Default Confor
mance

0 ID uint64 all 0 M

1 Name string max 8 empty O

2 Fault
Recording

octstr max 1024 empty O

ID Field

The ID field SHALL be set to the ID of the software thread in which the last software fault occurred.

Name Field

The Name field SHALL be set to a manufacturer-specified name or prefix of the software thread in
which the last software fault occurred.

FaultRecording Field

The FaultRecording field SHALL be a manufacturer-specified payload intended to convey informa
tion to assist in further diagnosing or debugging a software fault. The FaultRecording field MAY be
used to convey information such as, but not limited to, thread backtraces or register contents.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 761

11.14. Thread Network Diagnostics Cluster
The Thread Network Diagnostics Cluster provides a means to acquire standardized diagnostics met
rics that MAY be used by a Node to assist a user or Administrator in diagnosing potential problems.
The Thread Network Diagnostics Cluster attempts to centralize all metrics that are relevant to a
potential Thread radio running on a Node.

11.14.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Remove optionality from FrameErrorRate and
MessageErrorRate

11.14.2. Classification

Hierarchy Role Scope PICS Code Quality

Base Utility Node DGTHREAD K

11.14.3. Cluster ID

ID Name

0x0035 Thread Network Diagnostics

11.14.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 PKTCNT PacketCounts Server supports the
counts for the number
of received and trans
mitted packets on the
Thread interface.

1 ERRCNT ErrorCounts Server supports the
counts for the number
of errors that have
occurred during the
reception and transmis
sion of packets on the
Thread interface.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 762 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Bit Code Feature Summary

2 MLECNT MLECounts Server supports the
counts for various MLE
layer happenings.

3 MACCNT MACCounts Server supports the
counts for various MAC
layer happenings.

11.14.5. Data Types

11.14.5.1. NetworkFaultEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified Indicates an unspeci
fied fault.

M

1 LinkDown Indicates the Thread
link is down.

M

2 HardwareFailure Indicates there has
been Thread hardware
failure.

M

3 NetworkJammed Indicates the Thread
network is jammed.

M

11.14.5.2. ConnectionStatusEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Connected Node is connected M

1 NotConnected Node is not connected M

11.14.5.3. RoutingRoleEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified Unspecified routing
role.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 763

Value Name Summary Conformance

1 Unassigned The Node does not cur
rently have a role as a
result of the Thread
interface not currently
being configured or
operational.

M

2 SleepyEndDevice The Node acts as a
Sleepy End Device with
RX-off-when-idle sleepy
radio behavior.

M

3 EndDevice The Node acts as an
End Device without RX-
off-when-idle sleepy
radio behavior.

M

4 REED The Node acts as an
Router Eligible End
Device.

M

5 Router The Node acts as a
Router Device.

M

6 Leader The Node acts as a
Leader Device.

M

11.14.5.4. NeighborTableStruct Type

ID Name Type Constraint Quality Default Access Confor
mance

0 ExtAd
dress

uint64 all M

1 Age uint32 all M

2 Rloc16 uint16 all M

3 Link
Frame
Counter

uint32 all M

4 MleFrame
Counter

uint32 all M

5 LQI uint8 0 to 255 M

6 Aver
ageRssi

int8 -128 to 0 X null M

7 LastRssi int8 -128 to 0 X null M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 764 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

8 FrameEr
rorRate

uint8 0 to 100 0 M

9 Mes
sageError
Rate

uint8 0 to 100 0 M

10 RxOn
WhenIdle

bool all M

11 FullThrea
dDevice

bool all M

12 FullNet
workData

bool all M

13 IsChild bool all M

ExtAddress Field

This field SHALL specify the IEEE 802.15.4 extended address for the neighboring Node.

Age Field

This field SHALL specify the duration of time, in seconds, since a frame has been received from the
neighboring Node.

Rloc16 Field

This field SHALL specify the RLOC16 of the neighboring Node.

LinkFrameCounter Field

This field SHALL specify the number of link layer frames that have been received from the neigh
boring node. This field SHALL be reset to 0 upon a reboot of the Node.

MleFrameCounter Field

This field SHALL specify the number of Mesh Link Establishment frames that have been received
from the neighboring node. This field SHALL be reset to 0 upon a reboot of the Node.

LQI Field

This field SHALL specify the implementation specific mix of IEEE 802.15.4 PDU receive quality indi
cators, scaled from 0 to 255.

AverageRssi Field

This field SHOULD specify the average RSSI across all received frames from the neighboring Node
since the receiving Node’s last reboot. If there is no known received frames this field SHOULD have
the value of null. This field SHALL have the units of dBm, having the range -128 dBm to 0 dBm.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 765

LastRssi Field

This field SHALL specify the RSSI of the most recently received frame from the neighboring Node. If
there is no known last received frame the LastRssi field SHOULD have the value of null. This field
SHALL have the units of dBm, having the range -128 dBm to 0 dBm.

FrameErrorRate Field

This field SHALL specify the percentage of received frames from the neighboring Node that have
resulted in errors.

MessageErrorRate Field

This field SHALL specify the percentage of received messages from the neighboring Node that have
resulted in errors.

RxOnWhenIdle Field

This field SHALL specify if the neighboring Node is capable of receiving frames while the Node is in
an idle state.

FullThreadDevice Field

This field SHALL specify if the neighboring Node is a full Thread device.

FullNetworkData Field

This field SHALL specify if the neighboring Node requires the full Network Data. If set to False, the
neighboring Node only requires the stable Network Data.

IsChild Field

This field SHALL specify if the neighboring Node is a direct child of the Node reporting the Neigh
borTable attribute.

11.14.5.5. RouteTableStruct Type

ID Name Type Constraint Quality Default Access Confor
mance

0 ExtAd
dress

uint64 M

1 Rloc16 uint16 M

2 RouterId uint8 M

3 NextHop uint8 M

4 PathCost uint8 M

5 LQIIn uint8 M

6 LQIOut uint8 M

7 Age uint8 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 766 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

8 Allocated bool M

9 LinkEstab
lished

bool M

ExtAddress Field

This field SHALL specify the IEEE 802.15.4 extended address for the Node for which this route table
entry corresponds.

Rloc16 Field

This field SHALL specify the RLOC16 for the Node for which this route table entry corresponds.

RouterId Field

This field SHALL specify the Router ID for the Node for which this route table entry corresponds.

NextHop Field

This field SHALL specify the Router ID for the next hop in the route to the Node for which this route
table entry corresponds.

PathCost Field

This Field SHALL specify the cost of the route to the Node for which this route table entry corre
sponds.

LQIIn Field

This field SHALL specify the implementation specific mix of IEEE 802.15.4 PDU receive quality indi
cators, scaled from 0 to 255, from the perspective of the Node reporting the neighbor table.

LQIOut Field

This field SHALL specify the implementation specific mix of IEEE 802.15.4 PDU receive quality indi
cators, scaled from 0 to 255, from the perspective of the Node specified within the NextHop field.

Age Field

This field SHALL specify the duration of time, in seconds, since a frame has been received from the
Node for which this route table entry corresponds.

Allocated Field

This field SHALL specify if the router ID as defined within the RouterId field has been allocated.

LinkEstablished Field

This field SHALL specify if a link has been established to the Node for which this route table entry

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 767

corresponds.

11.14.5.6. SecurityPolicy Type

ID Name Type Constraint Quality Default Access Confor
mance

0 Rotation
Time

uint16 M

1 Flags uint16 M

RotationTime Field

This field SHALL specify the interval of time, in hours, that Thread security keys are rotated. This
attribute SHALL be null when there is no dataset configured.

Flags Field

This field SHALL specify the flags as specified in Thread 1.3.0 section 8.10.1.15. This attribute SHALL
be null when there is no dataset configured.

11.14.5.7. OperationalDatasetComponents Type

ID Name Type Constraint Quality Default Access Confor
mance

0 Active
Time
stampPre
sent

bool M

1 Pending
Time
stampPre
sent

bool M

2 Mas
terKeyPre
sent

bool M

3 Network
NamePre
sent

bool M

4 Extended
PanIdPre
sent

bool M

5 MeshLo
calPrefix
Present

bool M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 768 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

6 DelayPre
sent

bool M

7 PanIdPre
sent

bool M

8 ChannelP
resent

bool M

9 PskcPre
sent

bool M

10 Security
PolicyPre
sent

bool M

11 Channel
MaskPre
sent

bool M

ActiveTimestampPresent Field

This field SHALL be True if the Node has an active timestamp present, else False.

PendingTimestampPresent Field

This field SHALL be True if the Node has a pending timestamp is present, else False.

MasterKeyPresent Field

This field SHALL be True if the Node has the Thread master key, else False.

NetworkNamePresent Field

This field SHALL be True if the Node has the Thread network’s name, else False.

ExtendedPanIdPresent Field

This field SHALL be True if the Node has an extended Pan ID, else False.

MeshLocalPrefixPresent Field

This field SHALL be True if the Node has the mesh local prefix, else False.

DelayPresent Field

This field SHALL be True if the Node has the Thread network delay set, else False.

PanIdPresent Field

This field SHALL be True if the Node has a Pan ID, else False.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 769

ChannelPresent Field

This field SHALL be True if the Node has configured an operational channel for the Thread net
work, else False.

PskcPresent Field

This field SHALL be True if the Node has been configured with the Thread network Pskc, else False.

SecurityPolicyPresent Field

This field SHALL be True if the Node has been configured with the Thread network security poli
cies, else False.

ChannelMaskPresent Field

This field SHALL be True if the Node has available a mask of available channels, else False.

11.14.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Channel uint16 all X R V M

0x0001 Routing
Role

Routin
gRoleEnum

all X R V M

0x0002 Network
Name

String max 16 X R V M

0x0003 PanId uint16 all X R V M

0x0004 Extended
PanId

uint64 all X R V M

0x0005 MeshLo
calPrefix

ipv6pre all X R V M

0x0006 Overrun
Count

uint64 all C 0 R V ERRCNT

0x0007 Neigh
borTable

list[Neigh
borTa
bleStruct]

all [] R V M

0x0008 RouteTabl
e

list[RouteT
ableStruct]

all [] R V M

0x0009 Parti
tionId

uint32 all X R V M

0x000A Weighting uint16 max 255 X R V M

0x000B DataVer
sion

uint16 max 255 X R V M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 770 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x000C Stable
DataVer
sion

uint16 max 255 X R V M

0x000D Leader
RouterId

uint8 max 62 X R V M

0x000E DetachedR
oleCount

uint16 all C 0 R V [MLECNT]

0x000F ChildRole
Count

uint16 all C 0 R V [MLECNT]

0x0010 Router
RoleCount

uint16 all C 0 R V [MLECNT]

0x0011 Leader
RoleCount

uint16 all C 0 R V [MLECNT]

0x0012 AttachAt
tempt
Count

uint16 all C 0 R V [MLECNT]

0x0013 Partition
IdChange
Count

uint16 all C 0 R V [MLECNT]

0x0014 BetterPar
titionAt
tachAt
tempt
Count

uint16 all C 0 R V [MLECNT]

0x0015 Par
entChange
Count

uint16 all C 0 R V [MLECNT]

0x0016 TxTotal
Count

uint32 all C 0 R V [MACCNT]

0x0017 TxUnicast
Count

uint32 all C 0 R V [MACCNT]

0x0018 TxBroad
castCount

uint32 all C 0 R V [MACCNT]

0x0019 TxAckRe
quested
Count

uint32 all C 0 R V [MACCNT]

0x001A TxAcked
Count

uint32 all C 0 R V [MACCNT]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 771

ID Name Type Constraint Quality Default Access Confor
mance

0x001B TxNoAck
Request
edCount

uint32 all C 0 R V [MACCNT]

0x001C TxData
Count

uint32 all C 0 R V [MACCNT]

0x001D TxDat
aPoll
Count

uint32 all C 0 R V [MACCNT]

0x001E TxBeacon
Count

uint32 all C 0 R V [MACCNT]

0x001F TxBeacon
Request
Count

uint32 all C 0 R V [MACCNT]

0x0020 TxOther
Count

uint32 all C 0 R V [MACCNT]

0x0021 TxRetryCo
unt

uint32 all C 0 R V [MACCNT]

0x0022 TxDirect
MaxRetry
Ex
piryCount

uint32 all C 0 R V [MACCNT]

0x0023 TxIndi
rect
MaxRetry
Ex
piryCount

uint32 all C 0 R V [MACCNT]

0x0024 TxErrCca
Count

uint32 all C 0 R V [MACCNT]

0x0025 TxErrAbo
rtCount

uint32 all C 0 R V [MACCNT]

0x0026 TxEr
rBusy
Channel
Count

uint32 all C 0 R V [MACCNT]

0x0027 RxTotal
Count

uint32 all C 0 R V [MACCNT]

0x0028 RxUnicast
Count

uint32 all C 0 R V [MACCNT]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 772 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0029 RxBroad
castCount

uint32 all C 0 R V [MACCNT]

0x002A RxData
Count

uint32 all C 0 R V [MACCNT]

0x002B RxDat
aPoll
Count

uint32 all C 0 R V [MACCNT]

0x002C RxBeacon
Count

uint32 all C 0 R V [MACCNT]

0x002D RxBeacon
Request
Count

uint32 all C 0 R V [MACCNT]

0x002E RxOther
Count

uint32 all C 0 R V [MACCNT]

0x002F RxAd
dressFil
tered
Count

uint32 all C 0 R V [MACCNT]

0x0030 RxDestAd
drFil
tered
Count

uint32 all C 0 R V [MACCNT]

0x0031 RxDupli
cated
Count

uint32 all C 0 R V [MACCNT]

0x0032 RxEr
rNoFrame
Count

uint32 all C 0 R V [MACCNT]

0x0033 RxErrUnk
nown
Neighbor
Count

uint32 all C 0 R V [MACCNT]

0x0034 RxErrIn
validSr
cAddr
Count

uint32 all C 0 R V [MACCNT]

0x0035 RxErrSec
Count

uint32 all C 0 R V [MACCNT]

0x0036 RxErrFc
sCount

uint32 all C 0 R V [MACCNT]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 773

ID Name Type Constraint Quality Default Access Confor
mance

0x0037 RxEr
rOther
Count

uint32 all C 0 R V [MACCNT]

0x0038 Active
Time
stamp

uint64 all X 0 R V O

0x0039 Pending
Time
stamp

uint64 all X 0 R V O

0x003A Delay uint32 all X 0 R V O

0x003B Security
Policy

Security
Policy

X R V M

0x003C Channel
Page0
Mask

octstr 4 X R V M

0x003D Opera
tional
Dataset
Compo
nents

Opera
tional
Dataset
Compo
nents

X R V M

0x003E ActiveNet
work
FaultsList

list[Net
workFault
Enum]

max 4 R V M

11.14.6.1. Channel Attribute

The Channel attribute SHALL indicate the 802.15.4 channel number configured on the Node’s
Thread interface (that is, the Active Operational Dataset’s current Channel value). A value of null
SHALL indicate that the Thread interface is not currently configured or operational.

11.14.6.2. RoutingRole Attribute

The RoutingRole attribute SHALL indicate the role that this Node has within the routing of mes
sages through the Thread network, as defined by RoutingRoleEnum. The potential roles are defined
in the following table. A value of null SHALL indicate that the Thread interface is not currently con
figured or operational.

11.14.6.3. NetworkName Attribute

The NetworkName attribute SHALL indicate a human-readable (displayable) name for the Thread
network that the Node has been configured to join to. A value of null SHALL indicate that the
Thread interface is not currently configured or operational.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 774 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.14.6.4. PanId Attribute

The PanId attribute SHALL indicate the 16-bit identifier of the Node on the Thread network. A value
of null SHALL indicate that the Thread interface is not currently configured or operational.

11.14.6.5. ExtendedPanId Attribute

The ExtendedPanId attribute SHALL indicate the unique 64-bit identifier of the Node on the Thread
network. A value of null SHALL indicate that the Thread interface is not currently configured or
operational.

11.14.6.6. MeshLocalPrefix Attribute

The MeshLocalPrefix attribute SHALL indicate the mesh-local IPv6 prefix for the Thread network
that the Node has been configured to join to. A value of null SHALL indicate that the Thread inter
face is not currently configured or operational.

11.14.6.7. OverrunCount Attribute

The OverrunCount attribute SHALL indicate the number of packets dropped either at ingress or
egress, due to lack of buffer memory to retain all packets on the ethernet network interface. The
OverrunCount attribute SHALL be reset to 0 upon a reboot of the Node.

11.14.6.8. NeighborTable Attribute

The NeighborTable attribute SHALL indicate the current list of Nodes that comprise the neighbor
table on the Node.

11.14.6.9. RouteTable Attribute

The RouteTable attribute SHALL indicate the current list of router capable Nodes for which routes
have been established.

11.14.6.10. PartitionId Attribute

The PartitionId attribute SHALL indicate the Thread Leader Partition Id for the Thread network to
which the Node is joined. This attribute SHALL be null if not attached to a Thread network.

11.14.6.11. Weighting Attribute

The Weighting attribute SHALL indicate the Thread Leader Weight used when operating in the
Leader role. This attribute SHALL be null if not attached to a Thread network.

11.14.6.12. DataVersion Attribute

The DataVersion attribute SHALL indicate the full Network Data Version the Node currently uses.
This attribute SHALL be null if not attached to a Thread network.

11.14.6.13. StableDataVersion Attribute

The StableDataVersion attribute SHALL indicate the Network Data Version for the stable subset of

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 775

data the Node currently uses. This attribute SHALL be null if not attached to a Thread network.

11.14.6.14. LeaderRouterId Attribute

The LeaderRouterId attribute SHALL indicate the 8-bit LeaderRouterId the Node SHALL attempt to
utilize upon becoming a router or leader on the Thread network. This attribute SHALL be null if not
attached to a Thread network.

11.14.6.15. DetachedRoleCount Attribute

The DetachedRoleCount attribute SHALL indicate the number of times the Node entered the OT_DE
VICE_ROLE_DETACHED role as specified within the Thread specification. This value SHALL only be
reset upon a Node reboot.

11.14.6.16. ChildRoleCount Attribute

The ChildRoleCount attribute SHALL indicate the number of times the Node entered the OT_DE
VICE_ROLE_CHILD role as specified within the Thread specification. This value SHALL only be reset
upon a Node reboot.

11.14.6.17. RouterRoleCount Attribute

The RouterRoleCount attribute SHALL indicate the number of times the Node entered the OT_DE
VICE_ROLE_ROUTER role as specified within the Thread specification. This value SHALL only be
reset upon a Node reboot.

11.14.6.18. LeaderRoleCount Attribute

The LeaderRoleCount attribute SHALL indicate the number of times the Node entered the OT_DE
VICE_ROLE_LEADER role as specified within the Thread specification. This value SHALL only be
reset upon a Node reboot.

11.14.6.19. AttachAttemptCount Attribute

The AttachAttemptCount attribute SHALL indicate the number of attempts that have been made to
attach to a Thread network while the Node was detached from all Thread networks. This value
SHALL only be reset upon a Node reboot.

11.14.6.20. PartitionIdChangeCount Attribute

The PartitionIdChangeCount attribute SHALL indicate the number of times that the Thread net
work that the Node is connected to has changed its Partition ID. This value SHALL only be reset
upon a Node reboot.

11.14.6.21. BetterPartitionAttachAttemptCount Attribute

The BetterPartitionAttachAttemptCount attribute SHALL indicate the number of times a Node has
attempted to attach to a different Thread partition that it has determined is better than the parti
tion it is currently attached to. This value SHALL only be reset upon a Node reboot.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 776 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.14.6.22. ParentChangeCount Attribute

The ParentChangeCount attribute SHALL indicate the number of times a Node has changed its par
ent. This value SHALL only be reset upon a Node reboot.

11.14.6.23. TxTotalCount Attribute

The TxTotalCount attribute SHALL indicate the total number of unique MAC frame transmission
requests. The TxTotalCount attribute SHALL only be incremented by 1 for each MAC transmission
request regardless of the amount of CCA failures, CSMA-CA attempts, or retransmissions. This value
SHALL only be reset upon a Node reboot.

11.14.6.24. TxUnicastCount Attribute

The TxUnicastCount attribute SHALL indicate the total number of unique unicast MAC frame trans
mission requests. The TxUnicastCount attribute SHALL only be incremented by 1 for each unicast
MAC transmission request regardless of the amount of CCA failures, CSMA-CA attempts, or retrans
missions. This value SHALL only be reset upon a Node reboot.

11.14.6.25. TxBroadcastCount Attribute

The TxBroadcastCount attribute SHALL indicate the total number of unique broadcast MAC frame
transmission requests. The TxBroadcastCount attribute SHALL only be incremented by 1 for each
broadcast MAC transmission request regardless of the amount of CCA failures, CSMA-CA attempts,
or retransmissions. This value SHALL only be reset upon a Node reboot.

11.14.6.26. TxAckRequestedCount Attribute

The TxAckRequestedCount attribute SHALL indicate the total number of unique MAC frame trans
mission requests with requested acknowledgment. The TxAckRequestedCount attribute SHALL only
be incremented by 1 for each MAC transmission request with requested acknowledgment regard
less of the amount of CCA failures, CSMA-CA attempts, or retransmissions. This value SHALL only
be reset upon a Node reboot.

11.14.6.27. TxAckedCount Attribute

The TxAckedCount attribute SHALL indicate the total number of unique MAC frame transmission
requests that were acked. The TxAckedCount attribute SHALL only be incremented by 1 for each
MAC transmission request that is acked regardless of the amount of CCA failures, CSMA-CA
attempts, or retransmissions. This value SHALL only be reset upon a Node reboot.

11.14.6.28. TxNoAckRequestedCount Attribute

The TxNoAckRequestedCount attribute SHALL indicate the total number of unique MAC frame
transmission requests without requested acknowledgment. The TxNoAckRequestedCount attribute
SHALL only be incremented by 1 for each MAC transmission request that is does not request
acknowledgement regardless of the amount of CCA failures, CSMA-CA attempts, or retransmissions.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 777

11.14.6.29. TxDataCount Attribute

The TxDataCount attribute SHALL indicate the total number of unique MAC Data frame transmis
sion requests. The TxDataCount attribute SHALL only be incremented by 1 for each MAC Data
frame transmission request regardless of the amount of CCA failures, CSMA-CA attempts, or
retransmissions. This value SHALL only be reset upon a Node reboot.

11.14.6.30. TxDataPollCount Attribute

The TxDataPollCount attribute SHALL indicate the total number of unique MAC Data Poll frame
transmission requests. The TxDataPollCount attribute SHALL only be incremented by 1 for each
MAC Data Poll frame transmission request regardless of the amount of CCA failures, CSMA-CA
attempts, or retransmissions. This value SHALL only be reset upon a Node reboot.

11.14.6.31. TxBeaconCount Attribute

The TxBeaconCount attribute SHALL indicate the total number of unique MAC Beacon frame trans
mission requests. The TxBeaconCount attribute SHALL only be incremented by 1 for each MAC Bea
con frame transmission request regardless of the amount of CCA failures, CSMA-CA attempts, or
retransmissions.

11.14.6.32. TxBeaconRequestCount Attribute

The TxBeaconRequestCount attribute SHALL indicate the total number of unique MAC Beacon
Request frame transmission requests. The TxBeaconRequestCount attribute SHALL only be incre
mented by 1 for each MAC Beacon Request frame transmission request regardless of the amount of
CCA failures, CSMA-CA attempts, or retransmissions. This value SHALL only be reset upon a Node
reboot.

11.14.6.33. TxOtherCount Attribute

The TxOtherCount attribute SHALL indicate the total number of unique MAC frame transmission
requests that are not counted by any other attribute. The TxOtherCount attribute SHALL only be
incremented by 1 for each MAC frame transmission request regardless of the amount of CCA fail
ures, CSMA-CA attempts, or retransmissions. This value SHALL only be reset upon a Node reboot.

11.14.6.34. TxRetryCount Attribute

The TxRetryCount attribute SHALL indicate the total number of MAC retransmission attempts. The
TxRetryCount attribute SHALL only be incremented by 1 for each retransmission attempt that may
be triggered by lack of acknowledgement, CSMA/CA failure, or other type of transmission error.
This value SHALL only be reset upon a Node reboot.

11.14.6.35. TxDirectMaxRetryExpiryCount Attribute

The TxDirectMaxRetryExpiryCount attribute SHALL indicate the total number of unique MAC
transmission packets that meet maximal retry limit for direct packets. The TxDirectMaxRetryEx
piryCount attribute SHALL only be incremented by 1 for each unique MAC transmission packets
that meets the maximal retry limit for direct packets. This value SHALL only be reset upon a Node
reboot.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 778 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.14.6.36. TxIndirectMaxRetryExpiryCount Attribute

The TxIndirectMaxRetryExpiryCount attribute SHALL indicate the total number of unique MAC
transmission packets that meet maximal retry limit for indirect packets. The TxIndirectMaxRetry
ExpiryCount attribute SHALL only be incremented by 1 for each unique MAC transmission packets
that meets the maximal retry limit for indirect packets. This value SHALL only be reset upon a
Node reboot.

11.14.6.37. TxErrCcaCount Attribute

The TxErrCcaCount attribute SHALL indicate the total number of CCA failures. The TxErrCcaCount
attribute SHALL only be incremented by 1 for each instance of a CCA failure. This value SHALL only
be reset upon a Node reboot.

11.14.6.38. TxErrAbortCount Attribute

The TxErrAbortCount attribute SHALL indicate the total number of unique MAC transmission
request failures caused by an abort error. The TxErrAbortCount attribute SHALL only be incre
mented by 1 for each unique MAC transmission request failure caused by an abort error.

11.14.6.39. TxErrBusyChannelCount Attribute

The TxErrBusyChannelCount attribute SHALL indicate the total number of unique MAC transmis
sion request failures caused by an error as the result of a busy channel (a CSMA/CA fail). The TxEr
rBusyChannelCount attribute SHALL only be incremented by 1 for each unique MAC transmission
request failure caused by a busy channel such as a CSMA/CA failure.

11.14.6.40. RxTotalCount Attribute

The RxTotalCount attribute SHALL indicate the total number of received unique MAC frames. This
value SHALL only be reset upon a Node reboot.

11.14.6.41. RxUnicastCount Attribute

The RxUnicastCount attribute SHALL indicate the total number of received unique unicast MAC
frames. This value SHALL only be reset upon a Node reboot.

11.14.6.42. RxBroadcastCount Attribute

The RxBroadcastCount attribute SHALL indicate the total number of received unique broadcast
MAC frames. This value SHALL only be reset upon a Node reboot.

11.14.6.43. RxDataCount Attribute

The RxDataCount attribute SHALL indicate the total number of received unique MAC Data frames.
This value SHALL only be reset upon a Node reboot.

11.14.6.44. RxDataPollCount Attribute

The RxDataPollCount attribute SHALL indicate the total number of received unique MAC Data Poll
frames. This value SHALL only be reset upon a Node reboot.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 779

11.14.6.45. RxBeaconCount Attribute

The RxBeaconCount attribute SHALL indicate the total number of received unique MAC Beacon
frames. This value SHALL only be reset upon a Node reboot.

11.14.6.46. RxBeaconRequestCount Attribute

The RxBeaconRequestCount attribute SHALL indicate the total number of received unique MAC
Beacon Request frames. This value SHALL only be reset upon a Node reboot.

11.14.6.47. RxOtherCount Attribute

The RxOtherCount attribute SHALL indicate the total number of received unique MAC frame
requests that are not counted by any other attribute. This value SHALL only be reset upon a Node
reboot.

11.14.6.48. RxAddressFilteredCount Attribute

The RxAddressFilteredCount attribute SHALL indicate the total number of received unique MAC
frame requests that have been dropped as a result of MAC filtering. This value SHALL only be reset
upon a Node reboot.

11.14.6.49. RxDestAddrFilteredCount Attribute

The RxDestAddrFilteredCount attribute SHALL indicate the total number of received unique MAC
frame requests that have been dropped as a result of a destination address check. This value SHALL
only be reset upon a Node reboot.

11.14.6.50. RxDuplicatedCount Attribute

The RxDuplicatedCount attribute SHALL indicate the total number of received MAC frame requests
that have been dropped as a result of being a duplicate of a previously received MAC frame request.
This value SHALL only be reset upon a Node reboot.

11.14.6.51. RxErrNoFrameCount Attribute

The RxErrNoFrameCount attribute SHALL indicate the total number of received unique MAC frame
requests that have been dropped as a result of missing or malformed frame contents. This value
SHALL only be reset upon a Node reboot.

11.14.6.52. RxErrUnknownNeighborCount Attribute

The RxErrUnknownNeighborCount attribute SHALL indicate the total number of received unique
MAC frame requests that have been dropped as a result of originating from an unknown neighbor
device. This value SHALL only be reset upon a Node reboot.

11.14.6.53. RxErrInvalidSrcAddrCount Attribute

The RxErrInvalidSrcAddrCount attribute SHALL indicate the total number of received unique MAC
frame requests that have been dropped as a result of containing an invalid source address. This
value SHALL only be reset upon a Node reboot.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 780 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.14.6.54. RxErrSecCount Attribute

The RxErrSecCount attribute SHALL indicate the total number of received unique MAC frame
requests that have been dropped as a result of an error with the security of the received frame. This
value SHALL only be reset upon a Node reboot.

11.14.6.55. RxErrFcsCount Attribute

The RxErrFcsCount attribute SHALL indicate the total number of received unique MAC frame
requests that have been dropped as a result of an error with the FCS of the received frame. This
value SHALL only be reset upon a Node reboot.

11.14.6.56. RxErrOtherCount Attribute

The RxErrOtherCount attribute SHALL indicate the total number of received unique MAC frame
requests that have been dropped as a result of an error that is not counted by any other attribute.
This value SHALL only be reset upon a Node reboot.

11.14.6.57. ActiveTimestamp Attribute

This attribute SHALL be null when there is no dataset configured.

11.14.6.58. PendingTimestamp Attribute

This attribute SHALL be null when there is no dataset configured.

11.14.6.59. Delay Attribute

This attribute SHALL be null when there is no dataset configured.

11.14.6.60. SecurityPolicy Attribute

The SecurityPolicy attribute indicates the current security policies for the Thread partition to which
a Node is connected. This attribute SHALL be null when there is no dataset configured.

11.14.6.61. ChannelPage0Mask Attribute

The ChannelPage0Mask attribute indicates the channels within channel page 0, in the 2.4GHz ISM
band. The channels are represented in most significant bit order, with bit value 1 meaning selected,
bit value 0 meaning unselected. For example, the most significant bit of the left-most byte indicates
channel 0. If channel 0 and channel 10 are selected, the mask would be: 80 20 00 00. This attribute
SHALL be null when there is no dataset configured.

11.14.6.62. OperationalDatasetComponents Attribute

The OperationalDatasetComponents attribute is a collection of flags to indicate the presence of vari
ous operationally acquired values.

11.14.6.63. ActiveNetworkFaults Attribute

The ActiveNetworkFaults attribute SHALL indicate the set of faults currently detected by the Node.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 781

When the Node detects a fault has been raised, the appropriate NetworkFaultEnum value SHALL be
added to this list. This list SHALL NOT contain more than one instance of a specific NetworkFault
Enum value. When the Node detects that all conditions contributing to a fault has been cleared, the
corresponding NetworkFaultEnum value SHALL be removed from this list. An empty list SHALL
indicate there are currently no active faults. The order of this list SHOULD have no significance.
Clients interested in monitoring changes in active faults MAY subscribe to this attribute, or they
MAY subscribe to NetworkFaultChange

11.14.7. Commands

ID Name Direction Response Access Conformance

0x00 ResetCounts client ⇒ server Y M ERRCNT

11.14.7.1. ResetCounts Command

Reception of this command SHALL reset the following attributes to 0:

• OverrunCount

This command has no associated data. Upon completion, this command SHALL send a status code
set to a value of SUCCESS back to the initiator.

11.14.8. Events

ID Name Priority Access Conformance

0x00 ConnectionStatus INFO V O

0x01 NetworkFault
Change

INFO V O

11.14.8.1. NetworkFaultChange Event

The NetworkFaultChange Event SHALL indicate a change in the set of network faults currently
detected by the Node.

ID Name Type Constraint Quality Default Confor
mance

0 Current list[Network
FaultEnum]

max 4 M

1 Previous list[Network
FaultEnum]

max 4 M

Current Field

This field SHALL represent the set of faults currently detected, as per Section 11.14.5.1, “Network
FaultEnum Type”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 782 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Previous Field

This field SHALL represent the set of faults detected prior to this change event, as per Section
11.14.5.1, “NetworkFaultEnum Type”.

11.14.8.2. ConnectionStatus Event

The ConnectionStatus Event SHALL indicate that a Node’s connection status to a Thread network
has changed.

ID Name Type Constraint Quality Default Confor
mance

0 Connection
Status

Connection
StatusEnum

M

11.15. Wi-Fi Network Diagnostics Cluster
The Wi-Fi Network Diagnostics Cluster provides a means to acquire standardized diagnostics met
rics that MAY be used by a Node to assist a user or Administrator in diagnosing potential problems.
The Wi-Fi Network Diagnostics Cluster attempts to centralize all metrics that are relevant to a
potential Wi-Fi radio running on a Node.

11.15.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.15.2. Classification

Hierarchy Role Scope PICS Code Quality

Base Utility Node DGWIFI K

11.15.3. Cluster ID

ID Name

0x0036 Wi-Fi Network Diagnostics

11.15.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 783

Bit Code Feature Summary

0 PKTCNT PacketCounts Node makes available
the counts for the num
ber of received and
transmitted packets on
the Wi-Fi interface.

1 ERRCNT ErrorCounts Node makes available
the counts for the num
ber of errors that have
occurred during the
reception and transmis
sion of packets on the
Wi-Fi interface.

11.15.5. Data Types

11.15.5.1. SecurityTypeEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unspecified Indicate the usage of an
unspecified Wi-Fi secu
rity type

M

1 None Indicate the usage of no
Wi-Fi security

M

2 WEP Indicate the usage of
WEP Wi-Fi security

M

3 WPA Indicate the usage of
WPA Wi-Fi security

M

4 WPA2 Indicate the usage of
WPA2 Wi-Fi security

M

5 WPA3 Indicate the usage of
WPA3 Wi-Fi security

M

11.15.5.2. WiFiVersionEnum Type

This data type is derived from enum8.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 784 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

0 a Indicate the network
interface is currently
using 802.11a against
the wireless access
point.

M

1 b Indicate the network
interface is currently
using 802.11b against
the wireless access
point.

M

2 g Indicate the network
interface is currently
using 802.11g against
the wireless access
point.

M

3 n Indicate the network
interface is currently
using 802.11n against
the wireless access
point.

M

4 ac Indicate the network
interface is currently
using 802.11ac against
the wireless access
point.

M

5 ax Indicate the network
interface is currently
using 802.11ax against
the wireless access
point.

M

6 ah Indicate the network
interface is currently
using 802.11ah against
the wireless access
point.

M

11.15.5.3. AssociationFailureCauseEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unknown The reason for the fail
ure is unknown.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 785

Value Name Summary Conformance

1 AssociationFailed An error occurred dur
ing association.

M

2 AuthenticationFailed An error occurred dur
ing authentication.

M

3 SsidNotFound The specified SSID
could not be found.

M

11.15.5.4. ConnectionStatusEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Connected Indicate the node is
connected

M

1 NotConnected Indicate the node is not
connected

M

11.15.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 BSSID octstr 6 X null R V M

0x0001 Security
Type

Security
TypeEnum

all X null R V M

0x0002 WiFiVer
sion

WiFiVer
sionEnum

all X null R V M

0x0003 Channel
Number

uint16 all X null R V M

0x0004 RSSI int8 -120 to 0 X C null R V M

0x0005 Beacon
LostCount

uint32 all X C 0 R V ERRCNT

0x0006 BeaconRx
Count

uint32 all X C 0 R V PKTCNT

0x0007 Packet
Multicas
tRxCount

uint32 all X C 0 R V PKTCNT

0x0008 Packet
Multicast
TxCount

uint32 all X C 0 R V PKTCNT

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 786 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0009 PacketUni
castRx
Count

uint32 all X C 0 R V PKTCNT

0x000A PacketUni
castTx
Count

uint32 all X C 0 R V PKTCNT

0x000B Current
MaxRate

uint64 all X C 0 R V O

0x000C Overrun
Count

uint64 all X C 0 R V ERRCNT

For all attributes listed above, a null value SHALL be returned if the interface is not currently con
figured or operational.

11.15.6.1. BSSID Attribute

The BSSID attribute SHALL indicate the BSSID for which the Wi-Fi network the Node is currently
connected.

11.15.6.2. SecurityType Attribute

The SecurityType attribute SHALL indicate the current type of Wi-Fi security used.

11.15.6.3. WiFiVersion Attribute

The WiFiVersion attribute SHALL indicate the current 802.11 standard version in use by the Node,
per the table below.

11.15.6.4. ChannelNumber Attribute

The ChannelNumber attribute SHALL indicate the channel that Wi-Fi communication is currently
operating on.

11.15.6.5. RSSI Attribute

The RSSI attribute SHALL indicate the current RSSI of the Node’s Wi-Fi radio in dBm.

11.15.6.6. BeaconLostCount Attribute

The BeaconLostCount attribute SHALL indicate the count of the number of missed beacons the
Node has detected. If the Node does not have an ability to count beacons expected and not received,
this value MAY remain set to zero.

11.15.6.7. BeaconRxCount Attribute

The BeaconRxCount attribute SHALL indicate the count of the number of received beacons. The

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 787

total number of expected beacons that could have been received during the interval since associa
tion SHOULD match the sum of BeaconRxCount and BeaconLostCount. If the Node does not have an
ability to report count of beacons received, this value MAY remain set to zero.

11.15.6.8. PacketMulticastRxCount Attribute

The PacketMulticastRxCount attribute SHALL indicate the number of multicast packets received by
the Node.

11.15.6.9. PacketMulticastTxCount Attribute

The PacketMulticastTxCount attribute SHALL indicate the number of multicast packets transmitted
by the Node.

11.15.6.10. PacketUnicastRxCount Attribute

The PacketUnicastRxCount attribute SHALL indicate the number of unicast packets received by the
Node.

11.15.6.11. PacketUnicastTxCount Attribute

The PacketUnicastTxCount attribute SHALL indicate the number of unicast packets transmitted by
the Node.

11.15.6.12. CurrentMaxRate Attribute

The CurrentMaxRate attribute SHALL indicate the current maximum PHY rate of transfer of data in
bits-per-second.

11.15.6.13. OverrunCount Attribute

The OverrunCount attribute SHALL indicate the number of packets dropped either at ingress or
egress, due to lack of buffer memory to retain all packets on the network interface. The Overrun
Count attribute SHALL be reset to 0 upon a reboot of the Node.

11.15.7. Commands

ID Name Direction Response Access Conformance

0x00 ResetCounts client ⇒ server Y O ERRCNT

11.15.7.1. ResetCounts Command

Reception of this command SHALL reset the following attributes to 0:

• BeaconLostCount

• BeaconRxCount

• PacketMulticastRxCount

• PacketMulticastTxCount

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 788 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• PacketUnicastRxCount

• PacketUnicastTxCount

This command has no associated data.

11.15.8. Events

ID Name Priority Access Conformance

0x00 Disconnection info V O

0x01 AssociationFail
ure

info V O

0x02 ConnectionStatus info V O

11.15.8.1. Disconnection Event

The Disconnection Event SHALL indicate that a Node’s Wi-Fi connection has been disconnected as a
result of de-authenticated or dis-association and indicates the reason.

ID Name Type Constraint Quality Default Confor
mance

0 ReasonCode uint16 M

ReasonCode Field

This field SHALL contain the Reason Code field value for the Disassociation or Deauthentication
event that caused the disconnection and the value SHALL align with Table 9-49 "Reason codes" of
IEEE 802.11-2020.

11.15.8.2. AssociationFailure Event

The AssociationFailure event SHALL indicate that a Node has attempted to connect, or reconnect, to
a Wi-Fi access point, but is unable to successfully associate or authenticate, after exhausting all
internal retries of its supplicant.

ID Name Type Constraint Conformance

0 AssociationFail
ureCause

AssociationFail
ureCauseEnum

all M

1 Status uint16 all M

AssociationFailureCause Field

The Status field SHALL be set to a value from the AssociationFailureCauseEnum.

Status Field

The Status field SHALL be set to the Status Code value that was present in the last frame related to
association where Status Code was not equal to zero and which caused the failure of a last trial

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 789

attempt, if this last failure was due to one of the following Management frames:

• Association Response (Type 0, Subtype 1)

• Reassociation Response (Type 0, Subtype 3)

• Authentication (Type 0, Subtype 11)

Table 9-50 "Status codes" of IEEE 802.11-2020 contains a description of all values possible.

11.15.8.3. ConnectionStatus Event

The ConnectionStatus Event SHALL indicate that a Node’s connection status to a Wi-Fi network has
changed. Connected, in this context, SHALL mean that a Node acting as a Wi-Fi station is success
fully associated to a Wi-Fi Access Point.

ID Name Type Constraint Quality Default Confor
mance

0 Connection
Status

Connection
StatusEnum

M

11.16. Ethernet Network Diagnostics Cluster
The Ethernet Network Diagnostics Cluster provides a means to acquire standardized diagnostics
metrics that MAY be used by a Node to assist a user or Administrator in diagnosing potential prob
lems. The Ethernet Network Diagnostics Cluster attempts to centralize all metrics that are relevant
to a potential Ethernet connection to a Node.

11.16.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.16.2. Classification

Hierarchy Role Scope PICS Code Quality

Base Utility Node DGETH K

11.16.3. Cluster ID

ID Name

0x0037 Ethernet Network Diagnostics

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 790 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.16.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 PKTCNT PacketCounts Node makes available
the counts for the num
ber of received and
transmitted packets on
the ethernet interface.

1 ERRCNT ErrorCounts Node makes available
the counts for the num
ber of errors that have
occurred during the
reception and transmis
sion of packets on the
ethernet interface.

11.16.5. Data Types

11.16.5.1. PHYRateEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Rate10M PHY rate is 10Mbps M

1 Rate100M PHY rate is 100Mbps M

2 Rate1G PHY rate is 1Gbps M

3 Rate2_5G PHY rate is 2.5Gbps M

4 Rate5G PHY rate is 5Gbps M

5 Rate10G PHY rate is 10Gbps M

6 Rate40G PHY rate is 40Gbps M

7 Rate100G PHY rate is 100Gbps M

8 Rate200G PHY rate is 200Gbps M

9 Rate400G PHY rate is 400Gbps M

11.16.6. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 PHYRate PHYRa
teEnum

all X null R V O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 791

ID Name Type Constraint Quality Default Access Confor
mance

0x0001 FullDu
plex

bool all X null R V O

0x0002 PacketRx
Count

uint64 all C 0 R V PKTCNT

0x0003 PacketTx
Count

uint64 all C 0 R V PKTCNT

0x0004 TxEr
rCount

uint64 all C 0 R V ERRCNT

0x0005 Collision
Count

uint64 all C 0 R V ERRCNT

0x0006 Overrun
Count

uint64 all C 0 R V ERRCNT

0x0007 CarrierDe
tect

bool all X C null R V O

0x0008 TimeSin
ceReset

uint64 all C 0 R V O

11.16.6.1. PHYRate Attribute

The PHYRate attribute SHALL indicate the current nominal, usable speed at the top of the physical
layer of the Node. A value of null SHALL indicate that the interface is not currently configured or
operational.

11.16.6.2. FullDuplex Attribute

The FullDuplex attribute SHALL indicate if the Node is currently utilizing the full-duplex operating
mode. A value of null SHALL indicate that the interface is not currently configured or operational.

11.16.6.3. PacketRxCount Attribute

The PacketRxCount attribute SHALL indicate the number of packets that have been received on the
ethernet network interface. The PacketRxCount attribute SHALL be reset to 0 upon a reboot of the
Node.

11.16.6.4. PacketTxCount Attribute

The PacketTxCount attribute SHALL indicate the number of packets that have been successfully
transferred on the ethernet network interface. The PacketTxCount attribute SHALL be reset to 0
upon a reboot of the Node.

11.16.6.5. TxErrCount Attribute

The TxErrCount attribute SHALL indicate the number of failed packet transmissions that have
occurred on the ethernet network interface. The TxErrCount attribute SHALL be reset to 0 upon a

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 792 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

reboot of the Node.

11.16.6.6. CollisionCount Attribute

The CollisionCount attribute SHALL indicate the number of collisions that have occurred while
attempting to transmit a packet on the ethernet network interface. The CollisionCount attribute
SHALL be reset to 0 upon a reboot of the Node.

11.16.6.7. OverrunCount Attribute

The OverrunCount attribute SHALL indicate the number of packets dropped either at ingress or
egress, due to lack of buffer memory to retain all packets on the ethernet network interface. The
OverrunCount attribute SHALL be reset to 0 upon a reboot of the Node.

11.16.6.8. CarrierDetect Attribute

The CarrierDetect attribute SHALL indicate the value of the Carrier Detect control signal present on
the ethernet network interface. A value of null SHALL indicate that the interface is not currently
configured or operational.

11.16.6.9. TimeSinceReset Attribute

The TimeSinceReset attribute SHALL indicate the duration of time, in minutes, that it has been
since the ethernet network interface has reset for any reason.

11.16.7. Commands

ID Name Direction Response Access Conformance

0x00 ResetCounts client ⇒ server Y M PKTCNT |
ERRCNT

11.16.7.1. ResetCounts Command

Reception of this command SHALL reset the following attributes to 0:

• PacketRxCount

• PacketTxCount

• TxErrCount

• CollisionCount

• OverrunCount

This command has no associated data.

11.17. Time Synchronization Cluster
Accurate time is required for a number of reasons, including scheduling, display and validating
security materials.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 793

This section describes a mechanism for Nodes to achieve and maintain time synchronization. The
Time Synchronization cluster provides attributes for reading a Node’s current time. It also allows
Administrators to set current time, time zone and daylight savings time (DST) settings.

The Time Synchronization cluster MAY be present on the root node endpoint, and SHALL NOT be
present on any other Endpoint of any Node.

11.17.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

2 Make TrustedTimeSource fabric-aware, add TSC
feature, define list max sizes, change writable
attributes to commands, remote port, add
attribute for DNS support

11.17.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node TIMESYNC

11.17.3. Cluster ID

ID Name

0x0038 Time Synchronization

11.17.4. Terminology

Term Definition

DNS-SD Domain name service - service discovery
RFC 6763

DST Daylight Savings Time

GNSS Global Navigation Satellite System. This is a
satellite system that provides global geo-spatial
positioning. GNSS systems include the NAVSTAR
global positioning system (GPS), Galileo,
GLONASS and BeiDou

NTP Network Time Protocol RFC 5905

NTS Network Time Security RFC 8915

PTP Precision Time Protocol IEEE 1588-2008

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 794 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Term Definition

SNTP Simple Network Time Protocol. This is a simpli
fied version of the Network Time Protocol. It is
also covered by RFC 5905

11.17.5. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 TZ TimeZone Server supports time
zone.

1 NTPC NTPClient Server supports an NTP
or SNTP client.

2 NTPS NTPServer Server supports an NTP
server role.

3 TSC TimeSyncClient Time synchronization
client cluster is present.

11.17.5.1. TimeZone Feature

Allows a server to translate a UTC time to a local time using the time zone and daylight savings time
(DST) offsets. If a server supports the TimeZone feature, it SHALL support the SetTimeZone and
SetDSTOffset commands, and TimeZone and DSTOffset attributes, and SHALL expose the local time
through the LocalTime attribute.

11.17.5.2. NTPClient Feature

Allows a node to use NTP/SNTP for time synchronization.

11.17.5.3. NTPServer Feature

Allows a Node to host an NTP server for the network so that other Nodes can achieve a high accu
racy time synchronization within the network. See Section 11.17.15, “Acting as an NTP Server”.

11.17.5.4. TimeSyncClient Feature

This node also supports a time synchronization client and can connect to and read time from other
nodes.

11.17.6. Data Types

11.17.6.1. GranularityEnum Type

This data type is derived from enum8.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 795

Value Name Summary Conformance

0 NoTimeGranularity This indicates that the
node is not currently
synchronized with a
UTC Time source and
its clock is based on the
Last Known Good UTC
Time only.

M

1 MinutesGranularity This indicates the node
was synchronized to an
upstream source in the
past, but sufficient
clock drift has occurred
such that the clock
error is now > 5 sec
onds.

M

2 SecondsGranularity This indicates the node
is synchronized to an
upstream source using
a low resolution proto
col. UTC Time is accu
rate to ± 5 seconds.

M

3 MillisecondsGranular
ity

This indicates the node
is synchronized to an
upstream source using
high resolution time-
synchronization proto
col such as NTP, or has
built-in GNSS with
some amount of jitter
applying its GNSS time
stamp. UTC Time is
accurate to ± 50 ms.

M

4 MicrosecondsGranu
larity

This indicates the node
is synchronized to an
upstream source using
a highly precise time-
synchronization proto
col such as PTP, or has
built-in GNSS. UTC time
is accurate to ± 10 μs.

M

11.17.6.2. TimeSourceEnum Type

This data type is derived from enum8.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 796 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

0 None Node is not currently
synchronized with a
UTC Time source.

M

1 Unknown Node uses an unlisted
time source.

M

2 Admin Node received time
from a client using the
SetUTCTime Command.

M

3 NodeTimeCluster Synchronized time by
querying the Time Syn
chronization cluster of
another Node.

M

4 NonMatterSNTP SNTP from a server not
in the Matter network.
NTS is not used.

M

5 NonMatterNTP NTP from servers not
in the Matter network.
None of the servers
used NTS.

M

6 MatterSNTP SNTP from a server
within the Matter net
work. NTS is not used.

M

7 MatterNTP NTP from servers
within the Matter net
work. None of the
servers used NTS.

M

8 MixedNTP NTP from multiple
servers in the Matter
network and external.
None of the servers
used NTS.

M

9 NonMatterSNTPNTS SNTP from a server not
in the Matter network.
NTS is used.

M

10 NonMatterNTPNTS NTP from servers not
in the Matter network.
NTS is used on at least
one server.

M

11 MatterSNTPNTS SNTP from a server
within the Matter net
work. NTS is used.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 797

Value Name Summary Conformance

12 MatterNTPNTS NTP from a server
within the Matter net
work. NTS is used on at
least one server.

M

13 MixedNTPNTS NTP from multiple
servers in the Matter
network and external.
NTS is used on at least
one server.

M

14 CloudSource Time synchronization
comes from a vendor
cloud-based source (e.g.
"Date" header in
authenticated HTTPS
connection).

M

15 PTP Time synchronization
comes from PTP.

M

16 GNSS Time synchronization
comes from a GNSS
source.

M

11.17.6.3. TimeZoneDatabaseEnum Type

This data type is derived from enum8. It indicates what the device knows about the contents of the
IANA Time Zone Database. Partial support on a device MAY be used to omit historical data, less
commonly used time zones, and/or time zones not related to the region a product is sold in.

Value Name Description Conformance

0 Full Node has a full list of
the available time
zones

M

1 Partial Node has a partial list
of the available time
zones

M

2 None Node does not have a
time zone database

M

11.17.6.4. TrustedTimeSourceStruct Type

ID Name Type Constraint Quality Access Default Confor
mance

0 FabricIn
dex

fabric-idx all M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 798 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Access Default Confor
mance

1 NodeID node-id all M

2 Endpoint endpoint-
no

all M

FabricIndex Field

The Fabric Index associated with the Fabric of the client which last set the value of the trusted time
source node.

NodeID Field

Node ID of the trusted time source node on the Fabric associated with the entry.

Endpoint Field

Endpoint on the trusted time source node that contains the Time Synchronization cluster server.

11.17.6.5. FabricScopedTrustedTimeSourceStruct Type

ID Name Type Constraint Quality Access Default Confor
mance

0 NodeID node-id all M

1 Endpoint endpoint-
no

all M

NodeID Field

Node ID of the trusted time source node on the Fabric of the issuer.

Endpoint Field

Endpoint on the trusted time source node that contains the Time Synchronization cluster server.
This is provided to avoid having to do discovery of the location of that endpoint by walking over all
endpoints and checking their Descriptor Cluster.

11.17.6.6. TimeZoneStruct Type

ID Name Type Constraint Quality Access Default Confor
mance

0 Offset int32 -43200 to
50400

M

1 ValidAt epoch-us all M

2 Name string 0 to 64 O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 799

Offset Field

The time zone offset from UTC in seconds.

ValidAt Field

The UTC time when the offset SHALL be applied.

Name Field

The time zone name SHOULD provide a human-readable time zone name and it SHOULD use the
country/city format specified by the IANA Time Zone Database. The Name field MAY be used for dis
play. If the node supports a TimeZoneDatabase it MAY use the Name field to set its own DST offsets
if it has database information for the supplied time zone Name and the given Offset matches.

11.17.6.7. DSTOffsetStruct Type

ID Name Type Constraint Quality Access Default Confor
mance

0 Offset int32 desc M

1 ValidStart
ing

epoch-us all M

2 ValidUntil epoch-us all X M

Offset Field

The DST offset in seconds. Normally this is in the range of 0 to 3600 seconds (1 hour), but this field
will accept any values in the int32 range to accommodate potential future legislation that does not
fit with these assumptions.

ValidStarting Field

The UTC time when the offset SHALL be applied.

ValidUntil Field

The UTC time when the offset SHALL stop being applied. Providing a null value here indicates a
permanent DST change. If this value is non-null the value SHALL be larger than the ValidStarting
time.

11.17.7. Status Codes

11.17.7.1. StatusCodeEnum Type

This data type is derived from enum8.

Value Name Summary

0x02 TimeNotAccepted Node rejected the attempt to set
the UTC time

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 800 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.17.8. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 UTCTime epoch-us all X C null R V M

0x0001 Granular
ity

Granulari
tyEnum

desc NoTime
Granular
ity

R V M

0x0002 Time
Source

Time
SourceEnu
m

desc None R V O

0x0003 Trusted
Time
Source

Trusted
Time
SourceS
truct

all X N null R V TSC

0x0004 Default
NTP

string max 128 X N null R V NTPC

0x0005 TimeZone list[Time
Zon
eStruct]

1 to 2 N [{0,0}] R V TZ

0x0006 DSTOffset list[DSTOff
setStruct]

N [] R V TZ

0x0007 LocalTime epoch-us all X C null R V TZ

0x0008 TimeZone
Database

TimeZone
Data
baseEnum

all F None R V TZ

0x0009 NTPServer
Available

bool all False R V NTPS

0x000A Time
ZoneList
MaxSize

uint8 1 to 2 F R V TZ

0x000B DSTOff
setList
MaxSize

uint8 min 1 F R V TZ

0x000C Supports
DNSRe
solve

bool all F False R V NTPC

11.17.8.1. UTCTime Attribute

If the node has achieved time synchronization, this SHALL indicate the current time as a UTC
epoch-us (Epoch Time in Microseconds).

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 801

If the node has not achieved time synchronization, this SHALL be null. This attribute MAY be set
when a SetUTCTime is received.

11.17.8.2. Granularity Attribute

The granularity of the error that the node is willing to guarantee on the time synchronization. It is
of type GranularityEnum.

This value SHALL be set to NoTimeGranularity if UTCTime is null and SHALL NOT be set to NoTime
Granularity if UTCTime is non-null.

11.17.8.3. TimeSource Attribute

The node’s time source. This attribute indicates what method the node is using to sync, whether the
source uses NTS or not and whether the source is internal or external to the Matter network. This
attribute MAY be used by a client to determine its level of trust in the UTCTime. It is of type Time
SourceEnum.

If a node is unsure if the selected NTP server is within the Matter network, it SHOULD select one of
the NonMatter* values.

This value SHALL be set to None if UTCTime is null and SHALL NOT be set to None if UTCTime is
non-null.

11.17.8.4. TrustedTimeSource Attribute

A Node ID, endpoint, and associated fabric index of a Node that MAY be used as trusted time source.
See Time source prioritization. This attribute reflects the last value set by an administrator using
the SetTrustedTimeSource command. If the value is null, no trusted time source has yet been set.

11.17.8.5. DefaultNTP Attribute

The default NTP server that this Node MAY use if other time sources are unavailable. This attribute
is settable by an Administrator using the SetDefaultNTP command. It SHOULD be set by the Com
missioner during commissioning. If no default NTP server is available, the Commissioner MAY set
this value to null. The default IANA assigned NTP port of 123 SHALL be used to access the NTP
server.

If set, the format of this attribute SHALL be a domain name or a static IPv6 address with no port, in
text format, as specified in RFC 5952. The address format SHALL follow the recommendations in
Section 4 and SHALL NOT contain a port number.

11.17.8.6. TimeZone Attribute

A list of time zone offsets from UTC and when they SHALL take effect. This attribute uses a list of
time offset configurations to allow Nodes to handle scheduled regulatory time zone changes. This
attribute SHALL NOT be used to indicate daylight savings time changes (see DSTOffset attribute for
daylight savings time).

The first entry SHALL have a ValidAt entry of 0. If there is a second entry, it SHALL have a non-zero

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 802 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ValidAt time.

If a node supports a TimeZoneDatabase, and it has data for the given time zone Name and the given
Offset matches, the node MAY update its own DSTOffset attribute to add new DST change times as
required, based on the Name fields of the TimeZoneStruct. Administrators MAY add additional
entries to the DSTOffset of other Nodes with the same time zone, if required.

If a node does not support a TimeZoneDatabase, the Name field of the TimeZoneStruct is only
applicable for client-side localization. In particular:

• If the node does not support a TimeZoneDatabase, the Name field SHALL NOT be used to calcu
late the local time.

• If the node does not support a TimeZoneDatabase, the Name field SHALL NOT be used to calcu
late DST start or end dates.

When time passes, the node SHOULD remove any entries which are no longer active and change
the ValidAt time for the currently used TimeZoneStruct list item to zero.

This attribute SHALL have at least one entry. If the node does not have a default time zone and no
time zone has been set, it MAY set this value to a list containing a single TimeZoneStruct with an off
set of 0 (UTC) and a ValidAt time of 0.

11.17.8.7. DSTOffset Attribute

A list of offsets to apply for daylight savings time, and their validity period.

List entries SHALL be sorted by ValidStarting time.

A list entry SHALL NOT have a ValidStarting time that is smaller than the ValidUntil time of the pre
vious entry. There SHALL be at most one list entry with a null ValidUntil time and, if such an entry
is present, it SHALL appear last in the list.

Over time, the node SHOULD remove any entries which are no longer active from the list.

Over time, if the node supports a TimeZoneDatabase and it has information available for the given
time zone name, it MAY update its own list to add additional entries.

If a time zone does not use DST, this SHALL be indicated by a single entry with a 0 offset and a null
ValidUntil field.

11.17.8.8. LocalTime Attribute

The computed current local time of the node as a epoch-us (Epoch Time in Microseconds). The
value of LocalTime SHALL be the sum of the UTCTime, the offset of the currently valid TimeZon
eStruct from the TimeZone attribute (converted to microseconds), and the offset of the currently
valid DSTOffsetStruct from the DSTOffset attribute (converted to microseconds), if such an entry
exists.

If the node has not achieved time synchronization, this SHALL be null. If the node has an empty
DSTOffset, this SHALL be null.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 803

11.17.8.9. TimeZoneDatabase Attribute

Indicates whether the node has access to a time zone database. Nodes with a time zone database
MAY update their own DSTOffset attribute to add new entries and MAY push DSTOffset updates to
other Nodes in the same time zone as required.

11.17.8.10. NTPServerAvailable Attribute

If the node is running an RFC 5905 NTPv4 compliant server on port 123, this value SHALL be True.

If the node is not currently running an NTP server, this value SHALL be False.

11.17.8.11. TimeZoneListMaxSize Attribute

Number of supported list entries in the TimeZone attribute. This attribute may take the value of 1
or 2, where the optional second list entry MAY be used to handle scheduled regulatory time zone
changes.

11.17.8.12. DSTOffsetListMaxSize Attribute

Number of supported list entries in DSTOffset attribute. This value must be at least 1.

11.17.8.13. SupportsDNSResolve Attribute

This attribute is true if the node supports resolving a domain name. DefaultNTP Address values for
these nodes MAY include domain names. If this is False, the Address for a DefaultNTP SHALL be an
IPv6 address.

11.17.9. Commands

ID Name Direction Response Access Conformance

0x00 SetUTCTime client ⇒ server Y A M

0x01 SetTrusted
TimeSource

client ⇒ server Y A F TSC

0x02 SetTimeZone client ⇒ server SetTime
ZoneResponse

M TZ

0x03 SetTime
ZoneResponse

client ⇐ server N TZ

0x04 SetDSTOffset client ⇒ server Y M TZ

0x05 SetDefaultNTP client ⇒ server Y A NTPC

11.17.9.1. SetUTCTime Command

The data for this command are as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 804 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 UTCTime epoch-us all 0 M

1 Granularity Granulari
tyEnum

all NoTime
Granularity

M

2 TimeSource Time
SourceEnum

all None O

This command MAY be issued by Administrator to set the time. If the Commissioner does not have a
valid time source, it MAY send a Granularity of NoTimeGranularity.

Upon receipt of this command, the node MAY update its UTCTime attribute to match the time speci
fied in the command, if the stated Granularity and TimeSource are acceptable. The node SHALL
update its UTCTime attribute if its current Granularity is NoTimeGranularity.

If the time is updated, the node SHALL also update its Granularity attribute based on the granular
ity specified in the command and the expected clock drift of the node. This SHOULD normally be
one level lower than the stated command Granularity. It SHALL also update its TimeSource
attribute to Admin. It SHALL also update its Last Known Good UTC Time as defined in Section
3.5.6.1, “Last Known Good UTC Time”.

If the node updates its UTCTime attribute, it SHALL accept the command with a status code of SUC
CESS. If it opts to not update its time, it SHALL fail the command with a cluster specific Status Code
of TimeNotAccepted.

UTCTime Field

This SHALL give the Client’s UTC Time.

Granularity Field

This SHALL give the Client’s Granularity, as described in Section 11.17.8.2, “Granularity Attribute”.

TimeSource Field

This SHALL give the Client’s TimeSource, as described in Section 11.17.8.3, “TimeSource Attribute”.

11.17.9.2. SetTrustedTimeSource Command

This command SHALL set the TrustedTimeSource attribute. Upon receipt of this command, * If the
TrustedTimeSource field in the command is null, the node SHALL set the TrustedTimeSource
attribute to null and SHALL generate a MissingTrustedTimeSource event. * Otherwise, the node
SHALL set the TrustedTimeSource attribute to a struct which has NodeID and Endpoint fields
matching those in the TrustedTimeSource field and has its FabricIndex field set to the command’s
accessing fabric index.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 805

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Confor
mance

0 Trusted
TimeSource

FabricScope
dTrusted
Time
SourceStruct

X M

TrustedTimeSource Field

This field contains the Node ID and endpoint of a trusted time source on the accessing fabric.

11.17.9.3. SetTimeZone Command

This command is used to set the time zone of the node. The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 TimeZone list[Time
ZoneStruct]

1 to 2 M

If the given list is larger than the TimeZoneListMaxSize, the node SHALL respond with
RESOURCE_EXHAUSTED and the TimeZone attribute SHALL NOT be updated.

If the given list does not conform to the list requirements in TimeZone attribute the node SHALL
respond with a CONSTRAINT_ERROR and the TimeZone attribute SHALL NOT be updated.

If there are no errors in the list, the TimeZone field SHALL be copied to the TimeZone attribute. A
TimeZoneStatus event SHALL be generated with the new time zone information.

If the node supports a time zone database and it has information available for the time zone that
will be applied, it MAY set its DSTOffset attribute, otherwise the DSTOffset attribute SHALL be set to
an empty list. A DSTTableEmpty event SHALL be generated if the DSTOffset attribute is empty. A
DSTStatus event SHALL be generated if the node was previously applying a DST offset.

11.17.9.4. SetTimeZoneResponse Command

This command SHALL be generated in response to a SetTimeZone command. The data for this com
mand SHALL be as follows:

ID Name Type Constraint Quality Default Confor
mance

0 DSTOffset
sRequired

bool all true M

DSTOffsetsRequired Field

If the node supports a time zone database with information for the time zone that will be applied, it

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 806 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

MAY use this information to set the DSTOffset attribute. If the node is setting its own DSTOffset
attribute, the DSTOffsetsRequired field SHALL be set to false, otherwise it SHALL be set to true.

11.17.9.5. SetDSTOffset Command

This command is used to set the DST offsets for a node. The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 DSTOffset list[DSTOff
setStruct]

M

• If the length of DSTOffset is larger than DSTOffsetListMaxSize, the node SHALL respond with
RESOURCE_EXHAUSTED.

• Else if the list entries do not conform to the list requirements for DSTOffset attribute, the node
SHALL respond with CONSTRAINT_ERROR.

If there are no errors in the list, the DSTOffset field SHALL be copied to the DSTOffset attribute.

If the DSTOffset attribute change causes a corresponding change to the DST state, a DSTStatus event
SHALL be generated. If the list is empty, the node SHALL generate a DSTTableEmpty event.

11.17.9.6. SetDefaultNTP Command

This command is used to set the DefaultNTP attribute. If the DefaultNTP Address field does not con
form to the requirements in the DefaultNTP attribute description, the command SHALL fail with a
status code of INVALID_COMMAND. If the node does not support DNS resolution (as specified in
SupportsDNSResolve) and the provided Address is a domain name, the command SHALL fail with a
status code of INVALID_COMMAND. Otherwise, the node SHALL set the DefaultNTP attribute to
match the DefaultNTP provided in this command.

ID Name Type Constraint Quality Default Confor
mance

0 DefaultNTP string max 128 X M

DefaultNTP Field

This field contains the address of an NTP server than can be used as a fallback for time synchro
nization. The format of this field SHALL follow the requirements in the DefaultNTP attribute
description.

11.17.10. Events

ID Name Priority Access Conformance

0x00 DSTTableEmpty INFO V TZ

0x01 DSTStatus INFO V TZ

0x02 TimeZoneStatus INFO V TZ

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 807

ID Name Priority Access Conformance

0x03 TimeFailure INFO V M

0x04 MissingTrusted
TimeSource

INFO V TSC

11.17.10.1. DSTTableEmpty Event

This event SHALL be generated when the node stops applying the current DSTOffset and there are
no entries in the list with a larger ValidStarting time, indicating the need to possibly get new DST
data. This event SHALL also be generated if the DSTOffset list is cleared either by a SetTimeZone
command, or by a SetDSTOffset command with an empty list.

The node SHALL generate this event if the node has not generated a DSTTableEmpty event in the
last hour, and the DSTOffset list is empty when the node attempts to update its time. DST
TableEmpty events corresponding to a time update SHOULD NOT be generated more often than
once per hour.

There is no data for this event.

11.17.10.2. DSTStatus Event

This event SHALL be generated when the node starts or stops applying a DST offset.

ID Name Type Constraint Quality Default Confor
mance

0 DSTOffse
tActive

bool M

DSTOffsetActive

Indicates whether the current DST offset is being applied (i.e, daylight savings time is applied, as
opposed to standard time).

11.17.10.3. TimeZoneStatus Event

This event SHALL be generated when the node changes its time zone offset or name. It SHALL NOT
be sent for DST changes that are not accompanied by a time zone change.

ID Name Type Constraint Quality Default Confor
mance

0 Offset int32 -43200 to
50400

M

1 Name string 0 to 64 bytes O

Offset Field

Current time zone offset from UTC in seconds.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 808 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Name Field

Current time zone name. This name SHOULD use the country/city format specified by the
IANA Time Zone Database.

11.17.10.4. TimeFailure Event

This event SHALL be generated if the node has not generated a TimeFailure event in the last hour,
and the node is unable to get a time from any source. This event SHOULD NOT be generated more
often than once per hour.

11.17.10.5. MissingTrustedTimeSource Event

This event SHALL be generated if the TrustedTimeSource is set to null upon fabric removal or by a
SetTrustedTimeSource command.

This event SHALL also be generated if the node has not generated a MissingTrustedTimeSource
event in the last hour, and the node fails to update its time from the TrustedTimeSource because
the TrustedTimeSource is null or the specified peer cannot be reached. MissingTrustedTimeSource
events corresponding to a time update SHOULD NOT be generated more often than once per hour.

11.17.11. Time Synchronization at Commissioning

During commissioning the Commissioner SHOULD set the UTCTime, and set up the TrustedTime
Source, DefaultNTP, TimeZone and DSTOffsets as required. Please see Commissioning Flows. Note
that the commissioner MAY opt to not set the time so the node SHOULD NOT depend on having time
during commissioning.

11.17.12. Time Synchronization during operation

Nodes MAY perform time synchronization using a trusted external source, RFC 5905 or by reading
the UTC time from the Time Synchronization cluster of another Node with the desired Granularity
and TimeSource. When using NTPv4 / SNTPv4, Nodes capable of external communication SHOULD
use network time security (NTS) if that is available on the server (RFC 8915). This specification
DOES NOT mandate that Nodes should include a TCP/TLS stack and a set of adequate Root CA cer
tificates solely to support NTS, but that if a Node already has these capabilities, then it SHOULD
implement and attempt NTS for NTP.

Nodes SHOULD attempt to perform a time synchronization after a restart or upon any change of
Node state where timekeeping was lost. Nodes SHOULD attempt this time synchronization prior to
using any security material which may have expired. If a Node is unable to achieve time synchro
nization using the steps outlined in Time source prioritization, the Node MAY retry or fall back to
the stored Last Known Good UTC Time (Section 3.5.6.1, “Last Known Good UTC Time”).

Since Matter does not mandate external network connectivity for use, device manufacturers should
be aware that it is possible to be operating in a network where time is not available from any
source. Product manufacturers may wish to account for this possibility when specifying their clock
drift requirements. The estimated clock drift is reported using the Granularity attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 809

11.17.13. Time source prioritization

Nodes SHALL prioritize time synchronization sources in the following order:

1. GNSS time source, if supported by the Node.

2. Trusted, high-resolution, external time source (ex. PTP, network NTP, trusted cloud-based
source), if supported by the Node and external connectivity is available.

3. If NTPClient (NTPC) feature is supported: NTP server defined in the DHCPv6 NTP server option,
if DHCPv6 is supported on the Node.

4. If NTPClient (NTPC) feature is supported: NTP server defined by DHCP if the Node supports
IPv4.

5. If NTPClient (NTPC) feature is supported: NTP server identified by a DNS-SD query for
_ntp._udp. If multiple servers respond, Nodes with full NTP support SHOULD query multiple
servers. Nodes using SNTP SHOULD select any server from the list.

6. If TimeSyncClient (TSC) feature is supported: the Time Synchronization cluster of another Node
SHOULD be queried in the following order:

a. TrustedTimeSource provided by an Administrator.

b. Any of the Node’s current peers per any data model binding that support the Time Synchro
nization cluster and have the desired Granularity and TimeSource.

c. Enumerate all Nodes using DNS-SD query for _matter._tcp and select a peer that supports
the Time Synchronization cluster and has the desired Granularity and TimeSource.

7. If NTPClient (NTPC) feature is supported: Fallback NTP server defined during commissioning.

Nodes that use GNSS or a trusted external source SHOULD check the remaining time synchroniza
tion sources to determine if they SHOULD act as an NTP server (see Section 11.17.15, “Acting as an
NTP Server”).

11.17.14. Time synchronization maintenance

Nodes SHALL adjust their Granularity attribute based on their assessed time synchronization error.
Nodes running an NTP server (Section 11.17.15, “Acting as an NTP Server”) SHALL maintain a Gran
ularity of SecondsGranularity or better and SHOULD maintain an accuracy of MillisecondsGranu
larity or better.

A Node with a Granularity of NoTimeGranularity SHALL attempt to sync its time at least once a day.
Nodes SHOULD NOT query the Time Synchronization cluster of another Node more than once per
30 minutes.

11.17.15. Acting as an NTP Server

Any capable Node with always-on power source that has and can maintain a time synchronization
Granularity of MillisecondsGranularity or better, SHOULD act as an NTP server. Any capable Node
that reaches the final stage in the Time source prioritization mechanism SHOULD act as an NTP
server for the network.

A Node hosting an NTP server SHALL update the NTPServerAvailable attribute and SHOULD adver

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 810 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

tise an _ntp._udp DNS-SD service. A Node hosting an NTP server SHOULD support network time
security (NTS). A Node hosting an NTP server SHOULD implement leap smearing.

11.17.16. Implementation Guidance

This specification offers several options for getting time in order to support Nodes with various
capabilities. This section is not intended as a requirement, but is used to illustrate how various
Nodes might implement this specification.

11.17.16.1. Example: Constrained Node with no schedule capabilities

This type of Node would not need to support the TimeZone (TZ) feature or the NTPServer (NTPS)
feature. A constrained node can choose to get time either by using a time synchronization client
cluster to read the time from a trusted node (if the TSC feature is supported), and / or by using the
NTPClient (if the NTPC feature is supported). A constrained node supporting NTPC would likely use
an SNTP implementation.

A node supporting both the NTPC and TSC features would have the following attributes:

• UTCTime

• Granularity

• TimeSource (optional)

• TrustedTimeSource

• DefaultNTP

To achieve time synchronization, the Node would start at Step 3 of Time source prioritization (Steps
1 and 2 do not apply).

If the Node opts to support only the TSC feature, it would have the following attributes:

• UTCTime

• Granularity

• TimeSource (optional)

• TrustedTimeSource

To achieve time synchronization, the Node would start at step 6 (querying a Time Synchronization
cluster) of Time source prioritization (other steps do not apply).

If the Node opts to support only the NTPC feature, it would have the following attributes:

• UTCTime

• Granularity

• TimeSource (optional)

• DefaultNTP

To achieve time synchronization, the Node would start at step 3 of Time source prioritization and

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 811

would bypass step 6.

In all cases, if the Node wishes to maintain time synchronization by re-querying, it would set its
Granularity attribute as appropriate at each update. This would probably be either Milliseconds
Granularity or SecondsGranularity depending on the round-trip delay and the frequency of
updates. If the Node wishes to use a single time synchronization, but will not continue to synchro
nize during operation, it may either set the Granularity as appropriate and downgrade as the clock
drifts, or may simply opt to set the Granularity to MinutesGranularity. If supported, the TimeSource
attribute would be set as appropriate.

11.17.16.2. Example: Intermittently connected device with schedule capability

This type of Node would need to support the TimeZone (TZ) feature to support scheduling, but
would not support the NTPServer (NTPS) feature as it is an intermittently connected device and
would not make a reliable server. As with the Constrained Node with no schedule capabilities
example, this type of Node can choose to get time either by using the time synchronization client
cluster to read the time from a trusted node (if the TSC feature is supported) and / or by using an
NTPClient (if the NTPC feature is supported).

This type of Node would support all the attributes described in the Constrained Node with no
schedule capabilities example with the appropriate features. Because it additionally supports the
TimeZone (TZ) feature, it would also support the following attributes:

• TimeZoneListMaxSize

• TimeZone

• DSTOffsetListMaxSize

• DSTOffset

• LocalTime

• TimeZoneDatabase

During commissioning, the Node should receive time zone information from the commissioner. If
the Node has access to a time zone database, it can opt to fill its own DSTOffset attribute, otherwise
it should also receive DSTOffset information from the Commissioner. During operation, this type of
Node would use the same methods of getting time as the Constrained Node with no schedule capa
bilities example, setting the Granularity and optional TimeSource as appropriate. It would also use
the information from the TimeZone and DSTOffset to calculate a local time.

11.17.16.3. Example: Hub-like Node

These types of Nodes are normally relatively capable, high-powered and always-on. These would
most likely include time zone support for scheduling and display. Often these will have significant
software beyond this specification and are likely to already have built-in mechanisms for time syn
chronization. Such Nodes SHOULD support an NTP server to serve time to other Nodes in the net
work. This type of Node may opt to support the TimeSyncClient (TSC) and NTPClient (NTPC) as
backup, but can omit these if it has a reliable time source. It would support the following attributes
based on the supported features:

• UTCTime

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 812 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Granularity

• TimeSource (optional)

• TrustedTimeSource (if TSC supported)

• DefaultNTP (if NTPC supported)

• TimeZoneListMaxSize

• TimeZone

• DSTOffsetListMaxSize

• DSTOffset

• LocalTime

• TimeZoneDatabase

• NTPServerAvailable

To achieve time synchronization, these Nodes would likely use Step 1 or Step 2 of Time source pri
oritization, using the remaining options as fallback if necessary. The Node would then set its Granu
larity and TimeSource as appropriate, and would maintain its times, Granularity and TimeSource.
The Node SHOULD also start an NTP server, update the NTPServerAvailable attribute and advertise
using DNS-SD on _ntp._udp.

If a time-zone database is supported (Node can calculate DST times from TimeZone settings), these
Nodes MAY subscribe to the DSTTableEmpty Events of Nodes with no TimeZoneDatabase support.
Upon receipt of these events the Node SHOULD calculate and set new DST values for such Nodes by
writing the DSTOffset attribute. These nodes MAY also subscribe to the TimeFailure and Miss
ingTrustedTimeSource events for Nodes in its fabric and supply time or time sources as required.

11.18. Node Operational Credentials Cluster
This cluster is used to add or remove Node Operational credentials on a Commissionee or Node, as
well as manage the associated Fabrics.

11.18.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.18.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node OPCREDS

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 813

11.18.3. Cluster ID

ID Name

0x003E Operational Credentials

11.18.4. Data Types

11.18.4.1. RESP_MAX Constant Type

A RESP_MAX constant appears in the description of some command fields in this cluster and within
the description of some associated serialization schemes.

The value RESP_MAX SHALL be 900 bytes.

The current limit of 900 bytes was chosen to accommodate the maximum size of IPv6 frames, trans
port headers, message layer headers and integrity protection and Interaction Model protocol
encoding, while accounting for sufficient remaining space for signatures and to allow extensions to
larger key and digest sizes in the future.

11.18.4.2. CertificateChainTypeEnum Type

This data type is derived from enum8.

This enumeration is used by the CertificateChainRequest command to convey which certificate
from the device attestation certificate chain to transmit back to the client.

Value Name Summary Conformance

1 DACCertificate Request the DER-
encoded DAC certificate

M

2 PAICertificate Request the DER-
encoded PAI certificate

M

11.18.4.3. NodeOperationalCertStatusEnum Type

This data type is derived from enum8.

This enumeration is used by the NOCResponse common response command to convey detailed out
come of several of this cluster’s operations.

Value Name Summary Conformance

0 OK OK, no error M

1 InvalidPublicKey Public Key in the NOC
does not match the
public key in the
NOCSR

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 814 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

2 InvalidNodeOpId The Node Operational
ID in the NOC is not for
matted correctly.

M

3 InvalidNOC Any other validation
error in NOC chain

M

4 MissingCsr No record of prior CSR
for which this NOC
could match

M

5 TableFull NOCs table full, cannot
add another one

M

6 InvalidAdminSubject Invalid CaseAdminSub
ject field for an
AddNOC command.

M

7 Reserved for future use M

8 Reserved for future use M

9 FabricConflict Trying to AddNOC
instead of UpdateNOC
against an existing Fab
ric.

M

10 LabelConflict Label already exists on
another Fabric.

M

11 InvalidFabricIndex FabricIndex argument
is invalid.

M

11.18.4.4. NOCStruct Type

This encodes a fabric sensitive NOC chain, underpinning a commissioned Operational Identity for a
given Node.

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 NOC octstr max 400 S M

2 ICAC octstr max 400 X S M

Note that the Trusted Root CA Certificate is not included in this structure. The roots are available in
the TrustedRootCertificates attribute of the Node Operational Credentials cluster.

NOC Field

This field SHALL contain the NOC for the struct’s associated fabric, encoded using Matter Certificate
Encoding.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 815

ICAC Field

This field SHALL contain the ICAC or the struct’s associated fabric, encoded using Matter Certificate
Encoding. If no ICAC is present in the chain, this field SHALL be set to null.

11.18.4.5. FabricDescriptorStruct Type

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 RootPub
licKey

octstr 65 M

2 VendorID vendor-id desc M

3 FabricID fabric-id M

4 NodeID node-id M

5 Label string max 32 "" M

This structure encodes a Fabric Reference for a fabric within which a given Node is currently com
missioned.

RootPublicKey Field

This field SHALL contain the public key for the trusted root that scopes the fabric referenced by
FabricIndex and its associated operational credential (see Section 6.4.5.3, “Trusted Root CA Certifi
cates”). The format for the key SHALL be the same as that used in the ec-pub-key field of the Matter
Certificate Encoding for the root in the operational certificate chain.

VendorID Field

This field SHALL contain the value of AdminVendorID provided in the AddNOC command that led
to the creation of this FabricDescriptorStruct. The set of allowed values is defined in AdminVen
dorID.

The intent is to provide some measure of user transparency about which entities have Administer
privileges on the Node.

FabricID Field

This field SHALL contain the FabricID allocated to the fabric referenced by FabricIndex. This field
SHALL match the value found in the matter-fabric-id field from the operational certificate provid
ing the operational identity under this Fabric.

NodeID Field

This field SHALL contain the NodeID in use within the fabric referenced by FabricIndex. This field
SHALL match the value found in the matter-node-id field from the operational certificate providing
this operational identity.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 816 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Label Field

This field SHALL contain a commissioner-set label for the fabric referenced by FabricIndex. This
label is set by the UpdateFabricLabel command.

11.18.4.6. Attestation Elements

The Attestation Elements contain the metadata related to attestation, encoded in Matter TLV.

Attestation Elements TLV

attestation-elements => STRUCTURE [tag-order]
{
 certification_declaration[1] : OCTET STRING,
 attestation_nonce[2] : OCTET STRING [length 32],
 timestamp[3] : UNSIGNED INTEGER [range 32-bits],
 firmware_information[4, optional] : OCTET STRING,
}

Any context-specific tags not listed in the above schema for Attestation Elements SHALL be
reserved for future use, and SHALL be silently ignored if seen by a Commissioner which cannot
understand them.

11.18.4.7. Attestation Information

The Attestation Information is the combination of a Matter TLV payload, containing the Attestation
Elements, as well as a signature over an attestation_tbs message containing the in-band-transmitted
attestation_elements_message and a secret out-of-band Attestation Challenge.

The Attestation Information SHALL be computed as follows:

1. Encode the attestation-elements structure with an anonymous tag into an octet string called
attestation_elements_message.

◦ The firmware_information field SHALL be an octet string, as described in Section 6.3.2,
“Firmware Information”.

◦ The certification_declaration field SHALL be the DER-encoded octet string representation of
a CMS(RFC5652)-encoded certification declaration, as described in Section 6.3, “Certification
Declaration”.

◦ The timestamp field SHALL be in epoch-s.

◦ The attestation_nonce field SHALL match the AttestationNonce field provided in the Attesta
tionRequest Command that triggered the generation of the Attestation Elements.

◦ Vendor specific information, if present, SHALL be encoded using fully qualified tags. Such
fields allow the Node taking part in the Device Attestation Procedure to communicate ven
dor-specific information that MAY aid in device commissioning. Commissioners that do not
understand the format of the data MAY ignore them.

◦ The resulting attestation_elements_message, including optional fields, SHALL be no more
than RESP_MAX bytes once serialized.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 817

attestation_elements_message =
{
 certification_declaration(1) = certification_declaration,
 attestation_nonce(2) = attestation_nonce,
 timestamp(3) = timestamp,
 firmware_information(4) = firmware_information,

 ... optional fields per attestation-elements ..
}

2. Obtain the AttestationChallenge from a CASE session, resumed CASE session, or PASE session
depending on the method used to establish the current session. This is an octet string of length
CRYPTO_SYMMETRIC_KEY_LENGTH_BITS. Save it for the next step as attestation_challenge.

3. Locally generate an attestation_tbs message as an octet string by concatenating the attesta
tion_elements_message and the attestation_challenge:

◦ attestation_tbs = attestation_elements_message || attestation_challenge

4. Compute the attestation_signature and record it as an ec-signature octet string:

attestation_signature = Crypto_Sign(
 message = attestation_tbs,
 privateKey = Device Attestation Private Key
)

5. Fill the AttestationElements field of the AttestationResponse Command using the contents of the
attestation_elements_message octet string.

6. Fill the AttestationSignature field of the AttestationResponse Command using the contents of the
attestation_signature octet string.

7. Note that the attestation_challenge SHALL NOT be included in any of the payloads conveyed as
part of the Attestation Information.

See Section F.2, “Device Attestation Response test vector” for an example computation of the above
messages and application payloads.

11.18.4.8. NOCSR Elements

The NOCSR Elements contain the metadata related to NOCSR, encoded in Matter TLV.

NOCSR Elements TLV

nocsr-elements => STRUCTURE [tag-order]
{
 csr[1] : OCTET STRING,
 CSRNonce[2] : OCTET STRING [length 32],
 vendor_reserved1[3, optional] : OCTET STRING,
 vendor_reserved2[4, optional] : OCTET STRING,
 vendor_reserved3[5, optional] : OCTET STRING

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 818 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

}

Any context-specific tags not listed in the above schema for NOCSR Elements SHALL be reserved for
future use, and SHALL be silently ignored if seen by a Commissioner which cannot understand
them.

11.18.4.9. NOCSR Information

The NOCSR Information is the combination of a Matter TLV payload, containing the NOCSR Ele
ments, as well as a signature over an nocsr_tbs message containing the in-band-transmitted noc
sr_elements_message and a secret out-of-band Attestation Challenge, using the Attestation Private
Key that is unique to the device producing the NOCSR Information.

The NOCSR Information SHALL be computed as follows:

1. Encode the nocsr-elements structure with an anonymous tag into an octet string called noc
sr_elements_message.

◦ The csr field SHALL be a DER-encoded octet string of a properly encoded PKCS #10 Certifi
cate Signing Request (CSR), signed with the Node Operational Private Key associated with
the Node Operational Public Key, which is the subjectPublicKey field of the CSR. See Section
6.4.6.1, “Node Operational Certificate Signing Request (NOCSR) Procedure” for details about
the generation of the Node Operational Key Pair, and the contents of the CSR.

◦ The CSRNonce field SHALL match the CSR Nonce field in the corresponding CSRRequest
Command.

◦ The vendor_reserved1 through vendor_reserved3 fields allow the Node taking part in the
NOCSR Procedure to communicate vendor-specific information that MAY aid in device com
missioning. Commissioners that do not understand the format of the data MAY ignore them.

◦ The resulting nocsr_elements_message, including optional fields, SHALL be no more than
RESP_MAX bytes once serialized.

nocsr_elements_message =
{
 csr(1) = node_operational_csr_der_bytes,
 CSRNonce(2) = CSRNonce,

 ... optional fields per nocsr-elements ..
}

2. Obtain the AttestationChallenge from a CASE session, resumed CASE session, or PASE session
depending on the method used to establish the current session. This is an octet string of length
CRYPTO_SYMMETRIC_KEY_LENGTH_BITS. Save it for the next step as attestation_challenge.

3. Locally generate an nocsr_tbs message as an octet string by concatenating the nocsr_ele
ments_message and the attestation_challenge:

◦ nocsr_tbs = nocsr_elements_message || attestation_challenge

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 819

4. Compute the attestation_signature and record it as an ec-signature octet string:

attestation_signature = Crypto_Sign(
 message = nocsr_tbs,
 privateKey = Device Attestation Private Key
)

5. Fill the NOCSRElements field of the CSRResponse Command using the contents of the nocsr_ele
ments_message octet string.

6. Fill the AttestationSignature field of the CSRResponse Command using the contents of the attes
tation_signature octet string.

7. Note that the attestation_challenge SHALL NOT be included in any of the payloads conveyed as
part of the NOCSR Information.

See Section F.3, “Node Operational CSR Response test vector” for an example computation of the
above messages and application payloads.

11.18.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 NOCs list[NOC
Struct]

max Sup
portedFab
rics

N C R A F M

0x0001 Fabrics list[Fab
ricDescrip
torStruct]

max Sup
portedFab
rics

N R V F M

0x0002 Support
edFabrics

uint8 5 to 254 F R V M

0x0003 Commis
sioned
Fabrics

uint8 max Sup
portedFab
rics

N R V M

0x0004 Trusted
RootCer
tificates

list[octstr] max Sup
portedFab
rics[max
400]

N C R V M

0x0005 Current
FabricIn
dex

uint8 0 R V M

11.18.5.1. NOCs Attribute

This attribute contains all NOCs applicable to this Node, encoded as a read-only list of NOCStruct.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 820 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Operational Certificates SHALL be added through the AddNOC command, and SHALL be removed
through the RemoveFabric command.

Upon Factory Data Reset, this attribute SHALL be set to a default value of an empty list.

The number of entries in this list SHALL match the number of entries in the Fabrics attribute.

11.18.5.2. Fabrics Attribute

This attribute describes all fabrics to which this Node is commissioned, encoded as a read-only list
of FabricDescriptorStruct. This information MAY be computed directly from the NOCs attribute.

Upon Factory Data Reset, this attribute SHALL be set to a default value of an empty list.

The number of entries in this list SHALL match the number of entries in the NOCs attribute.

11.18.5.3. SupportedFabrics Attribute

This attribute contains the number of Fabrics that are supported by the device. This value is fixed
for a particular device.

11.18.5.4. CommissionedFabrics Attribute

This attribute contains the number of Fabrics to which the device is currently commissioned. This
attribute SHALL be equal to the following:

• The number of entries in the NOCs attribute.

• The number of entries in the Fabrics attribute.

Upon Factory Data Reset, this attribute SHALL be set to a default value of 0.

11.18.5.5. TrustedRootCertificates Attribute

This attribute SHALL contain a read-only list of Trusted Root CA Certificates installed on the Node,
as octet strings containing their Matter Certificate Encoding representation.

These certificates are installed through the AddTrustedRootCertificate command.

Depending on the method of storage employed by the server, either shared storage for identical
root certificates shared by many fabrics, or individually stored root certificate per fabric, multiple
identical root certificates MAY legally appear within the list.

To match a root with a given fabric, the root certificate’s subject and subject public key need to be
cross-referenced with the NOC or ICAC certificates that appear in the NOCs attribute for a given fab
ric.

Upon Factory Data Reset, this attribute SHALL be set to a default value whereby the list is empty.

11.18.5.6. CurrentFabricIndex Attribute

This attribute SHALL contain accessing fabric index.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 821

This attribute is useful to contextualize Fabric-Scoped entries obtained from response commands or
attribute reads, since a given Fabric may be referenced by a different Fabric Index locally on a
remote Node.

11.18.6. Commands

ID Name Direction Response Access Conformance

0x00 AttestationRe
quest

client ⇒ server AttestationRe
sponse

A M

0x01 AttestationRe
sponse

client ⇐ server N M

0x02 Certificate
ChainRequest

client ⇒ server Certificate
ChainResponse

A M

0x03 Certificate
ChainRe
sponse

client ⇐ server N M

0x04 CSRRequest client ⇒ server CSRResponse A M

0x05 CSRResponse client ⇐ server N M

0x06 AddNOC client ⇒ server NOCResponse A M

0x07 UpdateNOC client ⇒ server NOCResponse A F M

0x08 NOCResponse client ⇐ server N M

0x09 UpdateFabri
cLabel

client ⇒ server NOCResponse A F M

0x0A RemoveFabric client ⇒ server NOCResponse A M

0x0B AddTrusted
RootCertifi
cate

client ⇒ server Y A M

11.18.6.1. AttestationRequest Command

This command SHALL be generated to request the Attestation Information, in the form of an Attes
tationResponse Command. If the AttestationNonce that is provided in the command is malformed, a
recipient SHALL fail the command with a Status Code of INVALID_COMMAND. The Attestation
Nonce field SHALL be used in the computation of the Attestation Information.

ID Name Type Constraint Quality Default Confor
mance

0 Attestation
Nonce

octstr 32 M

11.18.6.2. AttestationResponse Command

This command SHALL be generated in response to an Attestation Request command.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 822 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

See Section 11.18.4.7, “Attestation Information” for details about the generation of the fields within
this response command.

See Section F.2, “Device Attestation Response test vector” for an example computation of an Attesta
tionResponse.

ID Name Type Constraint Quality Default Confor
mance

0 Attesta
tionEle
ments

octstr max RESP_
MAX

M

1 Attesta
tionSigna
ture

octstr 64 M

AttestationElements Field

This field SHALL contain the octet string of the serialized attestation_elements_message.

AttestationSignature Field

This field SHALL contain the octet string of the necessary attestation_signature as described in Sec
tion 11.18.4.7, “Attestation Information”.

11.18.6.3. CertificateChainRequest Command

If the CertificateType is not a valid value per CertificateChainTypeEnum then the command SHALL
fail with a Status Code of INVALID_COMMAND.

ID Name Type Constraint Quality Default Confor
mance

0 Certificate
Type

Certificate
ChainType
Enum

desc M

11.18.6.4. CertificateChainResponse Command

This command SHALL be generated in response to a CertificateChainRequest command.

ID Name Type Constraint Quality Default Confor
mance

0 Certificate octstr max 600 M

Certificate Field

This field SHALL be the DER encoded certificate corresponding to the CertificateType field in the
CertificateChainRequest command.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 823

11.18.6.5. CSRRequest Command

This command SHALL be generated to execute the Node Operational CSR Procedure and subse
quently return the NOCSR Information, in the form of a CSRResponse Command.

The CSRNonce field SHALL be used in the computation of the NOCSR Information. If the CSRNonce
is malformed, then this command SHALL fail with an INVALID_COMMAND status code.

If the IsForUpdateNOC field is present and set to true, but the command was received over a PASE
session, the command SHALL fail with an INVALID_COMMAND status code, as it would never be
possible to use a resulting subsequent certificate issued from the CSR with the UpdateNOC com
mand, which is forbidden over PASE sessions.

If the IsForUpdateNOC field is present and set to true, the internal state of the CSR associated key
pair SHALL be tagged as being for a subsequent UpdateNOC, otherwise the internal state of the CSR
SHALL be tagged as being for a subsequent AddNOC. See AddNOC and UpdateNOC for details about
the processing.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

If a prior UpdateNOC or AddNOC command was successfully executed within the fail-safe timer
period, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the ini
tiator.

If the Node Operational Key Pair generated during processing of the Node Operational CSR Proce
dure is found to collide with an existing key pair already previously generated and installed, and
that check had been executed, then this command SHALL fail with a FAILURE status code sent back
to the initiator.

ID Name Type Constraint Quality Default Confor
mance

0 CSRNonce octstr 32 M

1 IsForUp
dateNOC

bool false O

11.18.6.6. CSRResponse Command

This command SHALL be generated in response to a CSRRequest Command.

See Section 11.18.4.9, “NOCSR Information” for details about the generation of the fields within this
response command.

See Section F.3, “Node Operational CSR Response test vector” for an example computation of a CSR
Response.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 824 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 NOCSREle
ments

octstr max RESP_
MAX

M

1 Attesta
tionSigna
ture

octstr 64 M

NOCSRElements Field

This field SHALL contain the octet string of the serialized nocsr_elements_message.

AttestationSignature Field

This field SHALL contain the octet string of the necessary attestation_signature as described in Sec
tion 11.18.4.9, “NOCSR Information”.

11.18.6.7. AddNOC and UpdateNOC Commands Overview

The AddNOC command is used to commission a Node into a Fabric by providing a usable NOC and
ICAC, with associated Node Operational IDs.

The UpdateNOC command is used to update existing credentials within a Fabric, for the purposes
of:

• Rotating the Node Operational Key Pair in use

• Updating the contents of the NOC and optionally the ICAC certificates (subjects, issuers, keys,
etc) under the current root of trust and Fabric

Both of these commands receive an NOCValue and optional ICACValue fields and require some com
mon validation in addition to their specific behavior.

NOCValue and ICACValue Fields

The NOCValue and ICACValue fields SHALL be octet strings that represent a certificate encoded
using Matter Certificate Encoding.

Upon receipt, the NOCValue and ICACValue chain SHALL be validated in the following ways:

1. Verify the NOC using:

a. Crypto_VerifyChain(certificates = [NOCValue, ICACValue, RootCACertificate]) if ICACValue is
present,

b. Crypto_VerifyChain(certificates = [NOCValue, RootCACertificate]) if ICACValue is not present.

If this verification fails, the error status SHALL be InvalidNOC.

2. The public key of the NOC SHALL match the last generated operational public key on this ses
sion, and therefore the public key present in the last CSRResponse provided to the Administra
tor or Commissioner that sent the AddNOC or UpdateNOC command. If this check fails, the error

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 825

status SHALL be InvalidPublicKey.

3. The DN Encoding Rules SHALL be validated for every certificate in the chain, including valid
value range checks for identifiers such as Fabric ID and Node ID. If this validation fails, the
error status SHALL be InvalidNodeOpId if the matter-node-id attribute in the subject DN of the
NOC has a value outside the Operational Node ID range and InvalidNOC for all other failures.

If any of the above validation checks fail, the server SHALL immediately respond to the client with
an NOCResponse. The StatusCode field of the NOCResponse SHALL be set to the error status value
specified in the above validation checks.

These certificate validation steps are performed to ensure that operational credentials installed
match an operational key pair generated by the Device and respect the trust model assumptions
expressed in Section 6.4.5.1, “Node Operational Certificate (NOC)”.

Handling Errors

For any error described in the following subsections, the device SHALL immediately respond to the
client with an NOCResponse with the prescribed StatusCode field, and SHALL leave all non-volatile
state of the device untouched, as if the AddNOC command had never been received. The informa
tion about the last CSR state associated with this session SHALL also be untouched in this case, so
that a valid AddNOC command MAY still be issued later that would match that CSR state. The
DebugText field in the NOCResponse MAY be filled with debug information.

The following failed preconditions error cases apply to all invocations of AddNOC:

• If the device already has the CommissionedFabrics attribute equal to the SupportedFabrics
attribute, then the device’s operational credentials table is considered full and the device
SHALL process the error by responding with a StatusCode of TableFull as described in Section
11.18.6.7.2, “Handling Errors”.

• If no context or memory exists of a prior CSRRequest command having been invoked in the
same secure session as that which is receiving this AddNOC or UpdateNOC invocation, then the
Node SHALL process the error by responding with a StatusCode of MissingCsr as described in
Section 11.18.6.7.2, “Handling Errors”.

11.18.6.8. AddNOC Command

This command SHALL add a new NOC chain to the device and commission a new Fabric association
upon successful validation of all arguments and preconditions.

The new value SHALL immediately be reflected in the NOCs list attribute.

A Commissioner or Administrator SHALL issue this command after issuing the CSRRequest com
mand and receiving its response.

A Commissioner or Administrator SHOULD issue this command after performing the Attestation
Procedure.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 826 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

0 NOCValue octstr max 400 M

1 ICACValue octstr max 400 O

2 IPKValue octstr 16 M

3 CaseAdmin
Subject

SubjectID M

4 AdminVen
dorId

vendor-id M

IPKValue Field

This field SHALL contain the value of the Epoch Key for the Identity Protection Key (IPK) to set for
the Fabric which is to be added. This is needed to bootstrap a necessary configuration value for sub
sequent CASE to succeed. See Section 4.14.2.6.1, “Identity Protection Key (IPK)” for details.

The IPK SHALL be provided as an octet string of length CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES.

On successful execution of the AddNOC command, the side-effect of having provided this field
SHALL be equivalent to having done a GroupKeyManagement cluster KeySetWrite command invo
cation using the newly joined fabric as the accessing fabric and with the following argument fields
(assuming KeySetWrite allowed a GroupKeySetID set to 0):

KeySetWrite
(
 GroupKeySetStruct :=
 {
 GroupKeySetID := 0,
 GroupKeySecurityPolicy := 0,
 EpochKey0 := <Contents of IPKValue field>,
 EpochStartTime0 := 0,
 EpochKey1 := null
 EpochStartTime1 := null
 EpochKey2 := null,
 EpochStartTime2 := null
 }
)

CaseAdminSubject Field

If the AddNOC command succeeds according to the semantics of the following subsections, then the
Access Control SubjectID SHALL be used to atomically add an Access Control Entry enabling that
Subject to subsequently administer the Node whose operational identity is being added by this com
mand.

The format of the new Access Control Entry, created from this, SHALL be:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 827

{
 FabricIndex: **FabricIndex derived from current or new Fabric**,
 Privilege: Administer,
 AuthMode: CASE,
 Subjects: [**CaseAdminSubject provided in the AddNOC command**],
 Targets: [], // entire node
 Extension: [] // empty
}

NOTE

Unless such an Access Control Entry is added atomically as described here, there
would be no way for the caller on its given Fabric to eventually add another Access
Control Entry for CASE authentication mode, to enable the new Administrator to
administer the device, since the Fabric Scoping of the Access Control List prevents
the current Node from being able to write new entries scoped to that Fabric, if the
session is established from CASE. While a session established from PASE does gain
Fabric Scope of a newly-joined Fabric, this argument is made mandatory to provide
symmetry between both types of session establishment, both of which need to even
tually add an "Administer Node over CASE" Access Control Entry to finalize new
Fabric configuration and subsequently be able to call the CommissioningComplete
command.

AdminVendorID Field

This field SHALL be set to the Vendor ID of the entity issuing the AddNOC command. This value
SHALL NOT be one of the reserved Vendor ID values defined in Table 1, “Vendor ID Allocations”.

Effect When Received

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

If a prior UpdateNOC or AddNOC command was successfully executed within the fail-safe timer
period, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the ini
tiator.

If the prior CSRRequest state that preceded AddNOC had the IsForUpdateNOC field indicated as
true, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the initia
tor.

If no prior AddTrustedRootCertificate command was successfully executed within the fail-safe
timer period, then this command SHALL process an error by responding with a NOCResponse with
a StatusCode of InvalidNOC as described in Section 11.18.6.7.2, “Handling Errors”. In other words,
AddNOC always requires that the client provides the root of trust certificate within the same Fail-
Safe context as the rest of the new fabric’s operational credentials, even if some other fabric
already uses the exact same root of trust certificate.

If the NOC provided in the NOCValue encodes an Operational Identifier for a <Root Public Key, Fab

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 828 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ricID> pair already present on the device, then the device SHALL process the error by responding
with a StatusCode of FabricConflict as described in Section 11.18.6.7.2, “Handling Errors”.

If the device already has the CommissionedFabrics attribute equal to the SupportedFabrics
attribute, then the device’s operational credentials table is considered full and the device SHALL
process the error by responding with a StatusCode of TableFull as described in Section 11.18.6.7.2,
“Handling Errors”.

If the CaseAdminSubject field is not a valid ACL subject in the context of AuthMode set to CASE,
such as not being in either the Operational or CASE Authenticated Tag range, then the device
SHALL process the error by responding with a StatusCode of InvalidAdminSubject as described in
Section 11.18.6.7.2, “Handling Errors”.

Otherwise, the command is considered an addition of credentials, also known as "joining a fabric",
and the following SHALL apply:

1. A new FabricIndex SHALL be allocated, taking the next valid fabric-index value in monotoni
cally incrementing order, wrapping around from 254 (0xFE) to 1, since value 0 is reserved and
using 255 (0xFF) would prevent cluster specifications from using nullable fabric-idx fields.

2. An entry within the Fabrics attribute table SHALL be added, reflecting the matter-fabric-id RDN
within the NOC’s subject, along with the public key of the trusted root of the chain and the
AdminVendorID field.

3. The operational key pair associated with the incoming NOC from the NOCValue, and generated
by the prior CSRRequest command, SHALL be recorded for subsequent use during CASE within
the fail-safe timer period (see Section 5.5, “Commissioning Flows”).

4. The incoming NOCValue and ICACValue (if present) SHALL be stored under the FabricIndex
associated with the new Fabric Scope, along with the RootCACertificate provided with the prior
successful AddTrustedRootCertificate command invoked in the same fail-safe period.

a. Implementation of certificate chain storage MAY separate or otherwise encode the compo
nents of the array in implementation-specific ways, as long as they follow the correct format
when being read from the NOCs list or used within other protocols such as CASE.

5. The NOCs list SHALL reflect the incoming NOC from the NOCValue field and ICAC from the ICAC
Value field (if present).

6. The operational discovery service record SHALL immediately reflect the new Operational Iden
tifier, such that the Node immediately begins to exist within the Fabric and becomes reachable
over CASE under the new operational identity.

7. The receiver SHALL create and add a new Access Control Entry using the CaseAdminSubject
field to grant subsequent Administer access to an Administrator member of the new Fabric. It is
RECOMMENDED that the Administrator presented in CaseAdminSubject exist within the same
entity that is currently invoking the AddNOC command, within another of the Fabrics of which
it is a member.

8. The incoming IPKValue SHALL be stored in the Fabric-scoped slot within the Group Key Man
agement cluster (see KeySetWrite), for subsequent use during CASE.

9. The Fabric Index associated with the armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”) SHALL be updated to match the Fabric Index just allocated.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 829

10. If the current secure session was established with PASE, the receiver SHALL:

a. Augment the secure session context with the FabricIndex generated above, such that subse
quent interactions have the proper accessing fabric.

11. If the current secure session was established with CASE, subsequent configuration of the newly
installed Fabric requires the opening of a new CASE session from the Administrator from the
Fabric just installed. This Administrator is the one listed in the CaseAdminSubject argument.

Thereafter, the Node SHALL respond with an NOCResponse with a StatusCode of OK and a FabricIn
dex field matching the FabricIndex under which the new Node Operational Certificate (NOC) is
scoped.

11.18.6.9. UpdateNOC Command

This command SHALL replace the NOC and optional associated ICAC (if present) scoped under the
accessing fabric upon successful validation of all arguments and preconditions. The new value
SHALL immediately be reflected in the NOCs list attribute.

A Commissioner or Administrator SHALL issue this command after issuing the CSRRequest Com
mand and receiving its response.

A Commissioner or Administrator SHOULD issue this command after performing the Attestation
Procedure.

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Confor
mance

0 NOCValue octstr max 400 M

1 ICACValue octstr max 400 O

Effect When Received

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

If a prior UpdateNOC or AddNOC command was successfully executed within the fail-safe timer
period, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the ini
tiator.

If a prior AddTrustedRootCertificate command was successfully invoked within the fail-safe timer
period, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the ini
tiator, since the only valid following logical operation is invoking the AddNOC command.

If the prior CSRRequest state that preceded UpdateNOC had the IsForUpdateNOC field indicated as
false, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the initia
tor.

If any of the following conditions arise, the Node SHALL process an error by responding with an

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 830 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

NOCResponse with a StatusCode of InvalidNOC as described in Section 11.18.6.7.2, “Handling
Errors”:

• The NOC provided in the NOCValue does not refer in its subject to the FabricID associated with
the accessing fabric.

• The ICAC provided in the ICACValue (if present) has a FabricID in its subject that does not match
the FabricID associated with the accessing fabric.

Otherwise, the command is considered an update of existing credentials for a given Fabric, and the
following SHALL apply:

1. The Operational Certificate under the accessing fabric index in the NOCs list SHALL be updated
to match the incoming NOCValue and ICACValue (if present), such that the Node’s Operational
Identifier within the Fabric immediately changes.

a. The operational key pair associated with the incoming NOC from the NOCValue, and gener
ated by the prior CSRRequest command, SHALL be committed to permanent storage, for
subsequent use during CASE.

b. The operational discovery service record SHALL immediately reflect the new Operational
Identifier.

c. All internal data reflecting the prior operational identifier of the Node within the Fabric
SHALL be revoked and removed, to an outcome equivalent to the disappearance of the prior
Node, except for the ongoing CASE session context, which SHALL temporarily remain valid
until the NOCResponse has been successfully delivered or until the next transport-layer
error, so that the response can be received by the Administrator invoking the command.

Thereafter, the Node SHALL respond with an NOCResponse with a StatusCode of OK and a FabricIn
dex field matching the FabricIndex under which the updated NOC is scoped.

11.18.6.10. NOCResponse Command

This command SHALL be generated in response to the following commands:

• AddNOC

• UpdateNOC

• UpdateFabricLabel

• RemoveFabric

It provides status information about the success or failure of those commands.

ID Name Type Constraint Quality Default Confor
mance

0 StatusCode NodeOpera
tionalCert
StatusEnum

M

1 FabricIndex fabric-idx 1 to 254 O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 831

ID Name Type Constraint Quality Default Confor
mance

2 DebugText string max 128 O

StatusCode Field

This field SHALL contain an NOCStatus value representing the status of an operation involving a
NOC.

FabricIndex Field

This field SHALL be present whenever StatusCode has a value of OK. If present, it SHALL contain
the Fabric Index of the Fabric last added, removed or updated.

DebugText Field

This field MAY contain debugging textual information from the cluster implementation, which
SHOULD NOT be presented to user interfaces in any way. Its purpose is to help developers in trou
bleshooting errors and the contents MAY go into logs or crash reports.

11.18.6.11. UpdateFabricLabel Command

This command SHALL be used by an Administrator to set the user-visible Label field for a given
Fabric, as reflected by entries in the Fabrics attribute. An Administrator SHALL use this command
to set the Label to a string (possibly selected by the user themselves) that the user can recognize
and relate to this Administrator

• during the commissioning process, and

• whenever the user chooses to update this string.

The Label field, along with the VendorID field in the same entry of the Fabrics attribute, SHOULD be
used by Administrators to provide additional per-fabric context when operations such as Remove
Fabric are considered or used.

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Confor
mance

0 Label string max 32 M

Label Field

This field SHALL contain the label to set for the fabric associated with the current secure session.

Effect on Receipt

If the Label field is identical to a Label already in use by a Fabric within the Fabrics list that is not
the accessing fabric, then an NOCResponse with a StatusCode of LabelConflict SHALL be returned
for the command and there SHALL NOT be any permanent changes to any Fabric data.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 832 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Otherwise, the Label field for the accessing fabric SHALL immediately be updated to reflect the
Label argument provided. Following the update, an NOCResponse with a StatusCode of OK SHALL
be returned.

If the command was invoked within a fail-safe context after a successful UpdateNOC command,
then the label update SHALL apply to the pending update state that will be reverted if fail-safe
expires prior to a CommissioningComplete command. In other words, label updates apply to the
state of the Fabrics Attribute as currently visible, even for an existing fabric currently in process of
being updated.

11.18.6.12. RemoveFabric Command

This command is used by Administrators to remove a given Fabric and delete all associated fab
ric-scoped data.

If the given Fabric being removed is the last one to reference a given Trusted Root CA Certificate
stored in the Trusted Root Certificates list, then that Trusted Root Certificate SHALL be removed.

WARNING

This command, if referring to an already existing Fabric not under the control
of the invoking Administrator, SHALL ONLY be invoked after obtaining some
form of explicit user consent through some method executed by the Adminis
trator or Commissioner. This method of obtaining consent SHOULD employ as
much data as possible about the existing Fabric associations within the Fabrics
list, so that likelihood is as small as possible of a user removing a Fabric unwit
tingly. If a method exists for an Administrator or Commissioner to convey Fab
ric Removal to an entity related to that Fabric, whether in-band or out-of-band,
then this method SHOULD be used to notify the other Administrative Domain’s
party of the removal. Otherwise, users may only observe the removal of a Fab
ric association as persistently failing attempts to reach a Node operationally.

ID Name Type Constraint Quality Default Confor
mance

0 FabricIndex fabric-idx 1 to 254 M

FabricIndex Field

This field SHALL contain the Fabric Index reference (see fabric-index) associated with the Fabric
which is to be removed from the device.

Effect on Receipt

If the FabricIndex field does not match the FabricIndex of any entry within the Fabrics list, then an
NOCResponse with a StatusCode of InvalidFabricIndex SHALL be returned for the command and
there SHALL NOT be any permanent changes to any device data.

Otherwise, one of the following outcomes SHALL occur:

1. If the FabricIndex matches the last remaining entry in the Fabrics list, then the device SHALL
delete all Matter related data on the node which was created since it was commissioned. This

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 833

includes all Fabric-Scoped data, including Access Control List, bindings, scenes, group keys,
operational certificates, etc. All Trusted Roots SHALL also be removed. If a time synchronization
cluster is present on the Node, the TrustedTimeSource and DefaultNtp SHALL be set to null. Any
Matter related data including logs, secure sessions, exchanges and interaction model constructs
SHALL also be removed. Since this operation involves the removal of the secure session data
that may underpin the current set of exchanges, the Node invoking the command SHOULD NOT
expect a response before terminating its secure session with the target.

2. If the FabricIndex does not equal the accessing fabric index, then the device SHALL begin the
process of irrevocably deleting all associated Fabric-Scoped data, including Access Control List,
bindings, group keys, operational certificates, etc. Any remaining Trusted Roots no longer refer
enced by any operational certificate SHALL also be removed. If a time synchronization cluster is
present on the Node, and the TrustedTimeSource FabricIndex matches the given FabricIndex,
the TrustedTimeSource SHALL be set to null. All secure sessions, exchanges and interaction
model constructs related to the Operational Identity under the given Fabric SHALL also be
removed. Following the removal, an NOCResponse with a StatusCode of OK SHALL be returned.

3. If the FabricIndex equals the accessing fabric index, then the device SHALL begin the process of
irrevocably deleting all associated Fabric-Scoped data, including Access Control Entries, bind
ings, group keys, operational certificates, etc. Any remaining Trusted Roots no longer refer
enced by any operational certificate SHALL also be removed. If a time synchronization cluster is
present on the Node, and the TrustedTimeSource FabricIndex matches the given FabricIndex,
the TrustedTimeSource SHALL be set to null. All secure sessions, exchanges and interaction
model constructs related to the Operational Identity under the given Fabric SHALL also be
removed. Since this operation involves the removal of the secure session data that may under
pin the current set of exchanges, the Node invoking the command SHOULD NOT expect a
response before terminating its secure session with the target.

11.18.6.13. AddTrustedRootCertificate Command

This command SHALL add a Trusted Root CA Certificate, provided as its Matter Certificate Encoding
representation, to the TrustedRootCertificates Attribute list and SHALL ensure the next AddNOC
command executed uses the provided certificate as its root of trust.

If the certificate from the RootCACertificate field is already installed, based on exact byte-for-byte
equality, then this command SHALL succeed with no change to the list.

If this command is received without an armed fail-safe context (see Section 11.10.6.2, “ArmFailSafe
Command”), then this command SHALL fail with a FAILSAFE_REQUIRED status code sent back to
the initiator.

If a prior AddTrustedRootCertificate command was successfully invoked within the fail-safe timer
period, which would cause the new invocation to add a second root certificate within a given fail-
safe timer period, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back
to the initiator.

If a prior UpdateNOC or AddNOC command was successfully executed within the fail-safe timer
period, then this command SHALL fail with a CONSTRAINT_ERROR status code sent back to the ini
tiator.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 834 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

If the certificate from the RootCACertificate field fails any validity checks, not fulfilling all the
requirements for a valid Matter Certificate Encoding representation, including a truncated or over
size value, then this command SHALL fail with an INVALID_COMMAND status code sent back to the
initiator.

ID Name Type Constraint Quality Default Confor
mance

0 RootCACer
tificate

octstr max 400 M

Note that the only method of removing a trusted root is by removing the Fabric that uses it as its
root of trust using the RemoveFabric command.

11.19. Administrator Commissioning Cluster
This cluster is used to trigger a Node to allow a new Administrator to commission it. It defines
Attributes, Commands and Responses needed for this purpose.

There are two methods of commissioning, Basic Commissioning which MAY be supported and is
described in Section 5.6.2, “Basic Commissioning Method (BCM)” and Enhanced Commissioning
which SHALL be supported and is described in Section 5.6.3, “Enhanced Commissioning Method
(ECM)”.

For the management of Operational Credentials and Trusted Root Certificates, the Node Operational
Credentials cluster is used.

11.19.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.19.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node CADMIN

11.19.3. Cluster ID

ID Name

0x003C Administrator Commissioning

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 835

11.19.4. Features

This cluster SHALL support the FeatureMap bitmap attribute as defined below.

Bit Code Feature Summary

0 BC Basic Node supports Basic
Commissioning
Method.

11.19.5. Data Types

11.19.5.1. CommissioningWindowStatusEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 WindowNotOpen Commissioning win
dow not open

M

1 EnhancedWin
dowOpen

An Enhanced Commis
sioning Method win
dow is open

M

2 BasicWindowOpen A Basic Commissioning
Method window is
open

BC

11.19.6. Status Codes

11.19.6.1. StatusCodeEnum Type

This data type is derived from enum8.

Value Name Summary

0x02 Busy Could not be completed because
another commissioning is in
progress

0x03 PAKEParameterError Provided PAKE parameters
were incorrectly formatted or
otherwise invalid

0x04 WindowNotOpen No commissioning window was
currently open

11.19.7. Attributes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 836 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 Window
Status

Commis
sioning
Window
Sta
tusEnum

R V M

0x0001 Admin
FabricIn
dex

fabric-idx X R V M

0x0002 Admin
VendorId

vendor-id X R V M

11.19.7.1. WindowStatus Attribute

This attribute SHALL indicate whether a new Commissioning window has been opened by an
Administrator, using either the OCW command or the OBCW command.

This attribute SHALL revert to WindowNotOpen upon expiry of a commissioning window.

Note that an initial commissioning window is not opened using either the OCW command or the
OBCW command, and therefore this attribute SHALL be set to WindowNotOpen on initial commis
sioning.

11.19.7.2. AdminFabricIndex Attribute

When the WindowStatus attribute is not set to WindowNotOpen, this attribute SHALL indicate the
FabricIndex associated with the Fabric scoping of the Administrator that opened the window. This
MAY be used to cross-reference in the Fabrics attribute of the Node Operational Credentials cluster.

If, during an open commissioning window, the fabric for the Administrator that opened the win
dow is removed, then this attribute SHALL be set to null.

When the WindowStatus attribute is set to WindowNotOpen, this attribute SHALL be set to null.

11.19.7.3. AdminVendorId Attribute

When the WindowStatus attribute is not set to WindowNotOpen, this attribute SHALL indicate the
Vendor ID associated with the Fabric scoping of the Administrator that opened the window. This
field SHALL match the VendorID field of the Fabrics attribute list entry associated with the Admin
istrator having opened the window, at the time of window opening. If the fabric for the Administra
tor that opened the window is removed from the node while the commissioning window is still
open, this attribute SHALL NOT be updated.

When the WindowStatus attribute is set to WindowNotOpen, this attribute SHALL be set to null.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 837

11.19.8. Commands

ID Name Direction Response Access Conformance

0x00 OpenCommis
sioningWin
dow

client ⇒ server Y A T M

0x01 OpenBasic
Commission
ingWindow

client ⇒ server Y A T BC

0x02 RevokeCom
missioning

client ⇒ server Y A T M

Only one commissioning window can be active at a time. If a Node receives another open commis
sioning command when one OCW is already active, it SHALL return a failure response (see Section
11.19.6, “Status Codes”).

11.19.8.1. OpenCommissioningWindow (OCW) Command

This command is used by a current Administrator to instruct a Node to go into commissioning
mode. The Enhanced Commissioning Method specifies a window of time during which an already
commissioned Node accepts PASE sessions. The current Administrator MUST specify a timeout
value for the duration of OCW.

When OCW expires or commissioning completes, the Node SHALL remove the Passcode by deleting
the PAKE passcode verifier as well as stop publishing the DNS-SD record corresponding to this com
mand as described in Section 4.3.1, “Commissionable Node Discovery”. The commissioning into a
new Fabric completes when the Node successfully receives a CommissioningComplete command,
see Section 5.5, “Commissioning Flows”.

The parameters for OpenCommissioningWindow command are as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Commis
sioning
Timeout

uint16 desc M

1 PAKEPass
codeVeri
fier

octstr all M

2 Discrimina
tor

uint16 0 to 4095 M

3 Iterations uint32 1000 to
100000

M

4 Salt octstr 16 to 32 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 838 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

A current Administrator MAY invoke this command to put a node in commissioning mode for the
next Administrator. On completion, the command SHALL return a cluster specific status code from
the Section 11.19.6, “Status Codes” below reflecting success or reasons for failure of the operation.
The new Administrator SHALL discover the Node on the IP network using DNS-based Service Dis
covery (DNS-SD) for commissioning.

If any format or validity errors related to the PAKEPasscodeVerifier, Iterations or Salt arguments
arise, this command SHALL fail with a cluster specific status code of PAKEParameterError.

If a commissioning window is already currently open, this command SHALL fail with a cluster spe
cific status code of Busy.

If the fail-safe timer is currently armed, this command SHALL fail with a cluster specific status code
of Busy, since it is likely that concurrent commissioning operations from multiple separate Commis
sioners are about to take place.

In case of any other parameter error, this command SHALL fail with a status code of COM
MAND_INVALID.

CommissioningTimeout Field

This field SHALL specify the time in seconds during which commissioning session establishment is
allowed by the Node. This is known as Open Commissioning Window (OCW). This timeout value
SHALL follow guidance as specified in the initial Announcement Duration. The Commissioning
Timeout applies only to cessation of any announcements and to accepting of new commissioning
sessions; it does not apply to abortion of connections, i.e., a commissioning session SHOULD NOT
abort prematurely upon expiration of this timeout.

PAKEPasscodeVerifier Field

This field SHALL specify an ephemeral PAKE passcode verifier (see Section 3.10, “Password-Authen
ticated Key Exchange (PAKE)”) computed by the existing Administrator to be used for this commis
sioning. The field is concatenation of two values (w0 || L) SHALL be (CRYPTO_GROUP_SIZE_BYTES +
CRYPTO_PUBLIC_KEY_SIZE_BYTES)-octets long as detailed in Crypto_PAKEValues_Responder. It SHALL be
derived from an ephemeral passcode (See PAKE). It SHALL be deleted by the Node at the end of
commissioning or expiration of OCW, and SHALL be deleted by the existing Administrator after
sending it to the Node(s).

Discriminator Field

This field SHALL be used by the Node as the long discriminator for DNS-SD advertisement (see
Commissioning Discriminator) for discovery by the new Administrator. The new Administrator can
find and filter DNS-SD records by long discriminator to locate and initiate commissioning with the
appropriate Node.

Iterations Field

This field SHALL be used by the Node as the PAKE iteration count associated with the ephemeral
PAKE passcode verifier to be used for this commissioning, which SHALL be sent by the Node to the
new Administrator’s software as response to the PBKDFParamRequest during PASE negotiation.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 839

The permitted range of values SHALL match the range specified in Section 3.9, “Password-Based
Key Derivation Function (PBKDF)”, within the definition of the Crypto_PBKDFParameterSet.

Salt Field

This field SHALL be used by the Node as the PAKE Salt associated with the ephemeral PAKE pass
code verifier to be used for this commissioning, which SHALL be sent by the Node to the new
Administrator’s software as response to the PBKDFParamRequest during PASE negotiation. The
constraints on the value SHALL match those specified in Section 3.9, “Password-Based Key Deriva
tion Function (PBKDF)”, within the definition of the Crypto_PBKDFParameterSet.

When a Node receives the Open Commissioning Window command, it SHALL begin advertising on
DNS-SD as described in Section 4.3.1, “Commissionable Node Discovery” and for a time period as
described in Section 11.19.8.1.1, “CommissioningTimeout Field”. When the command is received by
a ICD, it SHALL enter into active mode. The ICD SHALL remain in Active Mode as long as one of
these conditions is met:

• A commissioning window is open.

• There is an armed fail-safe timer.

11.19.8.2. OpenBasicCommissioningWindow (OBCW) Command

This command MAY be used by a current Administrator to instruct a Node to go into commissioning
mode, if the node supports the Basic Commissioning Method. The Basic Commissioning Method
specifies a window of time during which an already commissioned Node accepts PASE sessions. The
current Administrator SHALL specify a timeout value for the duration of OBCW.

If a commissioning window is already currently open, this command SHALL fail with a cluster spe
cific status code of Busy.

If the fail-safe timer is currently armed, this command SHALL fail with a cluster specific status code
of Busy, since it is likely that concurrent commissioning operations from multiple separate Commis
sioners are about to take place.

In case of any other parameter error, this command SHALL fail with a status code of COM
MAND_INVALID.

The commissioning into a new Fabric completes when the Node successfully receives a Commis
sioningComplete command, see Section 5.5, “Commissioning Flows”. The new Administrator SHALL
discover the Node on the IP network using DNS-based Service Discovery (DNS-SD) for commission
ing.

The data for this command is as follows:

ID Name Type Constraint Quality Default Confor
mance

0 Commis
sioning
Timeout

uint16 desc M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 840 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

CommissioningTimeout Field

This field SHALL specify the time in seconds during which commissioning session establishment is
allowed by the Node. This is known as Open Basic Commissioning Window (OBCW). This timeout
SHALL follow guidance as specified in the initial Announcement Duration.

When a Node receives the Open Basic Commissioning Window command, it SHALL begin advertis
ing on DNS-SD as described in Section 4.3.1, “Commissionable Node Discovery” and for a time
period as described in Section 11.19.8.2.1, “CommissioningTimeout Field”. When the command is
received by a ICD, it SHALL enter into active mode. The ICD SHALL remain in Active Mode as long
as one of these conditions is met:

• A commissioning window is open.

• There is an armed fail-safe timer.

11.19.8.3. RevokeCommissioning Command

This command is used by a current Administrator to instruct a Node to revoke any active Open
Commissioning Window or Open Basic Commissioning Window command. This is an idempotent
command and the Node SHALL (for ECM) delete the temporary PAKEPasscodeVerifier and associ
ated data, and stop publishing the DNS-SD record associated with the Open Commissioning Window
or Open Basic Commissioning Window command, see Section 4.3.1, “Commissionable Node Discov
ery”.

If no commissioning window was open at time of receipt, this command SHALL fail with a cluster
specific status code of WindowNotOpen.

If the commissioning window was open and the fail-safe was armed when this command is
received, the device SHALL immediately expire the fail-safe and perform the cleanup steps outlined
in Section 11.10.6.2.2, “Behavior on expiry of Fail-Safe timer”.

11.20. Over-the-Air (OTA) Software Update

11.20.1. Scope & Purpose

The majority of IoT devices require security and/or functional feature updates during their lifetime.

This section describes a set of OTA software update capabilities which enable an "OTA Requestor" to
be informed of, obtain, and install software updates from a Node fulfilling the role of an "OTA
Provider".

An "OTA Requestor" is any Node implementing the OTA Requestor Device Type (0x0012), which ful
fills the client role for the OTA Software Update Provider cluster and the server role for the OTA
Software Update Requestor cluster. An "OTA Provider" is any Node implementing the OTA Provider
Device Type (0x0014), which fulfills the server role for the OTA Software Update Provider cluster
and the client role for the OTA Software Update Requestor cluster.

The OTA updates capabilities are designed to support:

• A mechanism to inform OTA Requestors about available OTA Providers.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 841

• A mechanism to allow OTA Requestors to acquire information about available OTA Software
Images.

• A mechanism to allow constrained OTA Requestors to obtain OTA Software Images through a
local proxy, e.g. if they are not able or willing to proceed with a direct download from the Inter
net.

• A mechanism to allow OTA Requestors supporting legacy, non-native, or out-of-band update
methods to notify an OTA Provider of having completed an update out-of-band.

• A mechanism to allow deferred installation of a software update, based on administrative rules.

• A mechanism to allow user consent to be considered before offering Software Images to OTA
Requestors.

OTA Requestors wishing to update their software using these capabilities MAY need to use an appli
cation bootloader and MAY require sufficient additional storage in order to download an OTA
image.

Furthermore, to encourage interoperability and timely software updates, the OTA update mecha
nisms provide means of obtaining Software Images which can be uniformly implemented across
OTA Requestors on devices from a variety of different vendors. The OTA Providers SHOULD provide
services to OTA Requestors from vendors other than its own, as long as the location of Software
Update images for these vendors is found. The Distributed Compliance Ledger is one such central
ized source of software update image locations that MAY allow OTA Providers to provide OTA Soft
ware Update Images generically to devices from many vendors.

11.20.2. Functional overview

An OTA Requestor SHALL query the OTA Provider periodically to determine the availability of new
Software Images. The OTA Provider MAY learn, from backend systems inside or outside of Fabric
scope, of the availability of a new Software Image for an OTA Requestor.

An OTA Requestor which has been updated using a mechanism beyond this Cluster MAY report to
an OTA Provider that a Software Image update has been completed.

The OTA Provider MAY announce its presence to OTA Requestors on the Fabric to assist in discovery
of this service (see AnnounceOTAProvider).

Nodes SHALL NOT rely solely on unsolicited OTA Provider announcements to discover available
OTA Providers and SHALL instead employ other means such as using OTA Provider records provi
sioned during Commissioning, or dynamic discovery of OTA Providers.

OTA Requestors SHALL only upgrade to numerically newer versions and OTA Providers SHALL
only ever provide a numerically newer Software Image than a Node’s current version number (see
SoftwareVersion). Any functional rollback SHALL be affected by the Vendor creating a Software
Image with a newer (higher) version number, but whose binary contents may match prior func
tionality.

All OTA Requestors SHALL support usage of a polling mechanism to send a query command to the
OTA Provider in order to determine if the OTA Provider has any new Software Images for it. Polling
simplifies processing for OTA Requestors that MAY need to perform special setup to get ready to

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 842 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

receive a Software Images, such as unlocking flash or allocating space for a new Software Images.

It is ideal to have OTA Providers maintain as little state as possible since this will scale better when
there are hundreds of OTA Requestors in a given Fabric. The OTA Provider is not required to keep
track of what pieces of an image that a particular OTA Requestor has received.

The flow for querying the availability of a new version is done using commands of the OTA
Provider Cluster. In case of a new image available matching an OTA Requestor’s request, the
response to the QueryImage command SHALL contain a URI where the given image can be down
loaded.

The download protocol is separate from the Cluster commands. All OTA Providers SHALL support
the BDX Protocol to allow for the downloading of OTA images by both sleepy End Devices and more
capable devices, without requiring access to the public Internet from the OTA Requestor. OTA
Requestors SHOULD support the BDX Protocol.

In order to maximize the interoperable combinations of deployed products and Fabric Administra
tors, the CSA’s Distributed Compliance Ledger (DCL) MAY contain sufficient OTA Software Update
information to cover a large number of products, using a federated mechanism of data mainte
nance. See Section 11.23, “Distributed Compliance Ledger” for details on the Distributed Compli
ance Ledger common data schemas. See Section 11.20.3.3.2, “Conceptual algorithm for matching
OTA Software Images applicable to a query” for the conceptual algorithm recommended for imple
mentation by OTA Providers to match records available in the DCL to incoming queries.

11.20.3. Software update workflow

The software update workflow consists of several steps executed in a sequence from an OTA
Requestor towards an OTA Provider. When a newer Software Image for an OTA Requestor is avail
able on the OTA Provider this results in an updated Software Image being acquired and applied by
said OTA Requestor.

The steps, in order, and assuming each step successfully leads to the next, are the following, with
each numbered according to Figure 84, “Detailed OTA Software Update Workflow”:

• [10] OTA Provider optionally announces its presence to nodes (see AnnounceOTAProvider). This
MAY be used in addition to other OTA Provider discovery methods.

• [11] OTA Requestor determines OTA Provider to query.

• [11] OTA Requestor queries the OTA Provider for availability of an updated Software Image ver
sion.

• [30..34] OTA Provider obtains consent from user to apply the OTA update.

• [40..41] OTA Provider obtains a copy of the new Software Image, either in real time or in a time-
deferred manner, to provide to the OTA Requestor over BDX Protocol, or over an alternate sup
ported protocol that both OTA Provider and OTA Requestor support. If the Software Image hap
pens to be already available in the OTA Provider’s cache, this step can be skipped.

• [52] OTA Requestor downloads the update, either over BDX Protocol from OTA Provider acting
as a proxy, or over an alternate protocol that both OTA Provider and OTA Requestor support.

• [60] OTA Requestor notifies the OTA Provider that the download is complete and that it is ready

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 843

to apply the downloaded image.

• [61] OTA Provider responds with an authorization to apply the update, after an optional delay.

• [62] OTA Requestor applies the update and starts executing updated software.

• [63] OTA Requestor notifies the OTA Provider of having successfully applied the update.

In order to illustrate more specifically these steps, Figure 84, “Detailed OTA Software Update Work
flow” below depicts a detailed sequence showing the following illustrative (not normative) aspects:

• [10..21] Determining the availability of an OTA software update.

• [22] Deferral of download by OTA Provider responding with a "Busy" condition, while it obtains
user consent and obtains the Software Image from a vendor server based on information in the
OTA Provider’s OTA Software Update logic.

• Obtaining user consent in one of these ways:

◦ [30..31] Out-of-band notification through some externally-provided user interface, such as a
mobile device terminal operated by an authorized user, and connected to OTA Provider’s
logic in some way.

◦ [32..34] Reuse of prior user consent, perhaps from a continued but revokable authorization,
sent back to the OTA Provider by OTA Software Update logic.

◦ Via the OTA Provider delegating to the OTA Requestor Node (see Section 11.20.3.4.1, “User
consent delegation to Nodes”). Note that this case is not illustrated in the sequence diagram.

• [40..41] Downloading and temporarily storing a Software Image by the OTA Provider, from a
Vendor’s server, over the public Internet, for the purposes of eventual proxied local download
by the OTA Requestor.

• [50..51] Responding positively to a subsequent query by the OTA Requestor, since an OTA soft
ware update is now definitely available.

• [52] Downloading of the Software Image from the OTA Provider by the OTA Requestor, using the
BDX Protocol against the temporary storage of the OTA Provider.

• [60..63] OTA Requestor performs the update (after permission from OTA Provider)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 844 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 84. Detailed OTA Software Update Workflow

Given that some of the above steps MAY fail to complete, and that some MAY provide a variety of
outcomes or replies, the following subsections give the necessary normative details describing the
sequence.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 845

11.20.3.1. Determining the OTA Provider to query

The discovery of available OTA Providers is necessary for OTA Requestors to be able to query for
new software images. Each OTA Requestor SHALL keep a list of OTA Provider Operational Identi
fiers (see Node Identifier) that it could query.

A given OTA Requestor SHALL have sufficient storage to maintain one OTA Provider entry per Fab
ric within the DefaultOTAProviders default list. This default OTA Provider list MAY be augmented
by any means deemed acceptable by a given OTA Requestor, such that the internal list of possible
locations to query contains at least the DefaultOTAProviders, but it MAY contain more. For example,
it may contain cached locations that arose from the AnnounceOTAProvider command.

When an OTA Requestor determines that it is time to query an OTA Provider, it MAY use any
method of its choosing to determine which OTA Provider to contact for its next query.

An OTA Requestor MAY expunge OTA Providers from its OTA Provider list if it determines that the
entry is stale or obsolete.

Discovery of additional OTA Providers MAY be done by handling the arrival of AnnounceO
TAProvider commands invoked by OTA Providers.

Commissioners SHOULD add an entry to the DefaultOTAProviders list attribute, if an OTA Provider
is known at commissioning time, to reduce the delay between commissioning and first QueryImage
command.

Whenever communicating with an OTA Provider location obtained either through the DefaultO
TAProviders attribute, or the AnnounceOTAProvider command, an OTA Requestor SHALL target all
interactions with that Node by interacting with the given Endpoint on the given ProviderNodeID
obtained from these sources.

Discovery of additional OTA Providers MAY be done using runtime service discovery, which is out
side the scope of this specification.

Nodes MAY attempt to contact OTA Providers that are known to them in any order if failing to reach
a default OTA Provider from an entry in the DefaultOTAProviders list. This approach would assist in
maximizing likelihood of eventual success.

11.20.3.2. Querying the OTA Provider

Query of the OTA Provider SHALL be done using the QueryImage command. The arguments for this
command provide sufficient information to allow the OTA Provider to determine the availability of
a new image for the querying OTA Requestor.

An OTA Requestor SHALL NOT query more frequently than once every 120 seconds, unless a Node
loses its timekeeping state, due to events such as power loss or restart, that prevent applying such a
delay. This reduces the burden on both the OTA Providers providing the service to a large number
of nodes and the supporting networking infrastructure. It is recommended for OTA Requestors to
attempt a daily QueryImage command, if capable, to ensure timely access to updated software,
including security-critical updates.

The OTA Provider SHALL use an algorithm deemed satisfactory by its implementer to determine

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 846 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

the availability of a newer Software Image in response to a QueryImage command. This algorithm
will be called the "OTA Image Selection Logic" thereafter.

The OTA Image Selection Logic MAY use any data it deems useful, either local to the equipment or
Node hosting the OTA Provider, or remote through external networks, to determine whether an
updated Software Image is available (see Section 11.20.3.3, “Availability of Software Images”).

OTA Provider requests are idempotent. In cases where an OTA Requestor is repeating a request it
has already done, and the OTA Provider can detect this, it SHALL NOT behave differently on any
subsequent attempt compared to the first, unless a new Software Image has become available in
the meantime. That is, an OTA Provider SHALL NOT prevent an OTA Requestor from trying to make
the same query more than once. This requirement is critical to ensure that OTA Requestors which
encounter error conditions during OTA Image Query or OTA Image Transfer can eventually succeed
through retrying the same operation more than once.

Upon final determination of the outcome of the QueryImage command, the OTA Provider SHALL
reply with a QueryImageResponse command.

If an OTA Provider employs synchronous proxying (e.g. proxy-while-downloading) method to reach
off-Fabric Software Images and provide them over BDX Protocol to OTA Requestors, it SHALL
respond with a Status of DownloadProtocolNotSupported to an OTA Requestor in the QueryIm
ageResponse command if all the following conditions apply:

1. A new Software Image is determined to be available.

2. The Software Image to proxy is served by a remote server that does NOT support range-based
transfers.

3. The OTA Requestor only supports BDX.

4. The OTA Provider does not support asynchronous proxying (e.g. download-then-proxy).

The fields of the QueryImageResponse command convey the next steps to take. The primary indica
tion of action to be taken by the OTA Requestor is expressed in the Status field, with the other fields
providing the necessary details as described in the following subsections.

Failure to receive an application-layer response from the OTA Provider after invoking the QueryIm
age command SHOULD be considered equivalent to having received a QueryImageResponse com
mand with a Status field containing NotAvailable (see Section 11.20.3.2.4, “Handling NotAvailable
value in Status field”).

Access Control Requirements

Commissioners or Administrators SHOULD install necessary ACL entries at Commissioning time or
later to enable the handling of the AnnounceOTAProvider commands by OTA Requestors.

Below is an exemplary ACL entry for a Node implementing the OTA Requestor cluster server to sup
port the processing of the AnnounceOTAProvider command:

{
 FabricIndex: <Fabric Index of the fabric in question>,
 Privilege: Operate,

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 847

 AuthMode: CASE,
 Subjects: [<Node ID of the node implementing OTA Requestor cluster client>],
 Targets: [<Endpoint hosting the OTA Requestor cluster server>]
}

Commissioner or Administrator SHOULD install necessary ACL Entries at Commissioning time or
later to enable processing of QueryImage commands from OTA Requestors on their Fabric, other
wise that OTA Provider will not be usable by OTA Requestors.

Below is an exemplary ACL entry for a Node implementing the OTA Provider cluster server to sup
port the processing of the QueryImage command:

{
 FabricIndex: <Fabric Index of the fabric in question>,
 Privilege: Operate,
 AuthMode: CASE,
 Subjects: [], // Empty for "any" Node wildcard
 Targets: [<Endpoint hosting the OTA Provider cluster server>]
}

Note that there may be a variety of ACL entry configurations that fulfill the necessary goals, includ
ing wildcard entries for the Administrators on a given Fabric. The examples above are for illustra
tion purposes only.

Handling UpdateAvailable value in Status field

The UpdateAvailable status indicates that the OTA Provider has an update available.

The remaining fields within the QueryImageResponse command SHALL contain the information
necessary to allow the OTA Requestor to obtain an updated Software Image.

The field ImageURI SHALL be set to a location from where the image can be downloaded. The URI
provided SHALL be for a protocol within the list of supported protocols provided in the request (see
ProtocolsSupported). Selection of the URI is based on the information available in the OTA
Provider’s Software Images data set.

The field UpdateToken SHALL be populated by the OTA Provider with a value of its choosing, to
allow tracking of the flow from a given OTA Requestor when it sends further requests. The valid
length of the UpdateToken is between 8 and 32 bytes, inclusively. The token SHALL be recorded by
the OTA Requestor, until an OTA Software Update Image is either applied or discarded. This value
SHALL be provided to any subsequent ApplyUpdateRequest and NotifyUpdateApplied commands.

The field SoftwareVersion SHALL be set to the version number matching the new Software Image.

Handling of SoftwareVersion and ImageURI fields SHALL follow these rules:

• If the SoftwareVersion field matches the version indicated in the header of a previously down
loaded OTA Software Image, one of two cases applies:

1. Image was fully downloaded and verified: the OTA Requestor SHOULD skip the transfer step

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 848 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

(see Section 11.20.3.5, “Transfer of OTA Software Update images”), and move directly to the
apply step (see Section 11.20.3.6, “Applying a software update”).

2. Image was partially downloaded: the OTA Requestor SHOULD attempt to continue the trans
fer from where it left off, if it is capable, otherwise it SHALL start the transfer anew. See Sec
tion 11.20.3.5, “Transfer of OTA Software Update images” for a description of complete and
restarted downloads.

• If the SoftwareVersion field indicates a newer (numerically higher) version than the version
currently installed on the OTA Requestor, the OTA Requestor SHOULD proceed with OTA Image
Transfer (see Section 11.20.3.5, “Transfer of OTA Software Update images”), after awaiting at
least the delay stated by the DelayedActionTime field, if present.

• If the SoftwareVersion field indicates the same or an older (numerically lower) version, or if the
ImageURI field somehow contains information which cannot be used by the OTA Requestor,
then the OTA Requestor SHALL go back to awaiting its next OTA Software Update query oppor
tunity, following the rules previously stated in Section 11.20.3.2, “Querying the OTA Provider”.
In that case, the OTA Requestor MAY attempt to select a different OTA Provider according to Sec
tion 11.20.3.1, “Determining the OTA Provider to query”, which MAY cause the OTA Requestor to
immediately try another query, but to a different OTA Provider, thus not violating daily
allowance of a given OTA Requestor towards a given OTA Provider.

Handling Busy value in Status field

The Busy status indicates that the OTA Provider is busy for any reason and that it can only provide
a definite answer at a later time. This MAY be because the OTA Provider is currently determining
whether an update is available for the OTA Requestor that made the query. An OTA Requestor
SHOULD attempt to query the same OTA Provider again later at least once more if a Busy response
is obtained, rather than querying a different OTA Provider in its list, so that the OTA Provider that
replied Busy could have had resources available to determine availability.

After a Busy status, the OTA Requestor SHALL NOT re-query the OTA Provider which was the sub
ject of the command sooner than the longest of either:

• 2 minutes (120 seconds) from the last QueryImage command;

• the delay stated by the DelayedActionTime field, if present.

Note that if a Node loses its timekeeping state due to events such as power loss or restart, the above
timing constraint MAY be ignored, however, the previously stated overriding constraint of a mini
mum delay of 120 seconds between queries to any single OTA Provider by a given OTA Requestor
has to be respected.

Handling NotAvailable value in Status field

The NotAvailable status indicates that there is definitely no update currently available from the
queried OTA Provider.

The OTA Requestor MAY choose to attempt a QueryImage command on a different OTA Provider in
its OTA Provider List to determine if an update is available from that other OTA Provider.

Otherwise, if there are no other OTA Providers available to query, the OTA Requestor SHALL NOT

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 849

re-query the OTA Provider which was the subject of the command sooner than 2 minutes (120 sec
onds) from the last QueryImage command. Note that if a Node loses its timekeeping state due to
events such as power loss or restart, the above timing constraint MAY be ignored, however, the pre
viously stated overriding constraint of a minimum delay of 120 seconds between queries to any sin
gle OTA Provider by a given OTA Requestor have to be respected.

Handling errors from QueryImage Command

If an OTA Requestor hits error conditions of any kind in invoking the QueryImage command,
including receiving DownloadProtocolNotSupported in Status, there are two possible outcomes:

1. If the OTA Requestor has a Software Image it had previously successfully downloaded and veri
fied, the OTA Requestor SHOULD skip the Query step, and move directly to the Apply step (see
Section 11.20.3.6, “Applying a software update”). This increases the likelihood that the OTA
Requestor will eventually succeed to apply a previously transferred Software Image.

2. If the OTA Requestor is still attempting to discover an OTA Update, it MAY choose to attempt a
QueryImage command on a different OTA Provider in its OTA Provider List, in which case the
timing for the query SHALL match the query timing constraints expressed in the previous para
graphs of this section. Otherwise, it SHALL continue to query the same OTA Provider, again fol
lowing the query timing constraints previously expressed.

11.20.3.3. Availability of Software Images

The algorithm used by the Image Selection Logic to determine availability of a new Software Image
SHALL consider all fields provided by the OTA Requestor and attempt to provide the newest match
ing Software Image. The OTA Image Selection Logic SHALL only provide newer (numerically
higher) SoftwareVersion than the SoftwareVersion sent in the query. See Section 11.20.3.3.2, “Con
ceptual algorithm for matching OTA Software Images applicable to a query” for more details.

The OTA Provider MAY provide a Software Image that only conveys data for a subset of updateable
components within the OTA Requestor’s Node. These cases of partial or componentized software
updates are determined purely by the entity generating the OTA Software Image, and the OTA
Provider SHALL never mutate the contents of an OTA Software Image.

The original provider of a Software Image SHOULD be able to assume the contents of the Software
Image will remain unchanged and signatures would remain valid. Therefore, an OTA Provider
SHALL NOT modify the contents of any Software Images other than allowing that OTA Requestor to
index into the Software Image using the BDX Protocol or other supported download protocol, such
that the OTA Requestor may obtain only the desired parts of the Software Image.

The OTA Provider SHALL NOT hide or otherwise mask the contents of a Software Image available
for transfer to a requestor.

In order for different vendors to participate as widely as possible in the distribution of Software
Images for the widest variety of products without requiring bilateral distribution agreements
between each pair, it is RECOMMENDED for vendors to participate in distribution schemes that
maximize availability across other vendors and OTA Providers.

Vendors SHOULD build data sets aggregating the metadata and payloads of Software Images to sup

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 850 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

port their OTA Image Selection Logic by any means they deem satisfactory. Vendors SHOULD refer
to canonical databases, such as the Distributed Compliance Ledger.

Given that most Fabrics likely will contain a reduced subset of Nodes capable of acting as OTA
Providers compared to the larger set of vendors represented in the many deployed Nodes, it is
advantageous to end-users that Vendors attempt to cover as many other vendors with their data
sets. This will ensure that the majority of Software Image queries can be fulfilled if a vendor has
released a newer version than that installed on the querying OTA Requestor.

Download Protocol selection

The OTA Image Selection Logic SHALL consider the OTA Requestor’s supported download protocols
to determine whether to respond to a QueryImage command.

If either the BDXSynchronous or BDXAsynchronous protocols are supported by the OTA Requestor,
the OTA Provider SHALL prefer to respond to the OTA Requestor with a BDX protocol URI, as long as
it can fulfill the role of BDX server for the OTA Requestor.

Otherwise, if the HTTPS protocol is supported by the OTA Requestor, and the OTA Provider deter
mines that an OTA Software Image is available to fulfill the request from a server supporting
HTTPS, it SHOULD respond with the direct source URI, so that the OTA Requestor MAY download it
directly.

Otherwise, if the VendorSpecific protocol is supported by the OTA Requestor, and the OTA Provider
has sufficient knowledge of the OTA Requestor’s capabilities based on the QueryImage command
arguments, it SHOULD respond with a URI which is known to be understood by the OTA Requestor.
It is RECOMMENDED to limit usage of this modality and prefer BDXSynchronous and BDXAsynchro
nous.

Conceptual algorithm for matching OTA Software Images applicable to a query

An OTA Provider MAY use any of the fields of the QueryImage command in any way it deems
applicable to determine whether an appropriate OTA Software image is available for the OTA
Requestor.

However, to increase interoperability, OTA Providers which have access to the data present in the
Distributed Compliance Ledger (DCL), whether from cached subset or from a full replica, SHOULD
employ at least the common conceptual algorithm provided in this section to determine whether an
OTA Image is available.

The information to access OTA Software Image locations for certified software versions is available
in the DCL DeviceSoftwareVersionModel Schema, which is indexed by VendorID, ProductID and
SoftwareVersion.

The inputs to the conceptual algorithm are:

• A subset of the fields of the QueryImage command as a structure named requestor:

• VendorID of the requestor as vendorID

• ProductID of the requestor as productID

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 851

• Current SoftwareVersion of the requestor as softwareVersion

• The list of all current entries for the given VendorID and ProductID from the DeviceSoftwareVer
sionModel schema, ordered by SoftwareVersion, accounting for the following fields, as an array
candidates[]

◦ SoftwareVersion of the entry as softwareVersion

◦ SoftwareVersionValid of the entry as softwareVersionValid

◦ MinApplicableSoftwareVersion of the entry as minApplicableSoftwareVersion

◦ MaxApplicableSoftwareVersion of the entry as maxApplicableSoftwareVersion

The output of the conceptual algorithm is a tuple of:

• candidateWasFound, a boolean predicate indicating whether a newer version candidate was
found

• softwareVersionFound, the version of the newer version candidate, if candidateWasFound was true,
0 otherwise.

The algorithm is as follows:

1. Assume no matching candidate found

◦ candidateWasFound := False

◦ softwareVersionFound := 0

2. Obtain candidates from a DCL replica or from a DCL-based dataset for the given vendorID and
productID in the query, keeping only entries where softwareVersionValid is true.

◦ An OTA Provider MAY as well filter available versions by certification compliance status (see
Section 11.23.7, “DeviceSoftwareCompliance / Compliance test result Schema”).

3. Sort all candidates by ascending softwareVersion.

4. Iterate through all candidates to find all positive matches within the sorted candidates. A "posi
tive match" is a candidate which fullfills every condition in the following list:

◦ requestor.softwareVersion < candidate.softwareVersion

◦ requestor.softwareVersion ≥ candidate.minApplicableSoftwareVersion

◦ requestor.softwareVersion ≤ candidate.maxApplicableSoftwareVersion

5. From the positive matches, select the very last one of list, which will be the newest (numerically
highest) possible softwareVersion that could be used. If no positive matches were found, no new
software version is available.

A pseudocode of the conceptual algorithm is presented below:

Get candidates for VendorID/ProductID from DCL DeviceSoftwareVersionModel
schema (e.g. from a replica)
candidates = obtain_candidates_from_dcl(requestor.vendorID, requestor.productID)

def find_newer_version(candidates, requestor):
 # Ensure all candidate records are in monotonic increasing numerical order

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 852 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 sort(candidates, key="softwareVersion", order="ASCENDING")

 currentCandidate = None

 for candidate in candidates:
 # Current version already newer: skip
 if requestor.softwareVersion >= candidate.softwareVersion:
 continue

 # Candidate requires higher version than already installed: skip
 if requestor.softwareVersion < candidate.minApplicableSoftwareVersion:
 continue

 # Candidate requires lower version than already installed: skip
 if requestor.softwareVersion > candidate.maxApplicableSoftwareVersion:
 continue

 # Update potential candidate since it is applicable
 currentCandidate = candidate

 if currentCandidate is not None:
 # Last value of currentCandidate is highest matching value
 candidateWasFound = True
 softwareVersionFound = currentCandidate.softwareVersion
 else:
 candidateWasFound = False
 softwareVersionFound = 0

 return (candidateWasFound, softwareVersionFound)

If candidateWasFound was true, then a version matching (softwareVersionFound) was found and its
location and associated metadata can be found in the DeviceSoftwareVersionModel schema of the
DCL.

While the QueryImage command MAY also contain the Location, HardwareVersion and Meta
dataForProvider fields, they are optional to use by an OTA provider. These additional fields MAY
assist an OTA provider in supporting field trial and development policies. The certified releases
present in the DCL, however, are only indexed by VendorID, ProductID and SoftwareVersion, based
on the associated certification.

Once an OTA software update file location (OtaUrl) and digest (OtaChecksum) are found for the
associated version candidate, an OTA provider MAY omit re-downloading the file, and serve a
cached copy if a local copy of a file exists which matches all of the following constraints from the
candidate:

• It has the same OtaChecksum

• It has the same OtaChecksumType

• It has the same OtaFileSize

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 853

11.20.3.4. Obtaining user consent for updating software

In the following subsections, the word "User" SHALL be construed to mean "an entity with suffi
cient privileges associated with the Fabric". For instance, this could be a home dweller having pre
viously configured Nodes or other services and currently having privilege to further affect such
configuration. The exact scope for what an "entity" for such a "User" role may be, and what "suffi
cient privilege" means, SHALL be implementation-dependent.

An OTA Provider SHOULD obtain some form of "User Consent" prior to responding with a URI for a
Software Image or letting an OTA Requestor proceed with applying a previously downloaded
update. In the context of the OTA Cluster, "User Consent" SHALL be defined as any signal that an
OTA Provider may obtain through its implementation-specific logic, that conveys consent to pro
ceed from a User administratively allowed to give such consent in an informed manner.

Example of "User Consent" include:

• Triggering a notification to an interactive application user interface, where at least one User is
notified of the availability of new software for a given node, and where a signal of approval to
continue with the downloading and applying of that update can be conveyed back to the OTA
Provider.

◦ Example: An OTA Provider detects the local presence of a mobile device with an application
supporting required User accounts through out-of-band means. The OTA Provider makes an
implementation-specific request over a protocol of its choice, in-band or out-of-band of the
Fabric, to obtain consent. The User is notified on screen with "An ExampleCompany Light
Bulb needs update to version 1.2.3. Tap here for release notes. Do you want to proceed?".
The User then selects "Agree to Update" and the signal is relayed back to the OTA Provider,
which then proceeds.

• Relaying of a previously stored consent signal, previously provided by a User at some point in
the past. The original capture of the stored consent signal should have been made after having
provided sufficient information to the User to understand the consequences of such stored con
sent. Multiple signals, covering different Nodes, Vendors or Device Classes, may be stored inde
pendently to affect a variety of deferred consent policies.

◦ Example: An OTA Provider contacts an implementation-specific server with metadata about
the OTA Requestor and details for available Software Images, and obtains a consent signal
based on an Administrator having previously stated an account preference to "Always apply
software updates to light bulbs". The OTA Provider then proceeds further.

User consent delegation to Nodes

Some capable Nodes MAY have sufficient hardware capabilities to request user consent by means
such as display or voice, and subsequently recover user consent feedback through input mecha
nisms. These devices MAY request optional delegation of user consent by the following method:

1. The OTA Requestor SHALL set the RequestorCanConsent field in the QueryImageRequest to
True, indicating ability to obtain consent.

2. The OTA Provider, if it determines that the best way to obtain user consent is to delegate to the
OTA Requestor Node, SHALL include the UserConsentNeeded field, with a value set to True in
the QueryImageResponse, indicating that user consent was not previously obtained, and that

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 854 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

delegation SHALL occur.

3. The OTA Requestor, upon observing presence of UserConsentNeeded field set to True and the
availability of an image in the QueryImageResponse SHOULD proceed to obtain user consent
using its onboard means, prior to transferring the OTA Software Image reported. If the UserCon
sentNeeded field is set to False or absent, the OTA Requestor SHALL assume that the OTA
Provider already obtained sufficient user consent during the querying phase.

The above method of obtaining User Consent at the OTA Requestor level SHALL NOT be used if a
Node is configured with the LocalConfigDisabled attribute set to True as reflected by the Basic
Information Cluster.

User consent recommendations

Because of the variety of Vendors and Devices, the concept of "User Consent" will necessarily take
many different forms. Therefore, it is RECOMMENDED that every implementer of OTA Provider
logic implement a transparent and easy-to-use set of functionality to allow Users to provide or deny
consent for software updates, in a way that functionally integrates with their products and respects
the general requirements stated above. Implementation of this feature is expected to improve "user
experience" and assist with building trust regarding the installation of new software on Nodes.

It is RECOMMENDED that any method of consent that stores consent signals also provide a way to
revoke this consent in the future.

It is RECOMMENDED that metadata from Software Images be used to convey as much information
as required within the available set, so that a User can make an informed decision based on the
nature of the product being updated, the human-readable instance of the new version number (e.g.
SoftwareVersionString in OTA Image Header), the changes made available, and their side-effects on
product functionality. Any URL for online contents conveyed during this process SHOULD point to
content that can be localized at the time of delivery, whenever possible. The responsibility for the
maintenance of such version information is on the Vendor providing the URL and metadata. The
OTA Provider and associated implementation-specific logic SHALL allow a User to consent to an
update, even if errors occur while trying to provide additional release information, as the metadata
within the Software Image should suffice to provide a first-order description of the new version,
which could then be researched or cross-referenced by the User.

It is RECOMMENDED that Vendor-provided Software Update metadata, such as release note URLs,
be maintained in the long-term with stable locations, preferably in a manner allowing historical
caching by common online search engines, where applicable. See Section 11.23.6.11,
“ReleaseNotesUrl” and Section 11.21.2.4.8, “ReleaseNotesUrl field” for sources of such information.

11.20.3.5. Transfer of OTA Software Update images

Execution of an OTA Software Update image’s transfer depends on the protocol provided in the
ImageURI field of the query response.

The following are OTA Software Image transfer examples:

• An OTA Requestor invokes a QueryImage command stating only support for BDX in its Proto
colsSupported. The OTA Provider, using its OTA Image Selection Logic, determines that a Soft

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 855

ware Image is available. There are several cases to be considered:

1. The Software Image is at a URI referring to a resource on the public Internet (e.g.
https://domain.example/images/software.bin).

a. The OTA Provider MAY completely download the Software Image, temporarily, to local
storage. It would then reply to the OTA Requestor with a locally-accessible BDX URI, such
as bdx://8899AABBCCDDEEFF/software_8ce40aa1.bin. In that case, the OTA Requestor SHALL
proceed with the download from the OTA Provider using the BDX protocol.

b. The OTA Provider MAY employ a variety of buffering and proxying schemes of underly
ing HTTPS transfers to support the OTA Requestor downloading in real-time as a form of
direct proxy. It would immediately reply to the OTA Requestor with a locally-accessible
BDX URI, such as bdx://8899AABBCCDDEEFF/software_8ce40aa1.bin. In that case, the OTA
Requestor SHALL proceed with the download from the OTA Provider using the BDX pro
tocol. The only difference with the previous case is the fact that the transfer uses data
directly proxied in real-time, as opposed to the OTA Requestor downloading a pre-stored
cached copy of the same Software Image.

2. The Software Image is already cached on the OTA Provider, either from pre-seeding over
some implementation-specific scheme, or from having previously served this software
update to another OTA Requestor. In that case, the OTA Provider SHALL reply to the OTA
Requestor with a locally-accessible BDX URI, such as bdx://8899AABBCCDDEEFF/soft
ware_8ce40aa1.bin. In that case, the OTA Requestor SHALL proceed with the download from
the OTA Provider using the BDX protocol.

• An OTA Requestor invokes a QueryImage command stating support for BDX and HTTPS in its
ProtocolsSupported. The OTA Provider, using its OTA Image Selection Logic, determines that a
Software Image is available. The Software Image is at a URI referring to a resource on the public
Internet (e.g. https://domain.example/images/software.bin). In the case of support for both
HTTPS and BDX, all of the above cases are applicable, in addition to the following:

◦ The OTA Provider knows that the OTA Requestor supports HTTPS from the QueryImage com
mand. The OTA Provider MAY then respond directly to the OTA Requestor with the
https://domain.example/images/software.bin URI. The OTA Requestor SHALL proceed to
download from the public Internet using the HTTPS protocol.

As described above, an OTA Provider SHALL either proxy synchronously or asynchronously the
actual Software Image data for BDX Protocol clients, when a Software Image is determined to be
available from the public Internet or from local storage.

Upon receipt of a QueryImageResponse command containing a DelayedActionTime field, the OTA
Requestor SHALL wait for at least the stated delay time before initiating the first part of a file trans
fer for the URI provided.

The OTA Provider MAY expunge any previously cached Software Image downloaded on behalf of
other OTA Requestors, to save storage, at any time, as long as no transfer is currently in active
progress. It is RECOMMENDED that OTA Providers on a given Fabric maintain as much Software
Image cache as practical, to improve availability of software image and reduce latency between
QueryImage requests and availability of the matching QueryImageResponse for a new Software
Image ready to be downloaded.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 856 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://domain.example/images/software.bin
https://domain.example/images/software.bin
https://domain.example/images/software.bin

In order to support non-BDX protocols relying on the public Internet, or intranets, the OTA
Requestor SHALL only report support for protocols requiring public Internet access if it has deter
mined that it does indeed have access to the necessary network domains beyond the Fabric. The
OTA Requestor MAY employ any method it deems satisfactory to determine public Internet reacha
bility. Because of the variety of firewall and security policies on network infrastructure, it is REC
OMMENDED that all Nodes whose primary networking interactions lie within protocols in-band of
this wider specification support the BDX method, so that even if a Node cannot access the public
Internet, it MAY still obtain OTA Software Images by relying on a local OTA Provider which can.

For BDX transfers, the following BDX-specific constraints SHALL be followed:

• Receiver-Drive mode SHALL be used by the OTA Provider for any transfers initiated from a
secure channel on non-TCP transport.

• Asynchronous mode SHALL be used by the OTA Provider for any transfer initiated from a
secure channel on TCP transport.

• Idle time-out SHALL be no less than 5 minutes for either Receiver-Driver or Asynchronous
mode, before aborting a transfer.

• Block sizes constraints SHALL be as follows:

◦ Maximum Block Size over all transports SHALL be a power of two if the OTA Requestor
requests a value larger than 128 bytes.

◦ For an OTA Requestor-requested Maximum Block Size value between 16 and 128, the exact
requested value SHALL be used. This constraint allows low-power Nodes to precisely control
the block sizes to ensure their power constraints are respected, including enabling single-
frame block transfers over communication mediums where MTU is very small.

◦ Maximum Block Size requested by OTA Requestors over non-TCP transports SHALL be no
larger than 1024 (2^10) bytes. OTA Providers SHALL support the Maximum Block Size of at
least 1024 bytes in those cases.

◦ Maximum Block Size requested by OTA Requestors over TCP transport SHALL be no larger
than 8192 (2 ^ 13) bytes. OTA Providers SHALL support a Maximum Block Size of at least
4096 (2^12) bytes in this case and MAY support 8192 bytes.

◦ Actual Block Size used over all transports SHALL be the negotiated Maximum Block Size for
every block except the last one, which may be of any size less or equal to the Maximum
Block Size (including zero).

• The OTA Requestor SHALL NOT rely on the ReceiveAccept message from the OTA Provider hav
ing the RC[DEFLEN] bit set (see Section 11.22.5.4.2.1, “ReceiveAccept RC[DEFLEN]: definite length
present”) and the associated LEN field populated. Instead, OTA Requestors SHALL rely on OTA
Software Image metadata to determine the expected size to download.

• The ReceiveInit message from the OTA Requestor MAY have the RC[STARTOFS] bit set and asso
ciated STARTOFS field set to indicate the resumption of a transfer previously aborted, or to
affect partial windowed access to the portion of a Software Image desired.

• The ReceiveInit message from the OTA Requestor MAY have the RC[DEFLEN] bit set and associ
ated DEFLEN field set to state the desired maximum size of the transfer.

Since OTA Requestors MAY need to read Software Image in parts, it is RECOMMENDED that OTA

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 857

Providers maintain cached Software Images for at least 5 minutes after closure of the last OTA
Requestor transfer, so that the OTA Requestor MAY come back to read different parts of an OTA file.

In the case of very large Fabrics, it often occurs that there is a large number of the same model of
Node within a given location. Because of this, OTA Providers SHOULD avoid downloading the same
Software Image repeatedly for proxying if it can determine that multiple OTA Requestors are
requesting, or can be expected to request, the same Software Image.

It is RECOMMENDED to keep Software Images cached for as long as practical to reduce having to
reach external off-Fabric resources frequently to address the update needs of a large fleet of identi
cal Nodes that could share a single pre-downloaded cached copy in the OTA Provider. This reduces
burden on content delivery servers for Software Images and reduces the amount of data trans
ferred by an OTA Provider from external off-Fabric servers to fulfill software update requirements.

It is RECOMMENDED that Sleepy End Devices make their best effort to optimize their sleep intervals
during the OTA Software Image transfer process over BDX to ensure that the download completes
in a timely manner. However, it is acknowledged that some Sleepy End Devices MAY not be able to
do so, due to limitations related to their batteries or other constrained power sources. Therefore,
such devices MAY take much longer to complete the download process.

In the case where a BDX transfer is aborted due to unforeseen circumstances (e.g. power loss, crash,
battery drain on either side), the OTA Requestor MAY try to use a partial (i.e. range-based) transfer
to recover and continue the download without having to start from the beginning of a given Soft
ware Image. An OTA Requestor SHALL abort retrying a transfer after three attempts in a row
where each yielded no forward progress.

It is RECOMMENDED for the OTA Provider to validate the length and digest of proxied images
whenever possible (see OTA software update file Header field) to avoid continuing a transfer if the
data is obviously corrupted.

In any situation where an OTA Requestor reaches a terminal failure point for a Software Image
transfer and all possible retries or alternate OTA Providers have been exhausted, that OTA
Requestor SHALL reset its entire software updating state and revert to doing a future query at the
next possible scheduled time, so that perhaps a new Software Image may be available again.

The above situation may occur, for example, if an OTA Provider had cleared its Software Update
Image File cache for any reason, or if there is a transient network failure of sufficient duration to
prevent a complete transfer to take place.

Once the entirety of a Software Image has been downloaded and is ready to apply, the OTA
Requestor SHALL execute the "Applying a software update" sequence of the next section.

11.20.3.6. Applying a software update

Once a Software Image has been fully downloaded based on a QueryImageResponse command, the
OTA Requestor SHALL proceed with a sequence to determine when to apply the update by invoking
the ApplyUpdateRequest command.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 858 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

UpdateToken usage

The OTA Requestor SHALL provide an UpdateToken to the OTA Provider with the ApplyUp
dateRequest command. This token SHALL be a previously provided UpdateToken from the last
QueryImageResponse, unless the token was lost by the OTA Requestor. In case of token loss, the OTA
Requestor SHALL use its Operational Node ID encoded as a 64-bit value in network byte order. This
UpdateToken MAY be used by an OTA Provider to track deferred OTA application or otherwise
allow short-term tracking of OTA Requestors for algorithmic bookkeeping. The OTA Provider SHALL
not consider an invalid UpdateToken as a reason to continuously deny or delay an OTA Requestor’s
request to apply a Software Image.

Update application process

On receipt of the ApplyUpdateRequest command, the OTA Provider SHALL respond with an action
to be taken by the OTA Requestor before activating the new version. The method used to determine
the Action field of the response MAY be based on implementation-specific rules and logic.

Note that the DelayedActionTime field is a relative time delay from the moment of receipt, which
needs to be computed by the OTA Provider to reflect the difference between the OTA Provider’s cur
rent time and the desired time for execution of the Action.

In case of a successful invocation, the following actions to be taken by the OTA Requestor are possi
ble, based on the Action field in the ApplyUpdateResponse command:

• Proceed: Apply the update, taking in account the delay time stated in DelayedActionTime.

◦ If the DelayedActionTime is zero, then the OTA Requestor SHALL apply the update without
additional delay.

◦ If the DelayedActionTime is non-zero, the OTA Requestor SHALL await at least DelayedAc
tionTime seconds prior to applying the software update. An example use of this Action by an
OTA Provider is to schedule application of a Software Image based on a user’s preferred
update time for Nodes of a certain type (e.g. light bulbs or window coverings) to occur at a
time when the user is not at home, or when the temporary unavailability of the Node during
the update would not pose a problem.

◦ When the Proceed action is given, the OTA Requestor SHALL NOT invoke the ApplyUp
dateRequest command again, unless the OTA Requestor suffers an error or unexpected con
dition while proceeding to apply the new Software Image.

• AwaitNextAction: Await at least the given delay time in DelayedActionTime before re-invoking
an ApplyUpdateRequest to get a new Action.

◦ If the DelayedActionTime is less than 120 seconds (2 minutes), the OTA Requestor SHALL
assume a value of 120 seconds.

◦ An example use of this Action by an OTA Provider is to schedule application of a Software
Image based on non-occupancy of a room, which Nodes collaborating with the OTA Provider
may be able to ascertain, but which may require several attempts over time.

◦ It is RECOMMENDED to keep usage of this Action to a practical minimum, as it may cause
OTA Requestors to be delayed in their application of a Software Image.

◦ The AwaitNextAction action SHALL NOT be emitted in such a way as to cause more than 24

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 859

hours of delay in applying an available Software Image. It is expected that user consent hav
ing been previously granted should satisfy the overall scheduling constraint this imposes.

• Discontinue: The OTA Provider is conveying a desire to rescind a previously provided Software
Image.

◦ The DelayedActionTime SHALL be ignored by the OTA Requestor if present.

◦ The OTA Requestor SHOULD clear its previously downloaded and verified Software Image, if
it had been obtained from the same OTA Provider as the one providing the Discontinue
action.

◦ This action SHALL only be used as a stopgap when it is known that a given Software Image
previously provided may cause significant negative side-effects to an OTA Requestor, such as
unrecoverable loss of functionality, or other damage.

◦ In case of receiving this action unexpectedly (e.g. from a different OTA Provider than the
one where a Software Image was downloaded), an OTA Requestor MAY ignore it and con
sider it the same way as if the ApplyUpdateRequest command had proceeded with an error.

It is RECOMMENDED that for any OTA Requestor invoking the ApplyUpdateRequest command with
an unknown UpdateToken, the OTA Provider SHOULD assume that the OTA Requestor has a Soft
ware Image ready to apply and thus respond with the Proceed or Await action, rather than
responding with an error or Discontinue action.

In case of time-out or any error in obtaining an answer to the ApplyUpdateRequest command, or in
case of a restart or other unrecoverable situation while awaiting the DelayedActionTime for a Pro
ceed or Await action, the OTA Requestor SHOULD retry to execute the "Querying the OTA Provider"
flow (see Section 11.20.3.2, “Querying the OTA Provider”) again, whenever the OTA Requestor
deems it possible.

In case of failure of every possible retry mechanism for at least 3 total attempts, or over more than
24 hours, an OTA Requestor having successfully downloaded and verified a Software Image MAY
apply the update. This measure of last recourse is to avoid situations where a critical issue affecting
a particular software version would prevent an OTA Requestor or OTA Provider from properly exe
cuting the "Applying a Software Update" flow, thus leaving an OTA Requestor in reduced or a for
ever-impaired state that could otherwise be resolved by applying the Software Image it had suc
cessfully downloaded and verified.

After completion of an update, an OTA Requestor SHOULD invoke a NotifyUpdateApplied command
to the OTA Provider which provided the initial query response to indicate that the OTA Requestor
has successfully applied the OTA Software Update Image. The OTA Requestor SHALL NOT retry at
the application level to invoke this command if a response is not received.

11.20.4. Security considerations

Security for the OTA Software Update capabilities encompasses these areas: Software Image verifi
cation, Software Image transport, and Software Image encryption. Security mechanisms in given
applications dictate the security level of OTA upgrading. For example, an application with strict
security policies (such as a smart lock) MAY support Software Image encryption at rest beyond the
secure channel data-in-transit encryption, while other applications MAY only support data-in-tran
sit encryption. Each Vendor SHALL decide the list of required security policies for their use of the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 860 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

OTA Software Update capabilities for a particular product.

11.20.4.1. Image Encryption

A Vendor MAY apply at-rest encryption to Software Image bodies, excluding the Software Update
Image Header, using any algorithm of its choosing.

It is out of scope of this specification to mandate such means of protecting the confidentiality of the
Software Images.

11.20.4.2. Image Verification

Asymmetric Verification of Authenticity and Integrity

The verification of the authenticity and integrity of Software Images by OTA Requestors is manda
tory for security reasons. This is most often accomplished through asymmetric encryption technolo
gies where only one entity is able to create a digital signature but many entities are able to verify it.
Software Images SHALL be signed by a private key used by the Vendor for software image signing
purposes, with that signature attached to the Software Image that is transported to the OTA
Requestor. Once the complete Software Image has been received, the signature SHALL be verified
using a matching public key known to the OTA Requestor performing the validation. See Section
13.5, “Firmware” for the associated security requirements. The format and algorithms used for
code signatures verification are out of scope of this specification. The OTA Provider SHOULD NOT
expect to be able to validate OTA Software Image signatures on its own.

OTA Requestors MAY be pre-installed with the certificate (public key) of the entity that created the
signature, or they MAY receive the certificate over-the-air. How the signer’s security data is
obtained is considered outside the scope of the OTA Software Update Cluster and is Vendor Specific.
When signer certificates are sent over-the-air, they SHALL be securely transferred from a trusted
source to reduce the chance an attacker MAY inject their own signer certificate into the OTA
Requestor.

Software Images with verification mechanisms built in MAY be transported over insecure commu
nication mechanisms while still maintaining their authenticity and integrity. In fact, it is likely that
the originator of the Software Image (a Vendor) will not be directly connected to any Fabric and
therefore distribute the Software Image across other mediums (such as the Internet) before arriv
ing on the Fabric. Therefore, it is crucial that the Software Image verification be independent of the
communication medium. Any attempts to tamper with the signature or the data itself SHALL be
detected and SHALL cause the Software Image to be rejected by the target OTA Requestor. A Soft
ware Image from an attacker that crafts its own signed image and tries to have it accepted would be
rejected since that image will not be signed by the Vendor’s signing authority.

Since Software Images MAY contain software for multiple sub-components (e.g. main processor
firmware, radio firmware, graphical/audio assets) which MAY each employ different code signing
keys, Software Images SHOULD provide at least an overall authenticity and integrity validation for
the entire image, regardless of how it is segmented.

Individual Vendors MAY augment the basic security and authenticity schemes provided by the Soft
ware Images and provide their own extensions within the payloads. Those extensions are outside
the scope of the OTA Software Update Cluster.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 861

Software Images MAY be encrypted with symmetric keys such that only those OTA Requestors that
need to decrypt the Software Image have access to the key. This MAY be used to mask or obfuscate
the contents of Software Images from intermediate network participants conveying the Software
Images, while in transit and at rest. However, the security of this system is dependent on the secu
rity of all OTA Requestors that have access to the symmetric key and the method of storage of the
final Software Image at rest on a given OTA Requestor. The schemes employed by different Vendors
to encrypt the body of Software Images in transit and at rest, is outside of the scope of this specifica
tion.

11.20.5. Some special situations

With the mechanisms provided by this Cluster, roll-out of new Software Images applies equally to
all OTA Requestors of matching a given <VendorID, ProductID> tuple, uniformly across the world.
The subsections below describe two situations where finer-grained roll-out can be achieved for
some regions or to distribute special non-standard versions.

11.20.5.1. Regional roll-out of Software Images

Some Manufacturers have a policy of rolling-out by region (i.e. set of countries), to provide world-
wide release schedule differentiation, as well as to test roll-outs gradually, among other reasons.
These regional roll-outs may only be feasible using manufacturer-specific schemes that are in addi
tion to the common flows described in this cluster. Common recommended behavior (see Section
11.20.3.3.2, “Conceptual algorithm for matching OTA Software Images applicable to a query”) does
not support regional roll-out since there does not exist a location tagging attribute in the Distrib
uted Compliance Ledger (DCL). For regional rolls-outs prior to full roll-out, refer to the overall tech
niques described in Section 11.20.5.2, “Roll-out of non-standard Software Images”.

11.20.5.2. Roll-out of non-standard Software Images

Many Manufacturers conduct field trials to test different versions of software (e.g. A/B-testing, beta
testing), or provide dedicated Software Images to a subset of Nodes to affect particular diagnosis
tasks, etc. The mechanism described in this cluster is not particularly well-suited for such fine-
grained deployment (unless the OTA Provider is provided by, or associated with, the Manufacturer).

To achieve more targeted roll-out, Vendors MAY commission a Node on the same Fabric as the
devices requiring the special rules, so that it MAY provide OTA Provider capabilities beyond the
core interoperable aspects of this Cluster. Finer-grained selection MAY be applied by special OTA
Software Image Selection logic in a given OTA Provider, using the MetadataForProvider field and
MetadataForRequestor fields of the QueryImage command. Furthermore, such special OTA
Provider may identify itself by including the MetadataForNode field in a given AnnounceO
TAProvider command.

If such a special Software Image is running on an OTA Requestor, the OTA Requestor MAY reject
Software Images provided to it by an OTA Provider on the Fabric, to prevent loss of the non-stan
dard Software Image. A Factory Data Reset of the OTA Requestor SHALL remove such override.

11.20.5.3. Other considerations

While it is expected that Nodes fulfilling the role of OTA Provider will likely have high availability

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 862 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

within the Fabric, it may be possible some will be battery-operated or be power-cycled frequently. It
is RECOMMENDED that an OTA Provider Node that determines it cannot reliably stay available to
service OTA Requestors SHOULD avoid responding with an available OTA Software Image when
responding to a QueryImage command (see QueryImageResponse) unless it has sufficient availabil
ity to allow a long-running BDX Protocol transfer to finish. In general, OTA Provider role SHOULD
be fulfilled by a Node with a reliable network availability and stable power, especially if it is set as
a default in the DefaultOTAProviders attribute.

11.20.6. OTA Software Update Provider Cluster

11.20.6.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.20.6.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node OTAP

11.20.6.3. Cluster ID

ID Name

0x0029 OTA Software Update Provider

11.20.6.4. Data Types

StatusEnum Type

This data type is derived from enum8.

See Section 11.20.3.2, “Querying the OTA Provider” for the semantics of these values.

Value Name Summary Conformance

0 UpdateAvailable Indicates that the OTA
Provider has an update
available.

M

1 Busy Indicates OTA Provider
may have an update,
but it is not ready yet.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 863

Value Name Summary Conformance

2 NotAvailable Indicates that there is
definitely no update
currently available
from the OTA Provider.

M

3 DownloadProtocol
NotSupported

Indicates that the
requested download
protocol is not sup
ported by the OTA
Provider.

M

ApplyUpdateActionEnum Type

This data type is derived from enum8.

See Section 11.20.3.6, “Applying a software update” for the semantics of the values. This enumera
tion is used in the Action field of the ApplyUpdateResponse command. See (Section 11.20.6.5.4.1,
“Action Field”).

Value Name Summary Conformance

0 Proceed Apply the update. M

1 AwaitNextAction Wait at least the given
delay time.

M

2 Discontinue The OTA Provider is
conveying a desire to
rescind a previously
provided Software
Image.

M

DownloadProtocolEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 BDXSynchronous Indicates support for
synchronous BDX.

M

1 BDXAsynchronous Indicates support for
asynchronous BDX.

O

2 HTTPS Indicates support for
HTTPS.

O

3 VendorSpecific Indicates support for
vendor specific proto
col.

O

Note that only HTTP over TLS (HTTPS) is supported (see RFC 7230). Using HTTP without TLS SHALL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 864 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

NOT be supported, as there is no way to authenticate the involved participants.

11.20.6.5. Commands

ID Name Direction Response Access Conformance

0x00 QueryImage client ⇒ server QueryImageRe
sponse

O M

0x01 QueryIm
ageResponse

client ⇐ server N M

0x02 ApplyUp
dateRequest

client ⇒ server ApplyUp
dateResponse

O M

0x03 ApplyUp
dateResponse

client ⇐ server N M

0x04 NotifyUp
dateApplied

client ⇒ server Y O M

QueryImage Command

Upon receipt, this command SHALL trigger an attempt to find an updated Software Image by the
OTA Provider to match the OTA Requestor’s constraints provided in the payload fields.

ID Name Type Constraint Quality Default Confor
mance

0 VendorID vendor-id all M

1 ProductID uint16 all M

2 Software
Version

uint32 all M

3 Proto
colsSup
ported

list[Down
loadProto
colEnum]

max 8 M

4 Hardware
Version

uint16 all O

5 Location string 2 O

6 Requestor
CanConsent

bool all False O

7 Meta
dataFor
Provider

octstr max 512 O

VendorID Field

The value SHALL be the Vendor ID applying to the OTA Requestor’s Node and SHALL match the
value reported by the Basic Information Cluster VendorID attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 865

ProductID Field

The value SHALL be the Product ID applying to the OTA Requestor’s Node and SHALL match the
value reported by the Basic Information Cluster ProductID attribute.

SoftwareVersion Field

The SoftwareVersion included in the request payload SHALL provide the value representing the
current version running on the OTA Requestor invoking the command. This version SHALL be
equal to the Software Version attribute of the Basic Information Cluster.

ProtocolsSupported Field

This field SHALL contain a list of all download protocols supported by the OTA Requestor.

This field SHALL be used by the OTA Provider to generate the correct URI for the location of the
Software Image when one is found to be available. The values of BDX Synchronous and BDX Asyn
chronous SHALL always be supported by an OTA Provider. Furthermore, OTA Providers with access
to external networking SHOULD support the HTTPS protocol. OTA Providers MAY support other
protocols.

The algorithm to select the specific protocol to use in a given Software Image URI is implementa
tion-dependent, provided that the rules in Section 11.20.3.3.1, “Download Protocol selection” are fol
lowed.

See Section 11.20.3.2, “Querying the OTA Provider” and Section 11.20.3.5, “Transfer of OTA Software
Update images” for more details about usage of this field.

HardwareVersion Field

The value of this field, if present, SHALL contain the OTA Requestor’s hardware version, and SHALL
be equal to the HardwareVersion attribute of the Basic Information Cluster.

Location Field

The location, if present, SHALL provide the same value as the Basic Information Cluster Location
attribute for the OTA Requestor as configured. This MAY be used by the OTA Provider logic to allow
per-region selection of the Software Image.

RequestorCanConsent Field

This field SHALL be set to true by an OTA Requestor that is capable of obtaining user consent for
OTA application by virtue of built-in user interface capabilities. Otherwise, it SHALL be false.

See Section 11.20.3.4, “Obtaining user consent for updating software” for application details about
usage.

MetadataForProvider Field

This optional field, if present, SHALL consist of a top-level anonymous list; each list element SHALL
have a profile-specific tag encoded in fully-qualified form. Each list element SHALL contain a man

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 866 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ufacturer-specific payload, which the OTA Requestor invoking this command wants to expose to the
receiving OTA Provider. This payload MAY be used for any purpose and SHOULD be as small as
practical.

The use of this field SHOULD be restricted to Vendor-specific usage and SHALL NOT be used as a
selector required to match for the selection of a Software Image in production environments,
unless absolutely necessary, as the interpretation of this field may be ambiguous to OTA Providers
implementing the Cluster in a compliant but divergent way from the sender.

An example of usage for this field is for an OTA Requestor to provide specific data about grouping
or authentication in field trial environments, where the OTA Provider is likely to understand it and
be able to act upon it, either for special selection of image, or recording of activity.

An OTA Provider SHALL report the availability of Software Images, if one is found to be applicable
using the other provided fields, even if the MetadataForProvider field is deemed to contain invalid
or unknown information. That is, the contents of the MetadataForProvider field SHALL NOT be
used to deny a software update to an OTA Requestor, unless both OTA Requestor and OTA Provider
have an externally agreed-upon policy whereby strictly correct additional MetadataForProvider is
expected to fulfill the OTA Software Update process.

Usage of the QueryImage Command

OTA Requestors SHALL send a QueryImage command to the OTA Provider to determine the avail
ability of a new Software Image.

See Section 11.20.3.2, “Querying the OTA Provider” for full details about the OTA Software Update
Query flow which makes use of this command.

QueryImageResponse Command

ID Name Type Constraint Quality Default Confor
mance

0 Status StatusEnum all M

1 DelayedAc
tionTime

uint32 all O

2 ImageURI string max 256 O

3 Software
Version

uint32 all O

4 Software
Version
String

string 1 to 64 O

5 UpdateTo
ken

octstr 8 to 32 O

6 UserCon
sentNeeded

bool all False O

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 867

ID Name Type Constraint Quality Default Confor
mance

7 Meta
dataForRe
questor

octstr max 512 O

Status Field

This field SHALL contain the primary response regarding the availability of a Software Image.

See Section 11.20.3.2, “Querying the OTA Provider” for details about the possible values for this field
and their meaning.

DelayedActionTime Field

This field SHALL convey the minimum time to wait, in seconds from the time of this response,
before sending another QueryImage command or beginning a download from the OTA Provider.
OTA Requestors SHALL respect this minimum delay, unless they had previously restarted and lost
track of it. OTA Providers SHOULD expect OTA Requestors to follow this value to their best capabil
ity, however, a restarting Node MAY come back sooner, due to having lost track of this state
response.

The DelayedActionTime field SHALL only be present if the Status field is set to Busy.

See Section 11.20.3.2, “Querying the OTA Provider” for details about the rules regarding this field.

ImageURI Field

This field, when present, SHALL contain a URI where the OTA Requestor SHOULD download a Soft
ware Image. The syntax of the ImageURI field SHALL follow the URI syntax as specified in
RFC 3986.

This field SHALL be present if it appears in a QueryImageResponse with a Status of UpdateAvail
able.

If the ImageURI specifies a BDX Protocol bdx: scheme, then the following rules describe the location
to be used for download:

1. The URI’s scheme field SHALL be exactly bdx in lowercase characters.

2. The URI’s authority field SHALL contain only the host portion and SHALL use string representa
tion of the Operational Node ID of the Node where to proceed with the download, on the same
Fabric on which the OTA Requestor received the QueryImageResponse.

3. The encoding of the Node ID in the host field SHALL use an uppercase hexadecimal format,
using exactly 16 characters to encode the network byte order value of the NodeID, in a similar
fashion as the Node Identifier portion of the Operational Instance Name.

a. The Operational Node ID in the host field SHALL match the NodeID of the OTA Provider
responding with the QueryImageResponse. The usage of a different Node ID than that of the
provider is reserved for future use. This constraint reduces the number of independent

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 868 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

CASE secure channel sessions that have to be maintained to proceed with OTA software
updates, thus reducing energy and resource utilization for the software update process.

4. The user section of the authority field SHALL be absent, as there are no "users" to be considered.

5. The port section of the authority field SHALL be absent, as the port for transport SHALL be
determined through Operational Discovery of the target Node.

6. The URI SHALL not contain a query field.

7. The URI SHALL not contain a fragment field.

8. The path field SHALL employ absolute path representation and SHALL contain the file designa
tor of the software image to download at the BDX server. When used with the BDX server, the
leading / separating the URI authority from the path SHALL be omitted. When contacting the
BDX server, further processing of the file designator SHALL NOT be done, including handling of
URL-encoded escape sequences. Rather, the exact octets of the path, as received SHALL be the
values used by both client and server in handling the file designator.

a. The path SHALL only contain valid URI characters.

These rules above for BDX URIs simplify parsing for OTA Requestors receiving Image URIs. The fol
lowing example procedure shows how the format constraints simplify the extraction of the neces
sary data to reach the BDX server for download.

1. Verify that the URI is 24 characters or longer, which is the minimum length of a valid BDX URI
with all elements present, for example bdx://00112233AABBCCDD/0.

2. Verify the presence of prefix bdx:// indicating a BDX URI.

3. Extract the next 16 characters and convert from uppercase hexadecimal to a 64-bit scalar value,
considering network byte order. This is the destination Node ID.

4. Verify the presence of a path separator / and skip it.

5. Extract the remaining characters of the string as the file designator to employ when initiating
the BDX transfer.

Example ImageURI values are below, and illustrate some but not all of valid and invalid cases:

• Synchronous or Asynchronous BDX Protocol:

◦ Valid: bdx://8899AABBCCDDEEFF/the_file_designator123

▪ Node ID: 0x8899AABBCCDDEEFF

▪ File designator: the_file_designator123

◦ Valid: bdx://0099AABBCCDDEE77/the%20file%20designator/some_more

▪ Node ID: 0x0099AABBCCDDEE77

▪ File designator: the%20file%20designator/some_more. Note that the %20 are retained and
not converted to ASCII 0x20 (space). The file designator is the path as received verbatim,
after the first '/' (U+002F / SOLIDUS) following the host.

◦ Invalid: bdx://99AABBCCDDEE77/the_file_designator123

▪ Node ID: Invalid since it is not exactly 16 characters long, due to having omitted leading
zeros.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 869

◦ Invalid: bdx://0099aabbccddee77/the_file_designator123

▪ Node ID: Invalid since lowercase hexadecimal was used.

◦ Invalid: bdx:8899AABBCCDDEEFF/the_file_designator123

▪ Invalid since bdx scheme does not contain an authority, that is, it does not have // after
the first :.

• HTTP over TLS:

◦ Valid: https://example.domain:8466/software/image.bin

See Section 11.20.3.2, “Querying the OTA Provider” for additional details about the flow.

SoftwareVersion Field

This field indicates the version of the image being provided to the OTA Requestor by the OTA
Provider when the Status is UpdateAvailable.

This field SHALL be present if it appears in a QueryImageResponse with a Status of UpdateAvail
able.

See Section 11.20.3.2, “Querying the OTA Provider” for additional details about the flow and accept
able values.

SoftwareVersionString Field

This field provides a string version of the image being provided to the OTA Requestor by the OTA
Provider when the Status is UpdateAvailable.

This field SHALL be present if it appears in a QueryImageResponse with a Status of UpdateAvail
able.

See Section 11.20.3.2, “Querying the OTA Provider” for additional details about the flow and accept
able values.

UpdateToken Field

This optional field SHALL be present when the Status field contains UpdateAvailable.

See Section 11.20.3.6.1, “UpdateToken usage” for additional details about the generation and usage
of UpdateToken.

UserConsentNeeded Field

This field, if present, SHALL only be interpreted if the OTA Requestor had previously indicated a
value of True in the RequestorCanConsent field of the QueryImageRequest. This field, when present
and set to True, SHALL indicate that a capable OTA Requestor must obtain user-visible consent
prior to downloading the OTA Software Image.

See Section 11.20.3.4, “Obtaining user consent for updating software” for application details about
usage.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 870 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://example.domain:8466/software/image.bin

MetadataForRequestor Field

This optional field, if present, SHALL consist of a top-level anonymous list; each list element SHALL
have a profile-specific tag encoded in fully-qualified form. Each list element SHALL contain a man
ufacturer-specific payload, which the OTA Provider wants to expose to the receiving OTA Requestor.
This payload MAY be used for any purpose and SHOULD be as small as practical.

The presence of this field SHALL NOT be required for correct operation of any OTA Provider com
pliant with this Cluster specification.

The data for this field does not exist in any Distributed Compliance Ledger record and SHOULD
only be emitted by an OTA Provider with this additional knowledge if it has knowledge that the
receiving OTA Requestor MAY be able to use it.

ApplyUpdateRequest Command

ID Name Type Constraint Quality Default Confor
mance

0 UpdateTo
ken

octstr 8 to 32 M

1 NewVersion uint32 all M

UpdateToken Field

This field SHALL contain the UpdateToken as specified in Section 11.20.3.6.1, “UpdateToken usage”.
This field MAY be used by the OTA Provider to track minimal lifecycle state to allow finer-grained
scheduling of the application of Software Images by OTA Requestors.

NewVersion Field

The NewVersion field included in the request payload SHALL provide the SoftwareVersion value of
the new Software Image which the OTA Requestor is ready to start applying. The OTA Provider MAY
use this new version to track or record Software Image application by OTA Requestors.

When Generated

The ApplyUpdateRequest Command SHALL be invoked by an OTA Requestor once it is ready to
apply a previously downloaded Software Image.

Effect on Receipt

Upon receipt of this command the OTA Provider SHALL respond with an Action field consistent
with the next action the OTA Requestor should take, including any possible time delay.

The OTA Provider SHALL NOT refer to previously stored state about any download progress to
reply. If any state keeping is done by the OTA Provider, it SHALL only relate to the UpdateToken and
the history of prior ApplyUpdateRequest commands.

See Section 11.20.3.6, “Applying a software update” for a description of the flow in response to an
OTA Provider receiving an invocation of this command.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 871

Handling Error Cases

See Section 11.20.3.6, “Applying a software update” for all error-handling information.

ApplyUpdateResponse Command

ID Name Type Constraint Quality Default Confor
mance

0 Action ApplyUp
dateActio
nEnum

all M

1 DelayedAc
tionTime

uint32 all M

Action Field

The Action field SHALL express the action that the OTA Provider requests from the OTA Requestor.
See Section 11.20.3.6, “Applying a software update” for a description of the Action values provided
in response to an OTA Provider receiving an invocation of this command.

DelayedActionTime Field

The minimum time period the OTA Requestor SHALL wait before executing the Action, in seconds
from receipt.

If this field has a value higher than 86400 seconds (24 hours), then the OTA Requestor MAY assume
a value of 86400, in order to reduce undue Software Image application delays.

NotifyUpdateApplied Command

ID Name Type Constraint Quality Default Confor
mance

0 UpdateTo
ken

octstr 8 to 32 M

1 Software
Version

uint32 all M

UpdateToken Field

This field SHALL contain the UpdateToken as specified in Section 11.20.3.6.1, “UpdateToken usage”.

SoftwareVersion Field

The SoftwareVersion included in the request payload SHALL provide the same value as the Soft
wareVersion attribute in the invoking OTA Requestor’s Basic Information Cluster, and SHOULD be
consistent with the value representing a new version running on the Node invoking the command.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 872 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

When Generated

The NotifyUpdateApplied command SHOULD be invoked in the following two circumstances:

1. An OTA Requestor has just successfully applied a Software Image it had obtained from a previ
ous QueryImage response.

2. An OTA Requestor has just successfully applied a Software Image it had obtained through
means different than those of this Cluster.

An OTA Provider MAY use the state of invocation of this command to help track the progress of
update for OTA Requestors it knows require a new OTA Software Image. However, due to the possi
bility that an OTA Requestor MAY never come back (e.g. device removed from Fabric altogether, or
a critical malfunction), an OTA Provider SHALL NOT expect every OTA Requestor to invoke this
command for correct operation of the OTA Provider.

This command SHALL be considered optional and SHALL not result in reduced availability of the
OTA Provider functionality if OTA Requestors never invoke this command.

Effect on Receipt

An OTA Provider receiving an invocation of this command MAY log it internally.

On receiving this command, an OTA Provider MAY use the information to update its bookkeeping of
cached Software Images, or use it for other similar administrative purposes.

11.20.7. OTA Software Update Requestor Cluster

11.20.7.1. Revision History

The global ClusterRevision attribute value SHALL be the highest revision number in the table
below.

Revision Description

1 Initial Release

11.20.7.2. Classification

Hierarchy Role Scope PICS Code

Base Utility Node OTAR

11.20.7.3. Cluster ID

ID Name

0x002A OTA Software Update Requestor

11.20.7.4. Data Types

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 873

AnnouncementReasonEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 SimpleAnnouncement An OTA Provider is
announcing its pres
ence.

M

1 UpdateAvailable An OTA Provider is
announcing, either to a
single Node or to a
group of Nodes, that a
new Software Image
MAY be available.

M

2 UrgentUpdateAvail
able

An OTA Provider is
announcing, either to a
single Node or to a
group of Nodes, that a
new Software Image
MAY be available,
which contains an
update that needs to be
applied urgently.

M

SimpleAnnouncement Value

An OTA Provider is announcing its presence, but there is no implication that an OTA Requestor
would have a new Software Image available if it queried immediately.

UpdateAvailable Value

An OTA Provider is announcing, either to a single Node or to a group of Nodes, that a new Software
Image MAY be available. The details may only be obtained by executing a OTA Software Update
Query procedure. A receiving OTA Requestor SHOULD only query the indicated OTA Provider at the
ProviderLocation at its next upcoming OTA Provider query.

UrgentUpdateAvailable Value

An OTA Provider is announcing, either to a single Node or to a group of Nodes, that a new Software
Image MAY be available, which contains an update that needs to be applied urgently. The details
may only be obtained by executing a OTA Software Update Query procedure. A receiving OTA
Requestor SHOULD query the indicated OTA Provider at the ProviderLocation after a random jitter
delay between 1 and 600 seconds. This particular reason SHOULD only be employed when an
urgent update is available, such as an important security update, or just after initial commissioning
of a device, to assist OTA Requestors in more rapidly obtaining updated software.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 874 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

UpdateStateEnum Type

This data type is derived from enum8.

Value Name Summary Conformance

0 Unknown Current state is not yet
determined.

M

1 Idle Indicate a Node not yet
in the process of soft
ware update.

M

2 Querying Indicate a Node in the
process of querying an
OTA Provider.

M

3 DelayedOnQuery Indicate a Node waiting
after a Busy response.

M

4 Downloading Indicate a Node cur
rently in the process of
downloading a soft
ware update.

M

5 Applying Indicate a Node cur
rently in the process of
verifying and applying
a software update.

M

6 DelayedOnApply Indicate a Node waiting
caused by AwaitNex
tAction response.

M

7 RollingBack Indicate a Node in the
process of recovering
to a previous version.

M

8 DelayedOnUserCon
sent

Indicate a Node is capa
ble of user consent.

M

Unknown Value

This value SHALL indicate that the current state is not yet determined. Nodes SHOULD attempt a
better state reporting.

Idle Value

This value SHALL indicate a Node not yet in the process of software update, for example because it
is awaiting the moment when a query will be made.

Querying Value

This value SHALL indicate a Node in the process of querying an OTA Provider with QueryImage
command, including during the process of awaiting a response to that command.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 875

DelayedOnQuery Value

This value SHALL indicate a Node waiting because it received a prior QueryImageResponse with a
Status field indicating Busy.

Downloading Value

This value SHALL indicate a Node currently in the process of downloading a software update.

Applying Value

This value SHALL indicate a Node currently in the process of verifying and applying a software
update.

DelayedOnApply Value

This value SHALL indicate a Node waiting because it received a prior ApplyUpdateResponse with
an Action field set to AwaitNextAction.

RollingBack Value

This value SHALL indicate a Node in the process of recovering to a previous version from a new
version that was applied, but that could not remain in force, for reasons such as invalid data
detected on boot, or significant runtime issues such as reboot loops. Eventually, the next state seen
SHOULD be Unknown or Idle.

DelayedOnConsent Value

This value SHALL indicate a Node is capable of obtaining user consent through its own means, but
is currently awaiting that consent after having determined from a prior QueryImageResponse that
an update was available.

ChangeReasonEnum Type

The ChangeReasonEnum Data Type is derived from enum8.

Value Name Summary Conformance

0 Unknown The reason for a state
change is unknown.

M

1 Success The reason for a state
change is the success of
a prior operation.

M

2 Failure The reason for a state
change is the failure of
a prior operation.

M

3 TimeOut The reason for a state
change is a time-out.

M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 876 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Value Name Summary Conformance

4 DelayByProvider The reason for a state
change is a request by
the OTA Provider to
wait.

O

Unknown Value

This value SHALL indicate that the reason for a state change is unknown.

Success Value

This value SHALL indicate that the reason for a state change is the success of a prior operation.

Failure Value

This value SHALL indicate that the reason for a state change is the failure of a prior operation.

TimeOut Value

This value SHALL indicate that the reason for a state change is a time-out condition as determined
by the OTA Requestor.

DelayByProvider Value

This value SHALL indicate that the reason for a state change is a request by the OTA Provider to
await for a delay.

ProviderLocation Type

This structure encodes a fabric-scoped location of an OTA provider on a given fabric.

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Access Confor
mance

1 ProviderN
odeID

node-id M

2 Endpoint endpoint-
no

M

ProviderNodeID Field

This field SHALL contain the Node ID of the OTA Provider to contact within the Fabric identified by
the FabricIndex.

Endpoint Field

This field SHALL contain the endpoint number which has the OTA Provider device type and OTA

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 877

Software Update Provider cluster server on the ProviderNodeID. This is provided to avoid having to
do discovery of the location of that endpoint by walking over all endpoints and checking their
Descriptor Cluster.

11.20.7.5. Attributes

ID Name Type Constraint Quality Default Access Confor
mance

0x0000 DefaultO
TAProvide
rs

list[Provid
erLoca
tion]

desc [] RW F VA M

0x0001 UpdatePos
sible

bool all True R V M

0x0002 UpdateS
tate

UpdateSta
teEnum

all Unknown R V M

0x0003 UpdateS
tateProgre
ss

uint8 0 to 100 X null R V M

DefaultOTAProviders Attribute

This field is a list of ProviderLocation whose entries SHALL be set by Administrators, either during
Commissioning or at a later time, to set the ProviderLocation for the default OTA Provider Node to
use for software updates on a given Fabric.

There SHALL NOT be more than one entry per Fabric. On a list update that would introduce more
than one entry per fabric, the write SHALL fail with CONSTRAINT_ERROR status code.

Provider Locations obtained using the AnnounceOTAProvider command SHALL NOT overwrite val
ues set in the DefaultOTAProviders attribute.

UpdatePossible Attribute

This field SHALL be set to True if the OTA Requestor is currently able to be updated. Otherwise, it
SHALL be set to False in case of any condition preventing update being possible, such as insufficient
capacity of an internal battery. This field is merely informational for diagnostics purposes and
SHALL NOT affect the responses provided by an OTA Provider to an OTA Requestor.

UpdateState Attribute

This field SHALL reflect the current state of the OTA Requestor with regards to obtaining software
updates. See Section 11.20.7.4.2, “UpdateStateEnum Type” for possible values.

This field SHOULD be updated in a timely manner whenever OTA Requestor internal state updates.

UpdateStateProgress Attribute

This field SHALL reflect the percentage value of progress, relative to the current UpdateState, if
applicable to the state.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 878 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The value of this field SHALL be null if a progress indication does not apply to the current state.

A value of 0 SHALL indicate that the beginning has occurred. A value of 100 SHALL indicate com
pletion.

This field MAY be updated infrequently. Some care SHOULD be taken by Nodes to avoid over-
reporting progress when this attribute is part of a subscription.

11.20.7.6. Commands

ID Name Direction Response Access Conformance

0x00 AnnounceO
TAProvider

client ⇒ server Y A O

AnnounceOTAProvider Command

This command MAY be invoked by Administrators to announce the presence of a particular OTA
Provider.

This command SHALL be scoped to the accessing fabric.

If the accessing fabric index is 0, this command SHALL fail with an UNSUPPORTED_ACCESS status
code.

Access Quality: Fabric Scoped

ID Name Type Constraint Quality Default Confor
mance

0 ProviderN
odeID

node-id M

1 VendorID vendor-id M

2 Announce
mentReason

Announce
mentReaso
nEnum

M

3 Meta
dataForN
ode

octstr max 512 O

4 Endpoint endpoint-no M

ProviderNodeID Field

This field SHALL contain the Node ID of a Node implementing the OTA Provider cluster server, on
the accessing fabric.

VendorID Field

This field SHALL contain the assigned Vendor ID of the Node invoking this command, as it would
appear in that Node’s Basic Information Cluster VendorID attribute.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 879

AnnouncementReason Field

This field SHALL contain a value expressing the reason for the announcement.

MetadataForNode Field

This optional field, if present, SHALL consist of a top-level anonymous list; each list element SHALL
have a profile-specific tag encoded in fully-qualified form. Each list element SHALL contain a man
ufacturer-specific payload, which the Node invoking this command wants to expose to the receiving
Node. This payload MAY be used for any purpose and SHOULD be as small as practical, especially if
invoked to groups, in order to reduce networking burden of these payloads.

This field SHOULD only be included if the sending OTA Provider has knowledge that some recipient
can make use of it.

Endpoint Field

This field SHALL contain the endpoint number which has the OTA Provider device type and OTA
Software Update Provider cluster server on the ProviderNodeID. This is provided to avoid having to
do discovery of the location of that endpoint by walking over all endpoints and checking their
Descriptor Cluster.

When Generated

An OTA Provider MAY invoke this command directly to an OTA Requestor, to announce its presence
as an OTA Provider on the Fabric.

These announcements, if made, SHOULD be made at most once every 24 hours for any given target
Node, to assist OTA Requestors in discovering available OTA Provider resources, unless the
AnnouncementReason is UrgentUpdateAvailable, in which case this command MAY be more fre
quent.

Any invocation SHALL be made with a delay of at least 1 second between invocations from a given
OTA Provider, to reduce burden on the networking infrastructure and affect a form of serialized jit
ter. It is RECOMMENDED to offset the first announcement of a round (i.e. new set of announce
ments after a previous complete set) by a random delay time with a distribution span of >= 60 sec
onds to jitter announcement schedules over time.

Effect on Receipt

On receipt of this command, an OTA Requestor SHOULD consider the new ProviderNodeID and
AnnouncementReason to possibly query for new software sooner than it would have with its
default behavior.

The OTA Requestor SHOULD NOT update entries in the DefaultOTAProviders list based on
announcements.

The receiving Node MAY ignore the content of the announcement if it is unable or unwilling to fur
ther query OTA Providers temporarily, or if its provider list is full. If the announcement is ignored,
the response SHOULD be SUCCESS.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 880 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Depending on the value of the AnnouncementReason field, the OTA Requestor MAY have to query
the OTA Provider. See Section 11.20.7.6.1.3, “AnnouncementReason Field” for the different values
and their meaning.

If present, the MetadataForNode field’s MAY be used by a receiving OTA Requestor in any way it
deems satisfactory. The MetadataForNode field SHOULD be empty under most normal operational
circumstance, but can be useful in environments such as field trials or integration test environ
ments to hint at additional capabilities which OTA Requestors MAY use in a particular Vendor-spe
cific context.

11.20.7.7. Events

ID Name Priority Access Conformance

0x00 StateTransition INFO V M

0x01 VersionApplied CRITICAL V M

0x02 DownloadError INFO V M

StateTransition Event

This event SHALL be generated when a change of the UpdateState attribute occurs due to an OTA
Requestor moving through the states necessary to query for updates.

The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Previ
ousState

UpdateSta
teEnum

Unknown M

1 NewState UpdateSta
teEnum

M

2 Reason ChangeRea
sonEnum

M

3 TargetSoft
wareVer
sion

uint32 X null M

PreviousState Field

This field SHALL be set to the state that preceded the transition causing this event to be generated,
if such a state existed. If no previous state exists, the value SHALL be Unknown.

NewState Field

This field SHALL be set to the state now in effect through the transition causing this event to be gen
erated.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 881

Reason Field

This field SHALL be set to the reason why this event was generated.

TargetSoftwareVersion Field

This field SHALL be set to the target SoftwareVersion which is the subject of the operation, when
ever the NewState is Downloading, Applying or RollingBack. Otherwise TargetSoftwareVersion
SHALL be null.

VersionApplied Event

This event SHALL be generated whenever a new version starts executing after being applied due to
a software update. This event SHOULD be generated even if a software update was done using
means outside of this cluster.

The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Software
Version

uint32 M

1 ProductID uint16 M

SoftwareVersion Field

This field SHALL be set to the same value as the one available in the Software Version attribute of
the Basic Information Cluster for the newly executing version.

ProductID Field

This field SHALL be set to the ProductID applying to the executing version, as reflected by the Basic
Information Cluster. This can be used to detect a product updating its definition due to a large-scale
functional update that may impact aspects of the product reflected in the DeviceModel schema of
the Distributed Compliance Ledger.

DownloadError Event

This event SHALL be generated whenever an error occurs during OTA Requestor download opera
tion.

The data of this event SHALL contain the following information:

ID Name Type Constraint Quality Default Confor
mance

0 Software
Version

uint32 M

1 BytesDown
loaded

uint64 M

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 882 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Name Type Constraint Quality Default Confor
mance

2 Pro
gressPer
cent

uint8 0 to 100 X null M

3 Platform
Code

int64 X null M

SoftwareVersion Field

This field SHALL be set to the value of the SoftwareVersion being downloaded, matching the Soft
wareVersion field of the QueryImageResponse that caused the failing download to take place.

BytesDownloaded Field

This field SHALL be set to the number of bytes that have been downloaded during the failing trans
fer that caused this event to be generated.

ProgressPercent Field

This field SHALL be set to the nearest integer percent value reflecting how far within the transfer
the failure occurred during the failing transfer that caused this event to be generated, unless the
total length of the transfer is unknown, in which case it SHALL be null.

PlatformCode Field

This field SHOULD be set to some internal product-specific error code, closest in temporal/func
tional proximity to the failure that caused this event to be generated. Otherwise, it SHALL be null.
This event field MAY be used for debugging purposes and no uniform definition exists related to its
meaning.

11.21. Over-the-Air (OTA) Software Update File Format

11.21.1. Scope & Purpose

The majority of devices will undergo an over-the-air (OTA) software update at some point during
their operational lifecycle. It cannot be assumed that the Node responsible for serving OTA updates
(OTA Provider) has any specific knowledge about the internals of OTA Requestor Nodes that are
receiving OTA updates. This section provides a standardized header that SHALL be included in all
OTA Software Images, in order to provide the necessary information for OTA Providers to validate
images available for a given OTA Requestor.

It should be noted that while this specification standardizes an OTA Software Image header that
SHALL be used by all OTA Software Images, this specification does not further attempt to standard
ize the remaining contents of those files.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 883

11.21.2. General Structure

The OTA Software Image file format is composed of a header followed by an opaque body. The
header describes general information about the file such as software version, and the Vendor ID
and Product ID for which the image applies, see Section 11.20.3.3.2, “Conceptual algorithm for
matching OTA Software Images applicable to a query”).

OTA Software Image files SHALL use a fixed encoding. Individual fields of the OTA Software Image
file may be comprised of more complex data types that utilize other encoding schemes.

The fields that comprise an OTA Software Image file, listed in the sequential order in which they
SHALL appear, are provided below.

Table 76. OTA Software Image File Layout

Name Type

FileIdentifier uint32

TotalSize uint64

HeaderSize uint32

Header see Appendix A, Tag-length-value
(TLV) Encoding Format

Payload N/A

11.21.2.1. FileIdentifier field

The FileIdentifier field is a fixed-width, little-endian-encoded, unsigned 32-bit value that SHALL be
included at the beginning of all OTA software image files in order to quickly identify and distin
guish the file as being of that format, without having to examine the contents of the whole file. This
helps distinguishing the file from other file types in storage. The fixed constant value is defined to
be 0x1BEEF11E.

11.21.2.2. TotalSize field

The TotalSize field is a fixed-width, little-endian-encoded, unsigned 64-bit value that SHALL indi
cate the total size, in bytes, of the entire file, including all fields and Payload. This field SHALL
match the total stored size of the file. It SHALL match the sum of:

• The sizes of the FileIdentifier, TotalSize, and HeaderSize fields.

• The value of the HeaderSize field of this header.

• The value of the PayloadSize field of the Header subfield.

For example, given:

• Size of total Header structure is 105 bytes, reflected as HeaderSize = 105

• Payload size is 128KiB = 128 * 1024 bytes = 131072 bytes, reflected as Header.PayloadSize =
131072

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 884 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Then the TotalSize would be the sum of:

• the size of the FileIdentifier, TotalSize, and HeaderSize fields: 4 + 8 + 4 = 16 bytes

• the HeaderSize value = 105 bytes

• the Header.PayloadSize value = 131072 bytes

This would give a total of 16 + 105 + 131072 = 131193 bytes. The overall file SHALL have this size
and no more, and the TotalSize field SHALL contain that value.

11.21.2.3. HeaderSize field

The HeaderSize field is fixed-width, little-endian-encoded, unsigned 32-bit value that SHALL indi
cate the total size, in bytes, of the TLV-encoded Header field.

11.21.2.4. Header field

The Header is a TLV structure, encoded with anonymous outer tag, with the following format:

ota-image-header-struct => STRUCTURE [tag-order]
{
 VendorID [0] : UNSIGNED INTEGER [range 16bits],
 ProductID [1] : UNSIGNED INTEGER [range 16bits],
 SoftwareVersion [2] : UNSIGNED INTEGER [range 32bits],
 SoftwareVersionString [3] : STRING [length 1..64],
 PayloadSize [4] : UNSIGNED INTEGER [range 64bits],
 MinApplicableSoftwareVersion [5, optional] : UNSIGNED INTEGER [range 32bits],
 MaxApplicableSoftwareVersion [6, optional] : UNSIGNED INTEGER [range 32bits],
 ReleaseNotesURL [7, optional] : STRING [length 1..256],
 ImageDigestType [8] : UNSIGNED INTEGER [range 8bits],
 ImageDigest [9] : OCTET STRING [length 0..64]
}

VendorID field

The VendorID field SHALL be used by an OTA Provider to determine if a Node is the intended recip
ient of the OTA software update file by checking that the VendorID field in the OTA software update
file matches the VendorID received in the Query Image command from the OTA Requestor. This
VendorID field MAY be zero, in which case this OTA software update file MAY apply to more than
one vendor.

ProductID field

The ProductID field MAY be used by an OTA Provider to determine if a Node is the intended recipi
ent of the OTA software update file by checking that the ProductID field in the OTA software update
file matches the ProductID received in the Query Image command from the OTA Requestor. This
ProductID field MAY be zero, in which case this OTA software update file MAY apply to more than
one product.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 885

SoftwareVersion field

The SoftwareVersion field SHALL contain a totally orderable scalar representation of the version
for the software contained within the file. The SoftwareVersion value SHOULD not be displayed to
an end-user.

For a given version, this SoftwareVersion field SHALL match what the Node will report in its Soft
wareVersion attribute in the Basic Information Cluster, once executing the version.

SoftwareVersionString field

The SoftwareVersionString field SHALL contain a human readable (displayable) representation of
the version for the software contained within the file. The SoftwareVersionString value SHALL NOT
be used by an OTA Provider to determine if the OTA software update file contains a newer image
than what is currently running on a Node. The SoftwareVersionString value SHOULD be displayed
to an end-user when communicating an identification for the software version.

Format constraints for this field SHALL match the constraints of the SoftwareVersionString
attribute in the Basic Information Cluster.

For a given version, this SoftwareVersionString field SHALL match what the Node will report in its
SoftwareVersionString attribute in the Basic Information Cluster, once executing the version.

PayloadSize field

The PayloadSize field SHALL indicate the total size, in bytes, of the payload contained within this
OTA software update file, beyond the header. The length of all data beyond the terminating byte of
the header structure SHALL be equal to this field’s value.

MinApplicableSoftwareVersion field

The MinApplicableSoftwareVersion field, if present, SHALL be used by an OTA Provider to deter
mine if the OTA Software Image is suitable for the Node, by checking that the MinApplicableSoft
wareVersion field in the OTA software update file is less than or equal to the SoftwareVersion
received in the Query Image command from the OTA Requestor.

MaxApplicableSoftwareVersion field

The MaxApplicableSoftwareVersion field, if present, SHALL be used by an OTA Provider to deter
mine if the OTA Software Image is suitable for the Node, by checking that the MaxApplicableSoft
wareVersion field in the OTA software update file is greater than or equal to the SoftwareVersion
received in the Query Image command from the OTA Requestor.

ReleaseNotesUrl field

The ReleaseNotesUrl field, if present, SHOULD specify a link to a product specific web page that
contains release notes for the OTA software update file. The syntax of the ReleaseNotesUrl field
SHALL follow the syntax as specified in RFC 3986 [https://tools.ietf.org/html/rfc3986]. The specified URL
SHOULD resolve to a maintained web page available at that URL for the lifetime of the software
version’s availability. The maximum length of the ReleaseNoteUrl attribute is 256 ASCII characters.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 886 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://tools.ietf.org/html/rfc3986

ImageDigestType field

The ImageDigestTypeField SHALL contain the algorithm used to compute the ImageDigest field.

The value of this field SHALL be a supported numerical identifier value from the IANA Named
Information Hash Algorithm Registry [https://www.iana.org/assignments/named-information/named-informa

tion.xhtml#hash-alg] established as part of RFC 6920. For example, a value of 1 would match the sha-
256 identifier, which maps to the SHA-256 digest algorithm per Section 6.2 of FIPS 180-4

It is RECOMMENDED that a digest algorithm be chosen that has a minimum digest length of 256
bits, such as sha-256 (ID 1 in the registry).

ImageDigest field

The ImageDigestField SHALL contain the digest of the entire payload of length PayloadSize that fol
lows the header. The digest SHALL be computed using the algorithm indicated in the ImageDigest
Type field. This digest SHOULD be used by OTA Providers to ensure they have obtained the entire
image expected, and that the contents matches the expectations.

11.21.3. Security considerations

The OTA Software Image file format does not specify the mechanisms that an OTA Requestor should
use to validate that a software image is valid for itself. Considerations relative to OTA Software
Image Signing are presented in Section 11.20.4.2, “Image Verification”.

11.22. Bulk Data Exchange Protocol (BDX)

11.22.1. Overview

Nodes need the ability to transfer "files" between nodes. For example, uploading sensor data or
diagnostics data to another node or downloading software update images from a software update
server both require such a protocol.

This document defines a Bulk Data Exchange (BDX) protocol, where files are modeled as collections
of bytes with some attached metadata. For the purposes of this protocol, files are opaque, and no
attempt is made to specify their format. However, the protocol allows for extensible metadata so
that higher-level applications can participate in the decision whether to proceed with a requested
file transfer.

The Bulk Data Exchange (BDX) protocol has some semantic elements influenced by the Trivial File
Transfer Protocol (TFTP) RFC 1350.

One major difference is that TFTP is defined to run over UDP only, while Bulk Data Transfers can
proceed over various reliable transports including both TCP and UDP, using the Message Reliability
Protocol (see Section 4.12, “Message Reliability Protocol (MRP)”). Therefore, BlockAck and BlockQuery
fulfill the role of application-layer control flow and acknowledgement rather than providing a relia
bility and retransmission mechanism. The availability of application-level flow control enables
highly power-constrained nodes to pace transfers in a way that respects their power limitations.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 887

https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg

11.22.2. Terminology

11.22.2.1. BDX Sender

The node that has bulk data to send to another node.

11.22.2.2. BDX Receiver

The node that receives bulk data from a Sender.

11.22.2.3. BDX Initiator

The node that initiates a bulk data transfer. The Initiator of a data transfer can either be the Sender
(for "upload", which starts with a SendInit) or the Receiver (for "download", which starts with a
ReceiveInit).

11.22.2.4. BDX Responder

The node that responds to the initiator by either accepting or rejecting the proposed bulk data
transfer and choosing parameters of the transfer compatible with those proposed by the Initiator. It
can also either be the Sender (for "download", which is when the Responder receives a ReceiveInit)
or the Receiver (for "upload", which is when the Responder receives a SendInit).

11.22.2.5. BDX Synchronous / Asynchronous Modes

Bulk data transfers can operate in synchronous ("driven") or asynchronous mode. When operating
in synchronous mode, one party (the Driver) is responsible for controlling the rate at which the
transfer proceeds, and each message in the bulk data transfer protocol SHALL be acknowledged
before the next message will be sent.

In asynchronous mode, there is no driver and successive messages are freely sent without waiting
for BlockAck responses from the Receiver. In asynchronous mode, flow control is provided by the
underlying transport (e.g. Matter over TCP).

11.22.2.6. BDX Driver

The node (either Sender or Receiver) that controls the rate at which a synchronous data transfer
proceeds by sending Block or BlockQuery messages to advance the transfer. This facility allows for
intermittently connected devices operating (e.g. due to battery constraints) to complete a bulk data
transfer without requiring them to stay active continuously during the transfer. In every synchro
nous bulk data transfer, exactly one device acts as Driver, and the transfer consists of a series of
request/responses, each one initiated by the Driver.

BDX utilizes features of the underlying message layer to provide reliability and at-most-once deliv
ery semantics. If the transport fails to deliver the message within the specified parameters, the BDX
session SHOULD be aborted. For synchronous transfers, if the Driver fails to receive the response to
any given request that is not received within a particular application-determined time, it SHOULD
abort the session.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 888 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.22.2.7. BDX Follower

The node (either Sender or Receiver) that "follows" the driver in the protocol flow. The protocol
defines the followers as devices that can never be sleepy. Follower either receives a BlockQuery to
send the data upon request from the driver or receives a new Block message and acknowledges it
with a BlockAck message (in synchronous mode).

11.22.2.8. BDX Session

A bulk data transfer Session is a series of messages passed between a Sender and Receiver that
begins with the Initiator starting the transfer negotiation, and ends with a BlockAckEOF from the
Receiver which indicates receipt of all transmitted data and ends the session. All messages in a ses
sion SHALL be sent within the scope of a single Exchange. Only one bulk data transfer session can
be in progress at any time during a Exchange.

11.22.3. Protocol Opcodes and Status Report Values

11.22.3.1. BDX Protocol Messages

Each message in the BDX protocol is mapped to a unique Protocol Opcode, namespaced under the
PROTOCOL_ID_BDX Protocol ID:

• Vendor ID = 0x0000 (Matter Common)

• Protocol ID = PROTOCOL_ID_BDX

Table 77. BDX Protocol Opcodes

Protocol Opcode Message

0x01 SendInit

0x02 SendAccept

0x03 Reserved for future use

0x04 ReceiveInit

0x05 ReceiveAccept

0x06 … 0x0F Reserved for future use

0x10 BlockQuery

0x11 Block

0x12 BlockEOF

0x13 BlockAck

0x14 BlockAckEOF

0x15 BlockQueryWithSkip

11.22.3.2. BDX Status Codes

The list of status codes used in StatusReport messages to signify a reason for failing or rejecting a
transfer is provided in Table 78, “BDX Status reports”. For StatusReport messages, the protocol

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 889

needs to be defined as the BDX protocol, i.e. StatusReport(GeneralCode: FAILURE, ProtocolId: {Ven
dorID=0x0000, ProtocolId=BDX}, ProtocolCode: <value>).

Table 78. BDX Status reports

Status code
value

Error Description

0x0012 LENGTH_TOO_LARGE Definite length too large to support. For exam
ple, trying to SendInit with too large of a file.

0x0013 LENGTH_TOO_SHORT Definite length proposed for transfer is too
short for the context based on the responder’s
knowledge of expected size.

0x0014 LENGTH_MISMATCH Pre-negotiated size of transfer was not fulfilled
prior to BlockAckEOF.

0x0015 LENGTH_REQUIRED Responder can only support proposed transfer
if definite length is provided.

0x0016 BAD_MESSAGE_CONTENTS Received a malformed protocol message.

0x0017 BAD_BLOCK_COUNTER Received block counter out of order from
expectation.

0x0018 UNEXPECTED_MESSAGE Received a well-formed message that was con
textually inappropriate for the current state of
the transfer.

0x0019 RESPONDER_BUSY Responder is too busy to proceed with a new
transfer at this moment.

0x001F TRANSFER_FAILED_UN
KNOWN_ERROR

Other error occurred, such as perhaps an
input/output error occurring at one of the
peers.

0x0050 TRANSFER_METHOD_NOT_
SUPPORTED

Received a message that mismatches the cur
rent transfer mode.

0x0051 FILE_DESIGNATOR_UN
KNOWN

Attempted to request a file whose designator is
unknown to the responder.

0x0052 START_OFFSET_NOT_SUP
PORTED

Proposed transfer with explicit start offset is
not supported in current context.

0x0053 VERSION_NOT_SUPPORTED Could not find a common supported version
between initiator and responder.

0x005F UNKNOWN Other unexpected error.

The following StatusReport message ProtocolCode values MAY occur at any time in response to any
BDX message:

• UNEXPECTED_MESSAGE: When a peer receives a well-formed message that was contextually
inappropriate for the current state of the transfer. For example, receiving a Block message
before a SendAccept message, or other logical inconsistencies.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 890 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• BAD_MESSAGE_CONTENTS: When a peer receives a malformed protocol message.

• TRANSFER_FAILED_UNKNOWN_ERROR: Other error occurred, such as perhaps an input/output
error occurring at either peer.

• UNKNOWN: Internal error beyond the usual error handling.

If any such StatusReport message is received, or any other unexpected StatusReport is received, the
receiving peer SHALL terminate its processing of the transfer and invalidate the exchange.

11.22.4. Security and Transport Constraints

In order to maintain data-in-transit confidentiality, and ensure authenticated message flows, the
BDX protocol SHALL only be executed over PASE or CASE encrypted session. This is enforced by the
fact that the only messages allowed to be transmitted without message security are the actual PASE
and CASE session establishment messages.

The BDX protocol MAY be carried over any supported Matter messaging transport, such as BTP, TCP
or MRP, as long as the messages appear in a PASE or CASE session.

Furthermore, the BDX protocol relies on transport-level reliability. Therefore, BDX SHALL always
be used over reliable transports. For example, usage with Matter messaging over UDP without MRP
reliability, that is, without using the R Flag in the Exchange Flags, would prevent the necessary reli
ability.

11.22.5. Transfer Management Messages

11.22.5.1. SendInit and ReceiveInit Messages

A SendInit message is sent by an Initiator to propose a BDX Transfer session where the Initiator
wants to be a Sender and deliver information to another node.

A ReceiveInit message is sent by an Initiator to propose a BDX Transfer session where the Initiator
wants to be a Receiver and obtain information from another node.

Any BDX transfer exchange begins with one of these two messages.

Both SendInit and ReceiveInit initiate a negotiation for a number of parameters:

• the Initiator (sender of the message) proposes the transfer parameters and the block size;

• the Responder (receiver of the message) responds with a set of parameters compatible with the
Initiator’s proposal, according to the Responder’s subset of capabilities in common with the Ini
tiator.

The Responder SHALL indicate all the supported modes of operation applicable to the session by
replying, upon success, with SendAccept (in response to SendInit) or ReceiveAccept (in response to
ReceiveInit).

The parameters in the SendAccept/ReceiveAccept message MUST be used in the transfer. If those
parameters are unacceptable to the Initiator, it MUST abort the transfer with an appropriate error
per Table 78, “BDX Status reports”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 891

Possible replies for SendInit (See Section 11.22.7, “Synchronous Transfers Message Flows” for exam
ples):

• Success: SendAccept, if the transfer is accepted by the Responder

• Failure: StatusReport(GeneralCode: FAILURE, ProtocolId: BDX, ProtocolCode: <error-specific>),
if the transfer is rejected by the Responder, or anything that prevents the Responder from being
able to proceed with the transfer as requested.

◦ FILE_DESIGNATOR_UNKNOWN: The file designator field was present and contained a file
designator not supported by the responder.

◦ START_OFFSET_NOT_SUPPORTED: The start offset field contained an invalid start offset, or
presence of start offset indicated by RC[STARTOFS] is not supported by the responder.

◦ LENGTH_TOO_LARGE: The definite length field was present, but too large for the responder.

◦ LENGTH_TOO_SHORT: The definite length field was present, but contextually too short
based on the responder’s knowledge of expected size.

◦ LENGTH_REQUIRED: The responder can only support the proposed transfer if the definite
length field is provided.

◦ TRANSFER_METHOD_NOT_SUPPORTED: The responder does not support the proposed
transfer control method.

◦ RESPONDER_BUSY: The responder is too busy to process another transfer. An initiator
SHOULD wait at least 60 seconds before attempting to initiate a new SendInit with this
responder.

Possible replies for ReceiveInit (See Section 11.22.7, “Synchronous Transfers Message Flows” for
examples):

• Success: ReceiveAccept, if the transfer is accepted by the Responder

• Failure: StatusReport(GeneralCode: FAILURE, ProtocolId: PROTOCOL_ID_BDX, ProtocolCode:
<error-specific>), if the transfer is rejected by the Responder, or anything that prevents the
Responder from being able to proceed with the transfer as requested:

◦ FILE_DESIGNATOR_UNKNOWN: The file designator field was present and contained a file
designator not found or supported by the responder.

◦ START_OFFSET_NOT_SUPPORTED: The start offset field contained an invalid start offset, or
presence of start offset indicated by RC[STARTOFS] is not supported by the responder.

◦ LENGTH_TOO_LARGE: The definite length field was present, but too large for the responder.

◦ LENGTH_REQUIRED: The responder can only support the proposed transfer if the definite
length field is provided.

◦ TRANSFER_METHOD_NOT_SUPPORTED: The responder does not support the proposed
transfer control method.

◦ RESPONDER_BUSY: The responder is too busy to process another transfer. An initiator
SHOULD wait at least 60 seconds before attempting to initiate a new ReceiveInit with this
responder.

The format of the SendInit and ReceiveInit messages is enumerated in Table 79, “Sen

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 892 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

dInit/ReceiveInit message fields”.

Table 79. SendInit/ReceiveInit message fields

Field Size Notes

Message ID: SendInit(0x01), ReceiveInit(0x04)

Proposed
Transfer Con

trol (PTC)

1 octet

Range Control
(RC)

1 octet

Proposed Max
Block Size

(PMBS)

2 octets Unsigned little-endian

Start Offset
(STARTOFS)

4/8 octets Optional.

• Present if RC[STARTOFS] = 1

• Size = 4 if RC[WIDERANGE] = 0

• Size = 8 if RC[WIDERANGE] = 1

Proposed Max
Length (LEN)

4/8 octets Optional.

• Present if RC[DEFLEN] = 1

• Size = 4 if RC[WIDERANGE] = 0

• Size = 8 if RC[WIDERANGE] = 1

File Designator
Length (FDL)

2 octets Unsigned little-endian

File Designator
(FD)

variable length

Metadata
(MDATA)

variable Optional, TLV.

The following subsections describe the fields composing the SendInit and `ReceiveInit messages.

Proposed Transfer Control (PTC)

The Proposed Transfer Control (PTC) field specifies, as subfields, the highest version of the protocol
and the transfer modes supported by the Initiator of the transfer. All PTC subfields are Initiator-pro
posed. It is up to the Responder to decide what version and modes it will use. The first version, as of
Matter specification 1.0 is BDX Version 0.

At least one of the PTC[RECEIVER_DRIVE] or PTC[SENDER_DRIVE] field bits SHALL be set in order for the
Responder to set the final transfer control. If neither PTC[RECEIVER_DRIVE] or PTC[SENDER_DRIVE] is
set, the transfer SHALL be rejected by the Responder.

The PTC[ASYNC] bit is an optimization of the transfer and is subject to negotiation with the Respon

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 893

der. In general if the Initiator proposes an ASYNC transfer, it SHOULD also be prepared to accept a
synchronous transfer, and SHOULD at least list one of PTC[RECEIVER_DRIVE] or PTC[SENDER_DRIVE] in
the request.

Multiple transfer modes can be specified, which signifies that the Initiator can support any of those
transfer modes. For example, if PTC[ASYNC], PTC[RECEIVER_DRIVE] and PTC[SENDER_DRIVE] bits are set
on a SendInit, it indicates that the Initiator supports 3 distinct transfer modes: synchronous Sender
drive, synchronous Receiver drive and asynchronous (drive is implied). Only one transfer mode
SHALL be used in the actual transfer. The Responder SHALL choose which one to use. If the
Responder supports both Sender and Receiver drive, it SHOULD prefer to use Sender drive to retain
the request/response semantics.

Table 80. SendInit/ReceiveInit Proposed Transfer Control (PTC) field structure

bit 7 6 5 4 3 2 1 0

RFU ASYNC RECEIVER
_DRIVE

SENDER_
DRIVE

VERSION

The fields for PTC are:

SendInit/ReceiveInit PTC[VERSION]: proposed protocol version

• Width: 4 bits

• Values: 0x00-0x0F proposed protocol version

SendInit/ReceiveInit PTC[SENDER_DRIVE]: sender drive supported

• Width: 1 bit

• Values:

◦ 0 if Sender drive is not supported

◦ 1 if Sender drive is supported by Initiator

SendInit/ReceiveInit PTC[RECEIVER_DRIVE]: receiver drive supported

• Width: 1 bit

• Values:

◦ 0 if Receiver drive is not supported

◦ 1 if Receiver drive is supported by Initiator

SendInit/ReceiveInit PTC[ASYNC]: asynchronous mode supported

• Width: 1 bit

• Values:

◦ 0 if asynchronous mode is not supported

◦ 1 if asynchronous mode is supported by Initiator

◦ NOTE: Synchronous mode is always implicitly supported.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 894 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Range Control (RC)

The Range Control (RC) field specifies parameters related to offset and length of the transfer:

• whether the transfer has a definite length (DEFLEN);

• whether an offset is present (STARTOFS);

• the width of the length and offset fields (WIDERANGE).

Table 81. SendInit/ReceiveInit Range Control (RC) field structure

bit 7 6 5 4 3 2 1 0

RFU WIDERA
NGE

RFU STARTOF
S

DEFLEN

The fields for RC are:

SendInit/ReceiveInit RC[DEFLEN]: definite length present

• Width: 1 bit

◦ Values:

▪ 0 if no length is present (indefinite length)

▪ 1 if a definite length is present (see DEFLEN field)

SendInit/ReceiveInit RC[STARTOFS]: start offset present

• Width: 1 bit

◦ Values:

▪ 0 if a start offset is not present

▪ 1 if a start offset is present

SendInit/ReceiveInit RC[WIDERANGE]: wide (64-bit) range enable for values

• Width: 1 bit

◦ Values:

▪ 0 to indicate that offset (STARTFOFS) and length (DEFLEN) are 4 octets (32-bit) little-endian
unsigned quantities.

▪ 1 to indicate that offset (STARTFOFS) and length (DEFLEN) are 8 octets (64-bit) little-endian
unsigned quantities.

Proposed Max Block Size (PMBS)

The Proposed Max Block Size (PMBS) field specifies the maximum data size (in bytes) of the block
that the Initiator supports, exclusive of block header fields, such as a block counter.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 895

Start Offset (STARTOFS)

The Start Offset (STARTOFS) field is an optional 32-bit/64-bit length that specifies the offset in bytes
from start of the file from which the Sender would start the transfer. This allows large file transfers
to be segmented into multiple bulk transfer sessions. The RC[STARTOFS] bit indicates whether this
start offset is present in the message. The RC[WIDERANGE] bit defines the size of start offset quantity
(32-bit or 64-bit). Receivers are not required to accept non-zero start offset transfers. Devices
SHOULD make every attempt to support non-zero start offset. If a Responder cannot accept a given
start offset, it MUST reject the SendInit with a StatusReport(GeneralCode: FAILURE, ProtocolId: BDX,
ProtocolCode: START_OFFSET_NOT_SUPPORTED). See Table 78, “BDX Status reports”.

Length (DEFLEN)

The optional length (DEFLEN) field specifies a predetermined definite length for the transfer. For a
SendInit message, this field defines the number of bytes the Sender commits to sending to the
Receiver. For a ReceiveInit message, this field defines the maximum number of bytes that the
Receiver wishes to receive from the Sender. The SendAccept or ReceiveAccept response will then con
tain the expected length for the transfer. A Receiver receiving a premature BlockEOF would have to
consider the transfer failed. A length of 0 or a missing length field signifies an indefinite length. The
RC(DEFLEN) bit indicates the presence of this field. The RC[WIDERANGE] bit indicates the width of this
field.

File Designator Length (FDL)

The File Designator Length (FDL) field is a 16-bit unsigned little-endian field over 2 octets that speci
fies the length of the upcoming file designator (FD) field, which has variable length.

File Designator (FD)

The File Designator (FD) field is a variable-length identifier chosen by the Initiator to identify the
payload to be transferred. In some applications, this identifier will need to be negotiated in
advance, so that the Responder will know how to handle the file designator. In other applications,
the file designator and optional metadata will be sufficient for the Responder to determine whether
to accept the file transfer and how to handle the data, allowing the transfer to proceed without any
additional message exchanges.

The length of this field in bytes is provided by the previous File Designator Length (FDL) field.

Metadata (MDATA)

The Metadata (MDATA) field is an optional field, and allows the Initiator to send additional applica
tion-specific information about the file to be transferred. The contents of this field are not specified
here; applications can use it to avoid needing a separate round-trip negotiation of the file designa
tor, as described above. The TLV metadata consumes the rest of the payload for the SendInit
/ReceiveInit message, after all previous fields.

11.22.5.2. SendAccept Message

A SendAccept message is sent by the Responder as a response to SendInit in order to accept a BDX
Transfer session where the Initiator wants to be a Sender and deliver information (upload) to the
Responder. The final transfer parameters used are decided by the Responder, given the Initiator

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 896 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

proposals in the SendInit message.

Responds to (See Section 11.22.7, “Synchronous Transfers Message Flows” for examples):

• SendInit - to accept the proposed transfer.

Possible replies (See Section 11.22.7, “Synchronous Transfers Message Flows” for examples):

• Block - if the Initiator accepts the parameters from the SendAccept message, and the transfer
method is Sender drive.

• StatusReport - If there was another error the Initiator encountered.

Possible follow-ups (See Section 11.22.7, “Synchronous Transfers Message Flows” for examples):

• BlockQuery - if the proposed method is Receiver drive. If the Initiator does not accept the para
meters, it SHOULD ignore this and send a StatusReport(GeneralCode: FAILURE, ProtocolId: BDX,
ProtocolCode: TRANSFER_METHOD_NOT_SUPPORTED) to end the transfer.

11.22.5.3. ReceiveAccept Message

A ReceiveAccept message is sent by the Responder as a response to ReceiveInit in order to accept a
BDX Transfer session where the Initiator wants to be a Receiver and receive information (down
load) from the Responder. The final transfer parameters used are decided by the Responder, given
the Initiator proposals in the ReceiveInit message.

Responds to (See Section 11.22.7, “Synchronous Transfers Message Flows” for examples):

• ReceiveInit - to accept the proposed transfer.

Possible replies (See Message Flows for examples):

• BlockQuery - if the Initiator accepts the parameters from the ReceiveAccept message, and the
transfer method is Receiver drive.

• StatusReport - If there was another error the Initiator encountered.

Possible follow-ups (See Section 11.22.7, “Synchronous Transfers Message Flows” for examples):

• Block - if the proposed method is Sender drive. If the Initiator does not accept the parameters, it
SHOULD ignore this and send a StatusReport(GeneralCode: FAILURE, ProtocolId: BDX, Protocol
Code: TRANSFER_METHOD_NOT_SUPPORTED) to end the transfer.

11.22.5.4. SendAccept and ReceiveAccept message fields

The format of the SendAccept message is enumerated in Table 82, “SendAccept message fields”.

The format of the ReceiveAccept message is enumerated in Table 83, “ReceiveAccept message
fields”.

Since the meaning of many fields overlap in these messages, they are described only once following
the ReceiveAccept message fields.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 897

Table 82. SendAccept message fields

Field Size Notes

Message ID: SendAccept(0x02)

Transfer Con
trol (TC)

1 octet Must specify exactly one of:

• TC[ASYNC]

• TC[RECEIVER_DRIVE]

• TC[SENDER_DRIVE]

Max Block Size
(MBS)

2 octets Unsigned little-endian. Must be <= PMBS.

Metadata
(MDATA)

variable Optional, TLV.

Table 83. ReceiveAccept message fields

Field Size Notes

Message ID: ReceiveAccept(0x05)

Transfer Con
trol (TC)

1 octet Must specify exactly one of:

• TC[ASYNC]

• TC[RECEIVER_DRIVE]

• TC[SENDER_DRIVE]

Range Control
(RC)

1 octet

Max Block Size
(MBS)

2 octets Unsigned little-endian. Must be <= PMBS.

Length (LEN) 4/8 octets Optional.

• Present if RC[DEFLEN] = 1

• Size = 4 if RC[WIDERANGE] = 0

• Size = 8 if RC[WIDERANGE] = 1

Metadata
(MDATA)

variable Optional, TLV.

The following subsections describe the fields composing the SendAccept and ReceiveAccept mes
sages.

Transfer control (TC)

The Transfer Control (TC) field specifies, as subfields, the transfer mode and protocol version.

For the transfer mode (TC[SENDER_DRIVE], TC[RECEIVER_DRIVE]), exactly one mode SHALL be chosen
for this transfer, which MUST be one of the original proposed transfer methods sent by the Initia

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 898 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

tor.

The version SHALL be the newest version that is supported by the Responder and is not newer than
the proposed version sent by the Initiator. If the Responder cannot support a version equal or older
to the proposed version, the Responder MUST send a StatusReport(GeneralCode: FAILURE, Proto
colId: BDX_, ProtocolCode: VERSION_NOT_SUPPORTED) to end the transfer.

The Responder MAY reject a proposed asynchronous transfer (PTC[ASYNC] = 1) by sending a Status
Report(GeneralCode: FAILURE, ProtocolId: BDX, ProtocolCode: TRANSFER_METHOD_NOT_SUPPORTED) to
end the transfer. If the Initiator proposed both the PTC[RECEIVER_DRIVE] and PTC[SENDER_DRIVE], the
Responder SHALL select exactly one of those options. In that case, in order to retain the
request/response semantics, the Responder MUST default to TC[SENDER_DRIVE].

Table 84. SendAccept/ReceiveAccept Transfer Control (TC) field structure

bit 7 6 5 4 3 2 1 0

RFU ASYNC RECEIVER
_DRIVE

SENDER_
DRIVE

VERSION

The fields for TC are:

SendAccept/ReceiveAccept TC[VERSION]: protocol version

• Width: 4 bits

• Values: 0x00-0x0F accepted protocol version

SendAccept/SendAccept TC[SENDER_DRIVE]: sender drive enabled

• Width: 1 bit

• Values:

◦ 0 if Sender drive was not chosen

◦ 1 if Sender drive was chosen (if this is set, TC[RECEIVER_DRIVE] MUST be 0)

SendAccept/ReceiveAccept TC[RECEIVER_DRIVE]: receiver drive enabled

• Width: 1 bit

• Values:

◦ 0 if Receiver drive was not chosen

◦ 1 if Receiver drive was chosen (if this is set, TC[SENDER_DRIVE] MUST be 0)

SendAccept/ReceiveAccept TC[ASYNC]: asynchronous mode enabled

• Width: 1 bit

• Values:

◦ 0 if synchronous mode was chosen for the transfer.

◦ 1 if asynchronous mode was chosen for the transfer.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 899

◦ NOTE: Synchronous mode is always implicitly supported.

ReceiveAccept Range Control (RC)

NOTE This field is only present in ReceiveAccept messages.

The Range Control (RC) field specifies parameters related to offset and length of the transfer:

• whether the transfer has a definite length (DEFLEN);

• the width of the length and offset fields (WIDERANGE).

Table 85. ReceiveAccept Range Control (RC) field structure

bit 7 6 5 4 3 2 1 0

RFU WIDERA
NGE

RFU DEFLEN

The fields for RC are:

ReceiveAccept RC[DEFLEN]: definite length present

• Width: 1 bit

◦ Values:

▪ 0 if no length is present (indefinite length)

▪ 1 if a definite length is present (see LEN field)

ReceiveAccept RC[WIDERANGE]: wide (64-bit) range enable for values

• Width: 1 bit

◦ Values:

▪ 0 to indicate that length LEN is a 4 octets (32-bit) little-endian unsigned quantity.

▪ 1 to indicate that length LEN is a 8 octets (64-bit) little-endian unsigned quantity.

Max Block Size (MBS)

The Max Block Size (MBS) field specifies the maximum size, in bytes, of each block for this transfer.
The maximum whole block payload size will be the sum of the Max Block Size and the size of the
block parameters (such as the block counter). This value MUST be less than or equal to the pro
posed max block size (PMBS).

Length (LEN)

NOTE This field is only present in ReceiveAccept messages, and only if RC[DEFLEN] = 1.

The Length (LEN) field specifies the length of the transfer. If the Initiator indicated a definite length,
this length SHALL either be:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 900 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• equal to the proposed definite length, if the remaining data in the file beyond the Start Offset
(STARTOFS) is larger or equal to the proposed length;

• smaller than the proposed definite length, if the remaining data in the file beyond the Start Off
set (STARTOFS) is smaller than the proposed length.

If this field is present, and the Initiator indicated an indefinite length (i.e. RC[DEFLEN] = 0 in
ReceiveInit), this Length field SHALL be equal to the size of the file remaining (if known), or 0, for
indefinite. The absence of the Length (LEN) field implies indefinite length.

Metadata (MDATA)

The Metadata (MDATA) field is optional and allows the Responder to provide application-specific
metadata about the transfer in TLV format. The TLV metadata consumes the rest of the payload for
the SendAccept/ReceiveAccept message, after all previous fields.

11.22.6. Data Transfer Messages

11.22.6.1. Block Ordering Rules

The following behavior applies to all messages containing a Block Counter field.

Queries (BlockQuery message) MUST be made in ascending and sequential Block Counter order. If
the arriving Block Counter at the recipient is not exactly equal to the previous `BlockQuery’s Block
Counter, plus 1 (i.e. next block is being directly asked), a block counter SHALL be considered out-of-
order by the recipient.

Blocks (Block, BlockEOF message) MUST be sent in ascending and sequential Block Counter order. If
the arriving Block Counter at the recipient is not exactly equal to current expected Block Counter,
the block counter SHALL be considered out-of-order by the recipient.

Block acknowledgements (BlockAck, BlockAckEOF messages) MUST be sent with the same Block
Counter as the previously received Block/BlockEOF, since they convey a direct acknowledgement. If
the arriving Block Counter at the recipient is not exactly equal to the last sent Block Counter, the
Block Counter SHALL be considered out-of-order by the recipient.

On any out-of-order block counter condition described above, the recipient of the out-of-order mes
sage MUST send a StatusReport(GeneralCode: FAILURE, ProtocolId: BDX, ProtocolCode: BAD_BLOCK_
COUNTER) and abort the transfer. On receiving a StatusReport(GeneralCode: FAILURE, ProtocolId:
BDX, ProtocolCode: BAD_BLOCK_COUNTER), the recipient MUST abort the transfer.

Since Block Counter fields are always 32-bit unsigned integer values, but file sizes may be specified
over 64-bit lengths to support very large transfers, the ordering for a "next block counter" SHALL
use modulo 2^32 integer arithmetic. Therefore, if the last Block Counter was 0xFFFF_FFFF, the next
expected Block Counter would be 0x0000_0000.

NOTE

Since the data length of blocks does not need to exactly match the Max Block Size in
Block/BlockEOF messages, it is application-dependent whether Block Counters can be
used to statelessly track the offset within a span of initiated transfer. That is, the
relationship: current_offset = start_offset + (max_block_size * block_counter) is

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 901

true only if it is contextually known that this usage applies for a given transfer
application. This relationship, is MUST NOT be assumed, since it may not apply, such
as when variable-sized blocks are being sent to optimize a given data transfer flow.

11.22.6.2. BlockQuery Message

The BlockQuery message is sent by the driving Receiver to the follower to request the next block of
data. This message implies a BlockAck of the previous block if no BlockAck was explicitly sent. The
block counter SHOULD start at 0 at the start of the transfer, and increment by one for each subse
quent block.

In asynchronous transfers, no BlockQuery messages are sent.

The fields of the BlockQuery message are:

Table 86. BlockQuery message fields

Field Size Notes

Message ID: BlockQuery(0x10)

BlockCounter 4 octets Unsigned little-endian

11.22.6.3. BlockQueryWithSkip Message

The BlockQueryWithSkip message MAY be sent by a driving Receiver to the follower to request the
next block of data, after skipping an amount forward within the stream. This message implies a
BlockAck of the previous block if no BlockAck was explicitly sent.

This message is semantically equivalent to a BlockQuery, but with the following additions:

• Before the next Block is sent by the Sender, the cursor within the underlying data transferred
by the Sender SHALL be advanced by BytesToSkip bytes.

• If, after skipping BytesToSkip bytes, the cursor reaches the end of the file, or beyond, then the
next message from the Sender SHALL be a BlockEOF with empty contents. In other words, there
SHALL be no error indicated when receiving a request to skip past the end of the transferable
data.

• The amount of BytesToSkip MAY be a size that does not match the current transfer’s maximum
block size.

This message enables seeking forward in BDX transfers without requiring the termination of a
transfer followed by the re-opening of a new one with a different STARTOFS field specified.

In asynchronous transfers, no BlockQueryWithSkip messages are sent.

The fields of the BlockQueryWithSkip message are:

Table 87. BlockQueryWithSkip message fields

Field Size Notes

Message ID: BlockQueryWithSkip(0x15)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 902 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Field Size Notes

BlockCounter 4 octets Unsigned little-endian

BytesToSkip 8 octets Unsigned little-endian

11.22.6.4. Block Message

The Block message is the container for the actual bulk transfer data.

Blocks MUST be sent ascending and sequential block counter order (see Section 11.22.6.1, “Block
Ordering Rules”). Block data payload length does not need to exactly match the Max Block Size for
the transfer.

The fields of the Block message are:

Table 88. Block message fields

Field Size Notes

Message ID: Block(0x11)

Block Counter 4 octets Unsigned little-endian

Data Variable Length • The data field’s length is that of the remain
der of the message payload after the Block
Counter field, since Matter messages have
definite length.

• The length MUST be in the range [0 <
Length <= Max Block Size], where Max
Block Size is the negotiated Max Block Size
matching the SendAccept / ReceiveAccept
message that initiated the transfer.

11.22.6.5. BlockEOF Message

The BlockEOF message represents the final block in a data transfer.

Note that, unlike a Block, BlockEOF MAY have a data length of zero. If the entire transfer fits within
the negotiated block size, the BlockEOF SHALL be the one and only message sent in the exchange
and no Block messages will be sent. In that trivial case, the Block Counter would be 0 in the Block
EOF.

On receipt of this message, the recipient SHALL verify that the pre-negotiated file size was trans
ferred, if a definite size had been given. If the Receiver finds a discrepancy between the pre-negoti
ated size of the file and the amount of data that the Sender has sent, then it MAY consider the trans
fer failed. In that case, the Receiver MAY respond with a StatusReport(GeneralCode: FAILURE, Proto
colId: BDX, ProtocolCode: LENGTH_MISMATCH) message.

Blocks MUST be sent ascending and sequential block counter order (see Section 11.22.6.1, “Block
Ordering Rules”). Block data payload length does not need to exactly match the Max Block Size for
the transfer.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 903

Table 89. BlockEOF message fields

Field Size Notes

Message ID: BlockEOF(0x12)

Block Counter 4 octets Unsigned little-endian

Data Variable Length • The data field’s length is that of the remain
der of the message payload after the Block
Counter field, since Matter messages have
definite length.

• The length MUST be in the range [0 <=
Length <= Max Block Size], where Max
Block Size is the negotiated Max Block Size
matching the SendAccept / ReceiveAccept
message that initiated the transfer. In con
trast to the Block message, a length of 0 is
permissible to indicate an empty file.

11.22.6.6. BlockAck Message

The BlockAck message is an application-level acknowledgement that a Block was received, and not
necessarily that the Block’s data was stored.

If the Sender is driving in a synchronous transfer, the Receiver MUST send a BlockAck in response to
each block of data received. If the Receiver is driving in a synchronous transfer, the Receiver MAY
send a BlockAck after receipt of a Block, and before its next BlockQuery. For example, the Receiver
SHOULD send a BlockAck if it knows it will be going to sleep for some time before the next Block
Query, so that the Sender can free resources associated with the last block.

In asynchronous transfers, no BlockAck messages are sent.

The Block Counter in a BlockAck MUST correspond to the Block Counter which was embedded in the
Block being acknowledged (see Section 11.22.6.1, “Block Ordering Rules”).

Table 90. BlockAck message fields

Field Size Notes

Message ID: BlockAck(0x13)

BlockCounter 4 octets Unsigned little-endian

11.22.6.7. BlockAckEOF Message

The BlockAckEOF message is sent in response to BlockEOF to indicate that the Receiver has received
all data.

This message MUST be sent in both synchronous and asynchronous transfers. This signals the end
of the ongoing bulk data transfer session and a successful transfer of the file. The table below enu
merates the contents of the message

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 904 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

The Block Counter in a BlockAckEOF MUST correspond to the Block Counter which was embedded in
the BlockEOF being acknowledged (see Section 11.22.6.1, “Block Ordering Rules”).

Table 91. BlockAckEOF message fields

Field Size Notes

Message ID: BlockAckEOF(0x14)

BlockCounter 4 octets Unsigned little-endian

11.22.7. Synchronous Transfers Message Flows

Figure 85. Version negotiation: both participants support V1 of the protocol

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 905

Figure 86. Version negotiation: Initiator supports V2 of the protocol, while Responder supports V1

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 906 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 87. Synchronous file sending from sleepy device acting as driving Sender

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 907

Figure 88. Synchronous file sending to sleepy device acting as driving Receiver

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 908 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 89. Synchronous file receiving by sleepy device acting as driving Receiver

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 909

Figure 90. Synchronous file receiving by device acting as driving Receiver, including BlockQueryWithSkip

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 910 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 91. Synchronous file receive from sleepy device acting as driving Sender

In the following flow, the Initiator wants to continue downloading (receiving) a file after the first
200 bytes were received in a previous transfer. The entire remaining contents is desired until the
end of the file. Therefore, the proposed start offset (STARTOFS) is set to the offset of the first byte
desired in the first block transferred. The proposed length (PLEN) is set to 0 (or omitted) to announce
desire to receive as much as is available from the Sender.

During negotiation, the length (LEN) field of ReceiveAccept is set to the known remaining file size by
the Sender. This could have also been omitted in case the Sender could not or would not state the
maximal amount of data to read. Observe that block numbering begins at 0 for every transfer, even
if the start offset is not 0. Block indices are always 0-based for every transfer.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 911

Figure 92. Re-started receive from sleepy device acting as driving Sender

In the following flow, the Initiator wants to download (receive) only a section of a file, starting at
offset 200, and of length 1000.

During negotiation, the length (LEN) field of ReceiveAccept is set to match the proposed desired
region length by the Sender. The range is fully-specified by the \[startOffset .. startOffset +

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 912 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

length] span.

Figure 93. Range-based receive from sleepy device acting as driving Sender

11.22.8. Asynchronous Tranfers Message Flows

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 913

Figure 94. Asynchronous file sending

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 914 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Figure 95. Asynchronous file receiving

11.23. Distributed Compliance Ledger

11.23.1. Scope & Purpose

The CSA’s DCL (Distributed Compliance Ledger) is a distributed store of information used for track
ing certification status and Vendor maintained information such as, but not limited to, product
name, product description, and firmware URL. This information is cryptographically secured by
digital signatures and is made available via CSA approved synchronized servers or nodes that are
geographically distributed.

The Policies, Procedure and Governance of DCL is maintained by Board approved committees that

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 915

comprise Test Certification Oversight Committee (TCOC) and Security Advisory Group (SEC AG).

Distributed Compliance Ledger [https://github.com/zigbee-alliance/distributed-compliance-ledger] is an open-
source project designed to:

• Act as a data store for device models' information and their compliance status.

• Act as a secure distribution point of device meta data as made available by vendors.

• Act as a secure distribution point of Product Attestation Authorities certificates.

The DCL is owned and hosted by CSA members in a way that,

• Write access to Ledger is restricted

◦ Vendors role can add new device models that belong to the VendorID that is associated with
the public key of that vendor. VendorID is associated to the vendor public key during vendor
account creation process.

◦ Vendor role can update a subset of existing device model information, such as product
name, product description, firmware and hardware info. Updates are only allowed if the
device is associated with the same vendor account.

◦ A TestHouse role can write the test status for each device to the Ledger.

◦ A ZBCertificationCenter role can write the confirmation of the Compliance or revoke the
Compliance status of a device model to the Ledger.

• Read access from DCL is public

◦ Read DeviceModel info, including firmware and hardware versions from the DCL.

◦ Read the Device compliance state from the Ledger.

◦ Read the Product Attestation Authorities certificates.

The DCL is cryptographically secure, machine-readable, and distributed. More details about the
Ledger can be found here [https://github.com/zigbee-alliance/distributed-compliance-ledger/blob/master/docs/

DCL-Overview.pdf].

While the DCL repository [https://github.com/zigbee-alliance/distributed-compliance-ledger/] functionality
MAY contain more features which MAY evolve independently from those described in this section,
this section SHALL be the normative source of truth for usage of the DCL within this specification.

The DCL best practice guidelines are available in Section 13.6.9, “Distributed Compliance Ledger”.

11.23.2. Schemas

Ledger data is available in following schemas.

• Vendor Schema

◦ Provide general information about a Vendor such as Company legal name, Preferred brand
name associated with VendorID, Landing page URL for vendor, etc.

• PAA Schema

◦ Provide a list of Product Attestation Authorities Certificates for the approved PAAs.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 916 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

https://github.com/zigbee-alliance/distributed-compliance-ledger
https://github.com/zigbee-alliance/distributed-compliance-ledger/blob/master/docs/DCL-Overview.pdf
https://github.com/zigbee-alliance/distributed-compliance-ledger/

• DeviceModel Schema

◦ Provide general information about a device, and the information is shared across all soft
ware versions.

◦ e.g ProductName, ProductLabel, PartNumber, Commissioning info, etc.

• DeviceSoftwareVersionModel Schema

◦ Provide software version specific information.

◦ e.g Release Notes URL, FirmwareInformation, OTA Software Image URL (OtaURL), etc.

• Compliance / Compliance test result Schema

◦ Provide compliance and test result data about a software version.

• Device Attestation PKI Revocation Distribution Points

◦ Provide the distribution points (URLs) for Device Attestation PKI Revocation

11.23.2.1. SchemaVersion

Each Schema SHALL have a SchemaVersion attribute to indicate the version of the schema. This
helps provide backwards and forwards compatibility when adding new fields to or removing fields
from an existing schema.

SchemaVersion is a monotonically increasing positive integer indicating the latest available version
of the schema in this specification.

When the initial version of any schema is published, the value of this field SHALL be 0. For schemas
that have been published prior to the addition of SchemaVersion field, its value SHALL default to 0
for the purpose of interoperability.

When a new revision of any schema is published, this value SHALL monotonically increase by 1.

HardwareVersion and HardwareVersionString are NOT part of the schemas. If there is different
software for a VendorID/ProductID/HardwareVersion, then it SHALL be a new VendorID/ProductID.

11.23.3. Vendor Schema

Vendor Schema provides contact information associated with the vendor for a given VendorID.
Information in the Vendor schema is populated by the respective vendors as part of onboarding a
vendor account on the DCL.

Name Type Constraint Conformance Mutable

VendorID vendor-id all M No

VendorName string max 128 M Yes

CompanyLegal
Name

string max 256 M Yes

CompanyPre
ferredName

string max 256 O Yes

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 917

Name Type Constraint Conformance Mutable

VendorLanding
PageUrl

string max 256 O Yes

SchemaVersion uint16 all M Yes

11.23.3.1. VendorID

This field SHALL uniquely identify this Vendor Schema entry and it SHALL match the Vendor’s
assigned Vendor ID.

11.23.3.2. VendorName

This field SHALL provide a human readable (displayable) name for the product manufacturer asso
ciated with this record.

11.23.3.3. CompanyLegalName

The CompanyLegalName field SHALL specify the legal name for the product manufacturer.

11.23.3.4. CompanyPreferredName

The CompanyPreferredName field, if provided, SHALL specify the Preferred Name that MAY be
used for display purposes instead of the CompanyLegalName.

11.23.3.5. VendorLandingPageUrl

The VendorLandingPageUrl field (when provided) SHALL contain a link to a maintained web page
containing more information about the device manufacturer, such as contact information, address,
etc. The syntax of the VendorLandingPageUrl attribute SHALL follow the syntax as specified in
RFC 3986. All HTTP based URLs SHALL use the https scheme.

11.23.3.6. SchemaVersion

The SchemaVersion field value history for this schema is provided below:

Version Description

0 Initial Release

11.23.4. PAA Schema

The PAA Schema allows approved Product Attestation Authorities Certificates to be uploaded and
made available via DCL queries. Information in the PAA schema is populated by the respective ven
dors who have approved PAAs.

Name Type Constraint Conformance Mutable

PAACert string all M No

PAASubject string all M No

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 918 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Name Type Constraint Conformance Mutable

PAASubjectKeyID string all M No

SchemaVersion uint16 all M Yes

11.23.4.1. PAACert

This field uniquely identifies a root-level product attestation authority (PAA) certificate and SHALL
contain the body of a certificate that has received the requisite number of approvals to be included
in the DCL. It SHALL be encoded in PEM format. The certificate SHALL respect the format con
straints provided in Section 6.2.2.5, “Product Attestation Authority (PAA) Certificate”.

11.23.4.2. PAASubject

This field SHALL contain the PAA certificate’s Subject field, as defined in PAA in PAA Certificate.
This is encoded as defined in DCL repository [https://github.com/zigbee-alliance/distributed-compliance-

ledger/].

11.23.4.3. PAASubjectKeyID

This field SHALL uniquely identify the PAA certificate’s Subject Key Identifier mandatory exten
sion. It is defined in PAA Certificate. This is encoded as defined in DCL repository [https://github.com/

zigbee-alliance/distributed-compliance-ledger/].

11.23.4.4. SchemaVersion

The SchemaVersion field value history for this schema is provided below:

Version Description

0 Initial Release

11.23.5. DeviceModel Schema

A unique combination of the VendorID and ProductID is used to identify a DeviceModel. The record
schema available to vendors to provide general information shared across all software versions of
a given product is presented below.

Name Type Constraint Conformance Mutable

VendorID vendor-id all M No

ProductID uint16 all M No

DeviceTypeID devtype-id all M No

ProductName string max 128 M Yes

ProductLabel string max 256 M Yes

PartNumber string max 32 M Yes

Commissioning
CustomFlow

uint8 0 to 2 M No

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 919

https://github.com/zigbee-alliance/distributed-compliance-ledger/
https://github.com/zigbee-alliance/distributed-compliance-ledger/

Name Type Constraint Conformance Mutable

Commissioning
CustomFlowUrl

string max 256 desc Yes

Commissioning
ModeInitial
StepsHint

map32 desc M No

Commissioning
ModeInitial
StepsInstruction

string max 1024 desc Yes

Commissioning
ModeSecondaryS
tepsHint

map32 desc M No

Commissioning
ModeSecondaryS
tepsInstruction

string max 1024 desc Yes

UserManualUrl string max 256 O Yes

SupportUrl string max 256 O Yes

ProductURL string max 256 O Yes

LsfUrl string max 256 O Yes

LsfRevision uint16 all desc Yes

SchemaVersion uint16 all M Yes

11.23.5.1. VendorID

This field SHALL identify the vendor of the product by its Vendor ID and SHALL match the Ven
dorID field in the Basic Information Cluster of a device running the software referenced by this
DeviceModel/DeviceSoftwareVersionModel record.

11.23.5.2. ProductID

This field SHALL identify the Product ID of the product instance to which a certification declara
tion, and thus a DCL entry, applies. This field SHALL match the ProductID field in the Basic Informa
tion Cluster of a device running the software referenced by this DeviceModel/DeviceSoftwareVer
sionModel record.

11.23.5.3. DeviceTypeID

DeviceTypeID is the device type identifier (see Data Model Device Types) for the device. For exam
ple, DeviceTypeID is 10 (0x000A), which is the device type identifier for a Door Lock.

In case the device combines multiple device types, device type identifier of the primary function of
the device SHOULD be chosen. See _T subtype in Section 4.3.1.3, “Commissioning Subtypes”.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 920 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.23.5.4. ProductName

This field SHOULD match the ProductName field in the Basic Information Cluster of a device running
the software referenced by this DeviceModel record.

11.23.5.5. ProductLabel

This field SHOULD match the ProductLabel field in the Basic Information Cluster of a device running
the software referenced by this DeviceModel record.

11.23.5.6. PartNumber

This field SHALL match the PartNumber field in the Basic Information Cluster of a device running the
software referenced by this DeviceModel record.
Multiple products (and hence PartNumbers) can share a ProductID. For instance, there may be dif
ferent packaging (with different PartNumbers) for different regions; also different colors of a prod
uct might share the ProductID but may have a different PartNumber. In such cases, the choice of a
single PartNumber out of the available set of PartNumbers using this ProductID SHALL be used to
populate this field.

11.23.5.7. Commissioning

CommissioningCustomFlow

CommissioningCustomFlow SHALL identify the device’s commissioning flow with encoding as
described in Custom Flow.

CommissioningCustomFlowUrl

This field SHALL identify a vendor-specific commissioning URL for the device model when the
CommissioningCustomFlow field is set to '2', and MAY be set for other values of CommissioningCus
tomFlow. See Custom Commissioning Flow section for how this URL is used. During the lifetime of
the product, the specified URL SHOULD resolve to a maintained web page. The syntax of this field
SHALL follow the syntax as specified in RFC 3986. The maximum length of this field is 256 ASCII
characters. All HTTP based URLs SHALL use the https scheme.

CommissioningModeInitialStepsHint

This field SHALL identify a hint for the steps that MAY be used to put a device that has not yet been
commissioned into commissioning mode. This field is a bitmap with values defined in the Pairing
Hint Table. For example, a value of 1 (bit 0 is set) indicates that a device that has not yet been com
missioned will enter Commissioning Mode upon a power cycle.
Devices that implement Extended Discovery SHALL reflect this value in the Pairing Hint field of
Commissionable Node Discovery when they have not yet been commissioned.

CommissioningModeInitialStepsInstruction

This field SHALL be populated with the appropriate Pairing Instruction for those values of Commis
sioningModeInitialStepsHint, for which the Pairing Hint Table indicates a Pairing Instruction (PI)
dependency.
Devices that implement Extended Discovery SHALL reflect this value in the Pairing Instruction field

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 921

of Commissionable Node Discovery when they have not yet been commissioned.

CommissioningModeSecondaryStepsHint

This field SHALL identify a hint for the steps that MAY be used to put a device that has already been
commissioned into commissioning mode. This field is a bitmap with values defined in the Pairing
Hint Table. At least bit 2 SHALL be set, to indicate that a current Administrator can be used to put a
device that has already been commissioned into commissioning mode (see Section 5.6.3, “Enhanced
Commissioning Method (ECM)”). Devices which implement additional mechanisms to put a device
that has already been commissioned into commissioning mode SHALL reflect these mechanism by
setting the corresponding bits in this field.
Devices that implement Extended Discovery SHALL reflect this value in the Pairing Hint field of
Commissionable Node Discovery when they have already been commissioned.

CommissioningModeSecondaryStepsInstruction

This field SHALL be populated with the appropriate Pairing Instruction for those values of Commis
sioningModeSecondaryStepsHint, for which the Pairing Hint Table indicates a Pairing Instruction
(PI) dependency.
Devices that implement Extended Discovery SHALL reflect this value in the Pairing Instruction field
of Commissionable Node Discovery when they have already been commissioned.

11.23.5.8. UserManualUrl

This field (when provided) SHALL identify a product-specific web page containing a user manual
for the device model. During the lifetime of the product, the specified URL SHOULD resolve to a
maintained web page. The syntax of this field SHALL follow the syntax as specified in RFC 3986. The
maximum length of this field is 256 ASCII characters. All HTTP based URLs SHALL use the https
scheme.

11.23.5.9. SupportUrl

This field (when provided) SHALL identify a product specific support web page. During the lifetime
of the product, the specified URL SHOULD resolve to a maintained web page. The syntax of this
field SHALL follow the syntax as specified in RFC 3986. The maximum length of this field is 256
ASCII characters. All HTTP based URLs SHALL use the https scheme.

11.23.5.10. ProductURL

This field (when provided) SHALL identify a link to a product specific web page. This field SHALL
match the ProductURL field in the Basic Information Cluster of a device running the software refer
enced by this DeviceModel record. All HTTP based URLs SHALL use the https scheme.

11.23.5.11. LsfUrl

This field (when provided) SHALL identify a link to the Localized String File of this product. During
the lifetime of the product, the specified URL SHOULD resolve to a maintained Localized String File.
The syntax of this field SHALL follow the syntax as specified in RFC 3986. The maximum length of
this field is 256 ASCII characters. All HTTP based URLs SHALL use the https scheme. This field
SHALL NOT have a localized string identifier.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 922 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

11.23.5.12. LsfRevision

LsfRevision is a monotonically increasing positive integer indicating the latest available version of
Localized String File. Any client can use this field to check whether it has the latest version of the
Localized String File cached. When the first version of the Localized String File is published, the
value of this field SHOULD be 1. When a new revision of the Localized String File is published, this
value SHALL monotonically increase by 1. When a client of this information finds this to be greater
than its currently stored LSF revision number, it SHOULD download the latest version of the LSF
from the LsfUrl, and update its local value of this field.

This field SHALL be provided if and only if when LsfUrl is provided.

11.23.5.13. SchemaVersion

The SchemaVersion field value history for this schema is provided below:

Version Description

0 Initial Release

11.23.6. DeviceSoftwareVersionModel Schema

A unique combination of the VendorID, ProductID and SoftwareVersion is used to identify a Device
SoftwareVersionModel. The record schema available to vendors to provide information specific to a
particular software version for a given product is presented below.

Name - (Matching
Basic Informa
tion Cluster
Field)

Type Constraint Conformance Mutable

VendorID vendor-id all M No

ProductID uint16 all M No

SoftwareVersion uint32 all M No

SoftwareVersion
String

string 1 to 64 M No

CDVersionNumber uint16 all M No

FirmwareInfor
mation

string max 512 O No

SoftwareVersion
Valid

boolean all M Yes

OtaUrl string max 256 desc Yes

OtaFileSize uint64 all OtaUrl No

OtaChecksum string max 64 OtaUrl No

OtaChecksumType uint16 desc OtaUrl No

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 923

Name - (Matching
Basic Informa
tion Cluster
Field)

Type Constraint Conformance Mutable

MinApplicable
SoftwareVersion

uint32 all M Yes

MaxApplicable
SoftwareVersion

uint32 all M Yes

ReleaseNotesUrl string max 256 O Yes

SchemaVersion uint16 all M Yes

SpecificationVer
sion

uint32 all M No

11.23.6.1. VendorID

See Section 11.23.5.1, “VendorID”.

11.23.6.2. ProductID

See Section 11.23.5.2, “ProductID”.

11.23.6.3. SoftwareVersion

SoftwareVersion SHALL identify the software version number for the device model consistent with
the value found in Section 11.21.2.4.3, “SoftwareVersion field”. The SoftwareVersionNumber value
SHOULD NOT be displayed to an end-user. SoftwareVersion is not editable, but it would be possible
to create a new device model for the same VendorID/ProductID for different versions. Both Soft
wareVersion and SoftwareVersionString SHALL be included. This field SHALL match the Software
Version field in the Basic Information Cluster of a device running the software certified by this
DeviceModel record.

11.23.6.4. SoftwareVersionString

This field SHALL match the Software Version String field in the Basic Information Cluster of a
device running the software referenced by this DeviceModel record, including format constraints
on that field.

11.23.6.5. CDVersionNumber

CDVersionNumber SHALL identify the CD Version Number of the Certification that applies to this
Software Image. The CDVersionNumber maps to version_number defined in Certification Elements TLV
structure.

11.23.6.6. FirmwareInformation

The FirmwareInformation field, if present, SHALL match the firmware_information field in attesta
tion-elements field included in the Device Attestation response when this Software Image boots on

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 924 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

the device. It is an OPTIONAL field that MAY be present only for devices that meet the requirements
listed in Section 6.3.2, “Firmware Information”.

11.23.6.7. SoftwareVersionValid

This field SHALL indicate whether this SoftwareVersion is valid. When creating an entry for a new
SoftwareVersion, this typically is set to True. When the manufacturer later finds out there is some
reason that this version should no longer be used (e.g. due to some bugs), the field SHALL be
updated to False.

NOTE
This mechanism is for "withdrawal" of a SoftwareVersion by the manufacturer, not
to be confused with certification revocation by CSA (see SoftwareVersionCertifica
tionStatus).

11.23.6.8. OTA

OtaUrl

OtaUrl SHALL identify the URL where to obtain the OTA image. The OtaUrl field SHALL be popu
lated unless the device manufacturer provides alternative means to update the product’s firmware.
The syntax of this field SHALL follow the syntax as specified in RFC 3986. The specified URL
SHOULD be available for the relevant lifetime of the corresponding software. The maximum length
of this field is 256 ASCII characters. All HTTP based URLs SHALL use the https scheme.

OtaFileSize

OtaFileSize is the total size of the OTA software image in bytes. This field SHALL be provided if the
OtaUrl field is populated.

OtaChecksum

OtaChecksum SHALL contain the digest of the entire contents of the associated OTA Software
Update Image under the OtaUrl field, encoded in base64 string representation. The digest SHALL
have been computed using the algorithm specified in OtaChecksumType. This field SHALL be provided
if the OtaUrl field is populated.

OtaChecksumType

OtaChecksumType SHALL identify the type of OtaChecksum. This field SHALL be provided if the
OtaUrl field is populated.

The value of this field SHALL be a supported numerical identifier value from the IANA Named
Information Hash Algorithm Registry [https://www.iana.org/assignments/named-information/named-informa

tion.xhtml#hash-alg] established as part of RFC 6920. For example, a value of 1 would match the sha-
256 identifier, which maps to the SHA-256 digest algorithm per Section 6.2 of FIPS 180-4.

The digest algorithm chosen SHALL have a minimum digest length of 256 bits, such as sha-256 (ID 1
in the registry).

To increase interoperability, OtaChecksumType SHALL be within the list of [1, 7, 8, 10, 11, 12].

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 925

https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg

11.23.6.9. MinApplicableSoftwareVersion

MinApplicableSoftwareVersion SHALL be equal to the lowest SoftwareVersion for which this image
can be applied. Also see Section 11.21.2.4.6, “MinApplicableSoftwareVersion field”.

11.23.6.10. MaxApplicableSoftwareVersion

MaxApplicableSoftwareVersion SHALL be equal to the highest SoftwareVersion for which this
image can be applied. Also see Section 11.21.2.4.7, “MaxApplicableSoftwareVersion field”.

11.23.6.11. ReleaseNotesUrl

ReleaseNotesUrl SHALL identify a product specific web page that contains release notes for the
device model software. The syntax of this field SHALL follow the syntax as specified in RFC 3986.
The specified URL SHOULD resolve to a maintained web page available for the lifetime of the corre
sponding software being relevant. The maximum length of this field is 256 ASCII characters. All
HTTP based URLs SHALL use the https scheme.

11.23.6.12. SchemaVersion

The SchemaVersion field value history for this schema is provided below:

Version Description

0 Initial Release

11.23.6.13. SpecificationVersion

SpecificationVersion SHALL identify the specification version applicable to the device model. This
field SHALL match the SpecificationVersion field in the Basic Information Cluster of a device run
ning the software certified by this DeviceModel record.

11.23.7. DeviceSoftwareCompliance / Compliance test result Schema

A unique combination of the VendorID, ProductID and SoftwareVersion is used to identify a Device
SoftwareCompliance record. This record schema is available to the CSA to provide information spe
cific to certification of a particular software version for a given product is presented below. Note
that this schema is writable and mutable by CSA, not by the manufacturer.

Name - (Matching
Basic Informa
tion Cluster
Field)

Type Constraint Conformance Mutable

VendorID vendor-id all M No

ProductID uint16 all M No

SoftwareVersion uint32 all M No

SoftwareVersion
String

string 1 to 64 M No

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 926 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Name - (Matching
Basic Informa
tion Cluster
Field)

Type Constraint Conformance Mutable

CDVersionNumber uint16 all M Yes

SoftwareVersion
CertificationStatus

SoftwareVersion
CertificationSta

tusEnum

all M Yes

CDCertificateID string 19 M Yes

SchemaVersion uint16 all M Yes

For the description of the first five fields, see the corresponding fields in DeviceSoftwareVersion
Model Schema.

11.23.7.1. SoftwareVersionCertificationStatus

This field SHALL have a value from SoftwareVersionCertificationStatusEnum reflecting the current
certification status of this SoftwareVersion.

11.23.7.2. SoftwareVersionCertificationStatusEnum

This data type is derived from enum8 and has its values listed below.

Value Name Description Conformance

0 dev-test used for development
and test purposes
(These will typically not
be placed in DCL)

M

1 provisional used for a SoftwareVer
sion when going into
certification testing
(These might or might
not be placed in DCL,
depending on CSA pol
icy and procedures)

M

2 certified used for a SoftwareVer
sion which has been
certified

M

3 revoked used for a SoftwareVer
sion which has been
revoked

M

The values 0 through 2 SHALL correspond to the values 0 through 2 used in certification_type in the
Certification Declaration.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 927

11.23.7.3. CDCertificateID

This field SHALL have the CSA certification’s certificate ID for the Certification that applies to this
record. The value of this field is used in the Certification Declaration's certificate_id field (see Cer
tification Elements TLV structure) for products using the VendorID, ProductID and SoftwareVersion
in this schema entry.

11.23.7.4. SchemaVersion

The SchemaVersion field value history for this schema is provided below:

Version Description

0 Initial Release

11.23.8. Device Attestation PKI Revocation Distribution Points Schema

The Device Attestation PKI revocation distribution points are used to identify the URL where PAAs
and PAIs provide revocation information for PAIs and DACs, respectively.

See Section 6.2, “Device Attestation” for more details on the PKI elements discussed in this subsec
tion (e.g. PAA, PAI, DAC).

The schema is presented in the table below:

Name Type Constraint Conformance Mutable

VendorID vendor-id all M No

ProductID uint16 all desc No

IsPAA bool all M No

Label string max 64 M No

CRLSignerCertifi
cate

string max 2048 M Yes

IssuerSubjec
tKeyID

string max 64 M No

DataUrl string max 256 M Yes

DataFileSize uint64 desc O Yes

DataDigest string max 128 desc Yes

DataDigestType uint32 all desc Yes

RevocationType uint32 desc M No

SchemaVersion uint16 all M Yes

11.23.8.1. VendorID

This field SHALL indicate the VendorID associated with the PAA or PAI whose revocation informa
tion is provided. For a non-vendor-scoped PAA, this SHALL be the VendorID associated with the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 928 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

organization operating the PAA. For vendor-scoped PAA and for PAIs, this field SHALL contain the
VendorID as found in the CRLSignerCertificate (see Section 6.2.2.2, “Encoding of Vendor ID and
Product ID in subject and issuer fields” for encoding).

11.23.8.2. ProductID

This field is only required when a PAI is making the distribution point available. This field SHALL
only be provided if the IsPAA field is false and if the CRLSignerCertificate field has a ProductID in
its subject (see Section 6.2.2.2, “Encoding of Vendor ID and Product ID in subject and issuer fields”
for encoding).

11.23.8.3. IsPAA

This field SHALL be set to true if the revocation information distribution point relates to a PAA, oth
erwise it SHALL be set to false (i.e. it relates to a PAI, not a PAA)."

11.23.8.4. Label

This field contains a label to disambiguate multiple revocation information partitions of a particu
lar issuer. Uniqueness within the Device Attestation PKI Revocation Distribution Points schema
SHALL be enforced against the tuple containing all of:

• VendorID

• Label

• IssuerSubjectKeyID

Therefore, there MAY be multiple entries for the same VendorID and IssuerSubjectKeyID in case
partitioning is done, which are disambiguated by the Label.

Enforcement of uniqueness constraints SHALL be done by the Distributed Compliance Ledger’s
block transaction processing and SHALL also be done by clients making use of the information
from this schema.

11.23.8.5. CRLSignerCertificate

This field SHALL contain the issuer certificate who signed the revocation information that is pro
vided in the distribution point entry, encoded in X.509v3 PEM format.

If the RevocationType is 1 (X.509v3 CRL):

• The certificate’s subject public key SHALL be used to validate the signatureValue of the Certifi
cateList object in the CRL (see RFC 5280 sec 5.1.1.3). These checks SHALL be done by the client
making use of the information, since they cannot be done by the Distributed Compliance Ledger
implementation which cannot rely on out-of-ledger records or files.

• The certificate’s SubjectKeyIdentifier mandatory extension SHALL match the Authority Key
Identifier found in the file at the DataUrl.

• The certificate SHALL be checked for correct chaining by the dynamic validation within the Dis
tributed Compliance Ledger’s block transaction processing:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 929

◦ If the certificate is self-signed, it SHALL be considered as a PAA certificate, the IsPAA field
SHALL be true, and the certificate SHALL be found in the list of approved PAA certificates
currently in force in the Distributed Compliance Ledger using exact byte equality.

◦ If the certificate is not self-signed and the IsPAA field is set to true, it SHALL be considered as
a CRL signer certificate delegated by a PAA. The certificate format SHALL be as specified in
Section 11.23.8.5.1, “PAA-delegated CRLSignerCertificate format”. The certificate SHALL be
validated using the set of approved PAA certificates currently in force in the Distributed
Compliance Ledger and the IssuerSubjectKeyID field SHALL match the AuthorityKeyIdenti
fier extension value in the matching PAA. The client SHALL verify that the PAA that issued
the CRLSignerCertificate is the same PAA that issued the PAI being checked for revocation.

◦ If the certificate is not self-signed and the IsPAA field is set to false, it SHALL be considered as
a PAI certificate or a CRL signer certificate delegated by a PAI. The format of a CRL signer
certificate delegated by a PAI SHALL be as specified in Section 11.23.8.5.2, “PAI-delegated
CRLSignerCertificate format”. If the CRL signer certificate is not a PAI certificate but is dele
gated by a PAI, then the PAI certificate SHALL be present in the DCL so that the full certifi
cate chain can be verified. The certification path containing the certificate SHALL be vali
dated using the set of approved PAA certificates currently in force in the Distributed Compli
ance Ledger as the trust store. The client SHALL verify that the CRLSignerCertificate is either
the PAI that issued the DAC being checked for revocation, or a delegated signing certificate
issued by that same PAI.

• NOTE: This configuration allows CRLSignerCertificate for PAI revocation or DAC revocation to
use a newer CA keypair than that which initially signed the PAI or the DAC, while ensuring that
it is not possible to arbitrarily issue revocations for a CA that is not operated by or on behalf of
the publisher of the CRL.

• The client SHALL verify that the PAA that issued the CRLSignerCertificate is the same PAA that
was used for issuing the PAI or the PAI that was used to issue the DAC that is being checked for
revocation.

PAA-delegated CRLSignerCertificate format

In case the CRLSignerCertificate is a delegate of a PAA for signing CRL for revoking PAI certificates,
then the certificate SHALL follow the following constraints layered on top of the encoding specified
by RFC 5280 within the TBSCertificate structure:

1. The version field SHALL be set to 2 to indicate v3 certificate.

2. The signature field SHALL contain the identifier for signatureAlgorithm ecdsa-with-SHA256.

3. The issuer field SHALL be a sequence of RelativeDistinguishedName s.

4. The issuer field SHALL match the subject field of the parent PAA certificate.

5. The subject field SHALL be a sequence of RelativeDistinguishedName s.

6. A ProductID value SHALL NOT be present in either the subject or issuer fields.

7. The algorithm field in subjectPublicKeyInfo field SHALL be the object identifier for prime256v1.

8. The certificate SHALL carry the following Extensions:

a. Basic Constraint extension SHALL be marked critical and have the cA field set to FALSE.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 930 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

b. Key Usage extension SHALL be marked critical.

i. The cRLSign bits SHALL be set in the KeyUsage bitstring

ii. The digitalSignature bit MAY be set in the KeyUsage bitstring

iii. Other bits SHALL NOT be set

c. Subject Key Identifier

9. The certificate MAY also carry the following additional Extensions:

a. Extended Key Usage

b. Authority Key Identifier

c. Any other extension allowed in RFC 5280 where inclusion does not violate size limitations.
These extensions insofar not defined in this specification SHALL be ignored, but MAY be
present to allow flexibility in CA operation.

PAI-delegated CRLSignerCertificate format

In case the CRLSignerCertificate is a delegate of a PAI for signing CRL for revoking DAC certificates,
then the certificate SHALL follow the following constraints layered on top of the encoding specified
by RFC 5280 within the TBSCertificate structure:

1. The version field SHALL be set to 2 to indicate v3 certificate.

2. The signature field SHALL contain the identifier for signatureAlgorithm ecdsa-with-SHA256.

3. The issuer field SHALL be a sequence of RelativeDistinguishedName s.

4. The issuer field SHALL match the subject field of the parent PAI certificate.

5. The subject field SHALL be a sequence of RelativeDistinguishedName s.

6. The algorithm field in subjectPublicKeyInfo field SHALL be the object identifier for prime256v1.

7. The certificate SHALL carry the following Extensions:

a. Basic Constraint extension SHALL be marked critical and have the cA field set to FALSE.

b. Key Usage extension SHALL be marked critical

i. The cRLSign bit SHALL be set in the KeyUsage bitstring

ii. The digitalSignature bit MAY be set in the KeyUsage bitstring

iii. Other bits SHALL NOT be set

c. Authority Key Identifier

d. Subject Key Identifier

8. The certificate MAY also carry the following additional Extensions:

a. Extended Key Usage

b. Any other extension allowed in RFC 5280 where inclusion does not violate size limitations.
These extensions insofar not defined in this specification SHALL be ignored, but MAY be
present to allow flexibility in CA operation.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 931

11.23.8.6. IssuerSubjectKeyID

This field SHALL uniquely identify the PAA or PAI for which this revocation distribution point is
provided, via the certificate’s SubjectKeyIdentifier mandatory extension. This field is provided to
assist queries without requiring additional certificate parsing. This field SHALL provide the subject
key identifier as an even number of uppercase hexadecimal characters ([0-9A-F]), with no white
space and no non-hexadecimal characters.

For example, subject key ID A3:03:13:6D:54:A8:4B:E2:4C:48:87:B3:41:06:6D:C2:70:96:2F:99 (as it
would appear in openssl x509 output, for human consumption) would be recorded as
A303136D54A84BE24C4887B341066DC270962F99.

When processing revocation information during the device Device Attestation Procedure, clients
SHALL only use entries whose IssuerSubjectKeyID matches a candidate certificate’s Authority Key
Identifier extension.

11.23.8.7. DataUrl

This field SHALL indicate the URL where to obtain the information in the format indicated by the
RevocationType field.

The syntax of this field SHALL follow the syntax as specified in RFC 3986. The maximum length of
this field is 256 ASCII characters. All URLs SHALL use either the http or https scheme.

For entries of RevocationType 1 (RFC 5280 CRL):

• The content located at the DataUrl SHALL be a RFC 5280 Certificate Revocation List document
(see section 5 in the RFC) encoded in DER format.

◦ Note that conformance to the RFC 5280 CRL profile requires at least the AuthorityKeyIdenti
fier and CRLNumber extensions to be present in the document.

• If multiple entries exist in the schema, which match in VendorID and IssuerSubjectKeyID, then:

◦ All entries SHALL have a different Label.

◦ All entries SHALL have a different DataUrl.

◦ The content located at the DataURL SHALL have the Issuing Distribution Point critical CRL
extension present (see RFC 5280 section 5.2.5).

▪ DCL software SHALL validate the uniqueness of Label and DataUrl of each entry.

▪ Note that the content located at the DataURL will never be accessed or validated by DCL
software which cannot rely on out-of-ledger records or files.

◦ Based on the Issuing Distribution Point critical CRL extension (see RFC 5280 section 5.2.5),
the following validation SHALL be applied:

▪ The distributionPoint field of the extension SHALL have a single GeneralName of type
uniformResourceIdentifier.

▪ The uniformResourceIdentifier SHALL match exactly, byte-for-byte, the value found in
the DataUrl field of this schema entry.

▪ The indirectCRL field of the extension SHALL be absent or false. In other words, the CRL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 932 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

SHALL NOT be an indirect CRL.

11.23.8.8. DataFileSize

This field, if present, SHALL indicate the total size in bytes of the file found at the DataUrl. This field
SHALL be omitted if the RevocationType is 1, which refers to a type having built-in signatures.

11.23.8.9. DataDigest

This field, if present, SHALL contain the digest of the entire contents of the associated file down
loaded from the DataUrl field, encoded in base64 string representation. The digest SHALL have been
computed using the algorithm specified in DataDigestType. This field SHALL be present if and only if
the DataFileSize field is present.

11.23.8.10. DataDigestType

This field, if present, SHALL indicate the type of digest used in the DataDigest field. This field SHALL
be provided if and only if the DataDigest field is present.

The value of this field SHALL be a supported numerical identifier value from the IANA Named
Information Hash Algorithm Registry [https://www.iana.org/assignments/named-information/named-informa

tion.xhtml#hash-alg] established as part of RFC 6920. For example, a value of 1 would match the sha-
256 identifier, which maps to the SHA-256 digest algorithm per Section 6.2 of FIPS 180-4.

The digest algorithm chosen SHALL have a minimum digest length of 256 bits, such as sha-256 (ID 1
in the registry).

To increase interoperability, DataDigestType, if present, SHALL be within the list of [1, 7, 8, 10, 11,
12].

11.23.8.11. RevocationType

This field SHALL identify the type of file found at the DataUrl for this entry. Values supported are:

• 0: Undefined. This value SHALL NOT appear

• 1: RFC 5280 Certificate Revocation List (CRL)

• Other: reserved for future use.

11.23.8.12. SchemaVersion

The SchemaVersion field value history for this schema is provided below:

Version Description

0 Initial Release

11.23.9. APIs / CLI

The Ledger comes with a set of secure APIs and CLI. More details available here [https://github.com/zig

bee-alliance/distributed-compliance-ledger/blob/master/docs/transactions.md].

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 933

https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://github.com/zigbee-alliance/distributed-compliance-ledger/blob/master/docs/transactions.md

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 934 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 12. Multiple Fabrics

12.1. Introduction
The Multiple Fabric feature allows a Node to be commissioned to multiple separately-administered
Fabrics. With this feature a current Administrator can (with user consent) allow the Commissioner
for another fabric to commission that Node within its Fabric. The new Commissioner MUST have
their own Node Operational Certificate (NOC) issued by its Trusted Root Certificate Authority
(TRCA). Once commissioning is completed and the Node is properly configured, Administrators on
the newly joined Fabric have access to the Node and can perform all administrative tasks.

A Fabric is anchored by its Trusted Root Certificate Authority (TRCA). A TRCA MAY delegate to one
or more Intermediate Certificate Authorities (ICA) which issue NOCs. Multiple vendors or compa
nies can use the same CA hierarchy in which case they will be governed under the same Trusted
Root Certificate Authority.

12.2. User Consent
A user who wishes to have an already commissioned Node join another Fabric (and therefore
another Security Domain) provides consent by instructing an existing Administrator, which SHALL
put the Node into commissioning mode by using steps outlined in Section 5.6.4, “Open Commission
ing Window”. Administrators SHALL provide a mechanism for the user to thus instruct them.

12.3. Administrator-Assisted Commissioning Method
Administrators SHALL support opening a commissioning window on a Node using the mandatory
method described in Section 5.6.3, “Enhanced Commissioning Method (ECM)”. All Nodes SHALL
support having a commissioning window opened using the mandatory method described in Section
5.6.3, “Enhanced Commissioning Method (ECM)”.

An Administrator MAY open a commissioning window on a Node using the optional method
described in Section 5.6.2, “Basic Commissioning Method (BCM)”, if the Node supports the method.

12.4. Node Behavior
The Node SHALL host an Section 11.19, “Administrator Commissioning Cluster”. The Cluster
exposes commands which enable the entry into commissioning mode for a prescribed time, and
which SHALL be invoked over a CASE secure channel. See Section 11.19.8.1, “OpenCommissioning
Window (OCW) Command” and Section 11.19.8.2, “OpenBasicCommissioningWindow (OBCW) Com
mand”. During such a commissioning window, the Node SHALL maintain its existing configuration,
such as its operational network connection and identities, and SHOULD allow normal interactions
from other Nodes.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 935

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 936 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Chapter 13. Security Requirements

13.1. Overview
Each Matter security and privacy requirement references the underlying countermeasure (CM) and
threat (T) in the Threat Model that motivated the need for the requirement. The requirements are
grouped by topic. Unless stated otherwise, these requirements typically address all Devices and
Nodes (i.e. all implementations of Matter functionality). Some requirements are called out specifi
cally for a particular group of implementations, or Roles.

13.2. Device vs. Node
For some requirements, we need to differentiate between a Node (the entity which supports the
Matter protocol stack) and a Device (a piece of equipment containing one or more Nodes).

• If the Node contains all of the Matter functionality, nevertheless it will probably rely on some
security features of the Device.

• If the Node uses Matter functionality provided by the Device, the requirements obviously hold
for both the Node and the Device.

13.3. Commissioning
a. Nodes SHALL stop both commissioning and unsecured rendezvous actions after a specified time

period from the beginning of the commissioning mode when commissioning has not been con
cluded, unless allowed for other purposes such as Commissionable Node Discovery. The time
period for commissioning and unsecured rendezvous announcements SHALL follow require
ments as specified in Section 5.5, “Commissioning Flows” and Section 5.4.2.3, “Announcement
Duration” respectively. [CM8 for T5, T7]

b. Nodes SHALL utilize multiple hash iterations in PBKDF, as required by definitions in Section 3.9,
“Password-Based Key Derivation Function (PBKDF)”. Nodes SHALL validate the bounds of the
iteration count for PBKDF, to respect the minimum and maximum values stated in the cryptog
raphy primitives section (see Section 3.9, “Password-Based Key Derivation Function (PBKDF)”).
[CM99 in T102]

c. Nodes SHALL exit commissioning mode after 20 failed commission attempts (see Section 5.5,
“Commissioning Flows”). [CM100 for T101, T112]

d. Devices SHALL include a Device Attestation Certificate and private key, unique to that Device.
[CM23 for T22, T24, T34, T86]

e. When the setup code is not permanently attached to a device, for example, it is removable or
only found in the device setup guide, the device SHALL NOT deliver the Onboarding Payload
using an NFC tag [CM4 for T90].

f. If an NFC Tag is used to convey the Onboarding Payload from a device to a Commissioner,
depending on how the NFC tag is associated with the device (e.g. device package, attached to the
device, connected to the device…), the NFC Tag SHALL only allow the alteration of the Onboard
ing Payload and the reading thereof in ways and in device states attackers cannot exploit to illic

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 937

itly onboard the device (e.g., the alteration of the NFC Tag Onboarding Payload SHALL only be
possible while being manufactured, the NFC tag read-out SHALL NOT be possible when the
device is still in the packaging, the NFC Tag read-out SHALL only be allowed during the enabled
commissioning window). [CM4 for T90]

g. After initial Commissioning of a Device, subsequent Commissioning SHALL only be triggered by
an Administrator or an equivalent entity where the user gives administrative consent. [CM2 for
T1]

13.4. Factory Reset
a. Devices and Nodes SHALL have a factory reset capability. [CM15 for T16, T17, T79, T82]

b. Factory reset SHALL remove from the Node all security- and privacy-related data and key mate
rial created during or after commissioning except data explicitly required to persist across
resets. [CM35 for T16, T17, T79, T82]

See the following sections for detailed factory reset requirements.

• Section 6.4.3, “Node Operational Identifier Composition”

• Section 6.4.10, “Security Considerations”

• Section 6.6.3, “Access Control List Examples”

• Section 7.12.1, “Persistence”

• Section 7.14, “Event”

• Section 11.12, “General Diagnostics Cluster”

• Section 11.20.4.2, “Image Verification”

• NOCs

• Fabrics

• CommissionedFabrics

• TrustedRootCertificates

13.5. Firmware
a. Nodes SHALL support OTA firmware updates, either using Matter-provided means (see Section

11.20, “Over-the-Air (OTA) Software Update”) or proprietary means. [CM58 for T59, T226]

b. Nodes SHALL validate the authenticity and integrity of the firmware prior to installation, such
as through cryptographic means (see Section 11.20.4.2, “Image Verification”). [CM58 for T59,
T226]

c. Nodes SHOULD validate configuration and input for length, and acceptable values and ranges
before applying them. This validation is dependent on the configuration or input being applied
(see Access Control Cluster). Configuration and input validation is explicitly defined in relevant
sections of the specification. [CM46 for T55]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 938 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

13.6. Security Best Practices
This section describes best practices that Matter implementors SHOULD implement. Matter imple
menters SHALL indicate whether they comply or not to the best practices. Matter certification will
not itself test that these requirements have been met.

13.6.1. Cryptography

a. Devices and Nodes SHOULD include protection (if it exists) against known remote attacks that
can be used to extract or infer cryptographic key material. [CM107 for T94]

b. Devices SHOULD protect the confidentiality of attestation (DAC) private keys. The level and
nature of protection for these keys may vary depending on the nature of the Device. [CM77 for
T22]

c. Nodes SHOULD protect the confidentiality of Node Operational Private Keys. The level and
nature of protection for these keys may vary depending on the nature of the Nodes. [CM87 for
T87, T110, T120]

d. Cryptographic keys SHALL be randomly chosen using a cryptographically secure random num
ber generator in accordance with algorithms defined in Section 3.1, “Deterministic Random Bit
Generator (DRBG)”. [CM39 for T39]

e. Devices SHALL use non-repeating initialization vectors for a given session key. [CM78 for T81]

13.6.2. Commissioning and Administration

a. Manufacturers SHOULD control the number of DACs issued under their Vendor ID. [CM24 for
T23, T34]

b. Where practical, the setup code SHOULD NOT be photograph-able or visible when installed (e.g.,
QR code hidden with a flap). [CM89 for T90]

c. Uncommissioned Devices SHOULD only be available to be commissioned with some form of
physical proximity user interaction (e.g. power cycle or button press). [CM3 for T15, T90, T92]

d. For Devices subject to physical tampering (e.g. doorbell, camera, door lock, devices designed for
outdoor use cases), the physical interaction to initiate commissioning and/or the setup code (QR
code, NFC Tag or Manual code) SHOULD NOT be accessible to a physical attacker. E.g. setup code
is removable or not on the device, the button used to initiate commissioning for the lock is
inside the house. [CM4 for T3, T84]

e. A Commissioner or Administrator SHOULD only add Root Certificates that it trusts to a Node.
[CM36 for T153]

f. A device manufacturer SHOULD implement Basic Commissioning Method only for devices that
adequately secure the Passcode. [CM154 for T173]

g. Commissioners and Administrators SHOULD carefully control which Nodes get Administer,
Manage, or Operate privilege, especially for safety-critical systems like Door Locks and Smoke
CO Alarms. [CM244 for T17, T20, T59, T94, T230]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 939

13.6.3. Firmware

a. Vendors of Matter implementations (including their suppliers of Matter functionality) SHOULD
have a public vulnerability reporting mechanism and policy and actively monitor, identify and
rectify in a timely manner security vulnerabilities throughout the publicly stated security life-
cycle policy of the product. Typical responsible disclosure guidelines allow vendors from 60 to
120 days to patch a vulnerability, but the implementation of such a program is at each vendor’s
discretion. [CM59 for T9, T226]

b. Devices SHOULD have a verified boot based in an immutable root of trust to verify the authen
ticity of firmware. Commissioners SHOULD only be loaded on a computing platform that has
such a verified boot. If devices cannot support verified boot, devices SHOULD perform verifica
tion on any firmware update before applying the new firmware. [CM22 for T16, T20, T226]

c. The private part of the code signing key (used to sign firmware) SHOULD be strongly protected
against disclosure or misuse. For example, it could be stored in an HSM on a secure server out
side the factory with very restricted access to only a small number of Device Manufacturer
employees. [CM28 for T72]

13.6.4. Manufacturing

a. Fusing of Devices in production SHOULD be done to limit unintended access to hardware com
ponents. For example, vendors may disable debug interfaces, and program trust anchors for
secure boot. There are multiple options to secure fusing on the factory floor (e.g., physically
securing the fusing station, pre-fusing the silicon, etc). [CM113 for T117]

13.6.5. Resiliency

a. Matter implementations SHOULD implement resiliency features (e.g., responding to secure boot
failures with recovery or error signaling mode) to detect and handle compromise. [CM57 for
T59, T226]

13.6.6. Battery Powered Devices

a. Battery powered Devices SHOULD respond to excessive queries by rate limiting (even limiting
the rate to zero if desired). [CM51 for T52, T53]

13.6.7. Tamper Resistance

a. Protection against physical attacks (especially those that impact cybersecurity) MAY be needed
for some Devices, as determined by the manufacturer. [CM62 for T60]

13.6.8. Bridging

a. Admins SHOULD only grant privileges to a Bridge or Bridged Device (sending commands from
that Bridged Device towards a Matter node) that the User is comfortable implicitly granting to
all other Bridged Devices exposed by that Bridge. Background: Matter’s ACL mechanism does
not provide a way to grant privileges to only a single endpoint (Bridged Device) from a node
(the Bridge). [CM149 for T162, T165, and T167]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 940 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

13.6.9. Distributed Compliance Ledger

a. Vendors SHOULD avail themselves of the DCL store-and-forward functionality so that they can
control posting of data about their products to the DCL. [CM160 for T170]

b. Access to Validator Nodes SHOULD be restricted (e.g., with VPN that only permits Validator
Nodes, Observer Nodes, and authenticated clients with write access). [CM163 for T169, T177,
T180, T183, T186]

c. Vendors SHOULD run and use their own Observer Nodes and restrict access to it to make sure
that it stays available to the vendors' DCL clients. [CM166 for T180, T182]

d. Vendors SHOULD protect DCL private keys in Hardware Security Module (HSM) equipped
servers. [CM167 for T168, T186]

e. All parameters passed in transactions and queries to the DCL SHALL pass input validation
checks done by the implementation of the DCL. [CM169 for T185]

13.7. Threats and Countermeasures
This section lists identified threats to Matter and countermeasures to mitigate those threats. This
section is meant to be informational and not as normative requirements.

Table 92, “Threats” describes the threats, the agent involved in the threat as well as evaluates the
consequences. This includes the severity, impact and likelihood of the threat being exploited.

Table 92. Threats

Threat Description Threat Evaluation Counter
measure

ID Description Threat Agent Impact/Consequence Severity ID

T1 Commission an
already Commis
sioned Node for
control that may
be difficult to
detect (e.g., IP
Camera to stream
video)

Malicious house
guest (brief physi
cal access).

Silent control of Node
and access to sensitive
Node data (e.g. IP Cam
era traffic). If only 1
commissioning is
allowed, user would
detect issue later
if/when they try to use
Node.

High CM2

T3 Reset Device and
Commission for
silent control (e.g.
IP Camera to
stream video).

Malicious house
guest (brief physi
cal access).

Silent control of Node
and access to sensitive
Node data (e.g. IP Cam
era traffic). If only 1
commissioning is
allowed, user would
detect issue later
if/when they try to use
Node.

High CM4

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 941

Threat Description Threat Evaluation Counter
measure

T5 IoT device adver
tises information
that can be used to
identify vulnera
bilities.

Malicious device
or person with
local network
access.

Use information about
the Device to exploit a
(known) vulnerability.

High CM6, CM7,
CM8

T7 IoT device adver
tises information
that can be used to
identify, profile, or
target a home or a
user.

Malicious device
or person with
local network
access.

Use information about
available accessories to
target a given home or
user (e.g. to rob).

Medium CM6, CM7,
CM8,
CM183

T9 Exploit vulnerabil
ity in the Device to
gain arbitrary con
trol over Device.

Any. Unexpected control of
Device to gain access to
home data, instill fear,
etc.

High CM58,
CM59

T15 Commission an
uncommissioned
Node without
physical access to
Device

Malicious neigh
bor or other
nearby active
attacker

Silent control of Node
and access to sensitive
Node data (e.g. IP Cam
era traffic).

High CM3

T16 Seller of an Device
(most likely a used
one) intentionally
leaves malicious
software or config
uration on the
Device to compro
mise future traffic.

Malicious Device
seller.

Control or access sensi
tive data of Device.

Medium CM15,
CM16,
CM17,
CM21,
CM22,
CM35

T17 Device buyer or
trash picker
dumps memory to
find previous
owner’s Device
keys, group keys,
and network cre
dentials.

Malicious Device
buyer or trash
picker.

Access to sensitive data
and ability to inject
trusted data or even
commands.

Medium CM15,
CM16,
CM17,
CM35,
CM244

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 942 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Threat Description Threat Evaluation Counter
measure

T20 Firmware (any
software on
Device that can be
modified) is modi
fied by attacker in
factory (or
remotely through
factory)

Worker at factory
or programming
location or remote
attacker

1. Local network
behavior issues
2. Infected Nodes lead
ing to data breach, mal
function, denial of ser
vice, or attacks by this
Node on other Nodes

Medium CM21,
CM22,
CM244

T22 Cloned Device pro
duced (with identi
cal credentials to a
proper Device).

Anyone with phys
ical access to a
Device from which
they can extract
Device Attestation
credentials.

1. Brand damage if
Device is of lower qual
ity.
2. Loss of revenue.
3. Lack of function or
interoperability if
Device does not func
tion properly.
4. Lack of security if
Device does not have
proper security mea
sures.
5. Lack of support from
manufacturer for
cloned Devices.

Medium CM23,
CM77

T23 Counterfeit Device
produced (with
unique but appar
ently authorized
credentials)

Worker at factory
or programming
location

1. Brand damage if
Device is of lower qual
ity.
2. Loss of revenue.
3. Lack of function or
interoperability if
Device does not func
tion properly.
4. Lack of security if
Device does not have
proper security mea
sures.
5. Lack of support from
manufacturer for
cloned Devices.

Medium CM24

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 943

Threat Description Threat Evaluation Counter
measure

T24 Factory provi
sioned keys cap
tured in factory,
transit, or store
(e.g., with fault
injection or other
tampering).

1. Worker in sup
ply chain.
2. Attacker who
goes to retail store

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic).

Medium CM23,
CM113

T34 Cloned Device
enters the net
work.

Manufacturer sell
ing cloned
Devices.

Loss of revenue or
brand issues for origi
nal manufacturer.

Low CM23,
CM24

T39 Guessing security
keys via brute
force attack.

Attacker within
radio range, cap
tures encrypted
network packets.

Control or access sensi
tive data of Device.
Even control entire net
work if the private key
for the Operational Cer
tificate of a Controller
can be guessed.

High CM39

T52 Malicious Device
off the network
causes battery
powered Device to
wake too often.

Attacker using a
Device on the net
work.

Shortened battery life
of nearby Devices.

Medium CM44,
CM51

T53 Malicious Device
off the network
interrupts battery
powered messages
too often and
greatly reduces
battery life.

Attacker using a
Device on the net
work.

Shortened battery life
of nearby Devices.

Medium CM44,
CM51

T55 Device reconfig
ured improperly.

Attacker using a
Device on the net
work.

Device could be config
ured such that it does
not properly behave.

Medium CM45,
CM46,
CM47

T59 Maliciously
crafted message
exploits Device
vulnerability,
causing Device
compromise.

Attacker using a
Device on the net
work.

Trusted Device could
be hijacked.

High CM57,
CM58,
CM244

T60 Physical tamper
ing with Device
permits compro
mise.

Attacker with
physical access to
Device.

Trusted Device could
be hijacked.

Medium CM62

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 944 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Threat Description Threat Evaluation Counter
measure

T72 Code signing key
copied, permitting
signing of unau
thorized code.

Attacker gets
administrative
access to code
signing server.

1. Bad images could be
installed on many
Devices
2. Devices could be
destroyed or hijacked,
even invisibly and
irreparably.

High CM28

T79 Device marked for
destruction reused
in network.

Installer or return
agent.

Damaged or obsolete
Devices may re-enter
the network.

Low CM15,
CM16,
CM20,
CM35

T81 Attacker uses pre
dictable Initializa
tion Vectors to
derive crypto keys.

Attacker able to
observe network
traffic from the
Device.

Attacker discovery of
Device crypto keys and
other secrets, which
can lead to control of
other Devices if the
Device has such privi
leges.

High CM78

T82 Device buyer
dumps memory to
find previous
owner’s user data.

Malicious Device
buyer or dumpster
diver.

User data may be
leaked.

Medium CM15,
CM35

T84 Person with physi
cal access to
already installed
Device resets
Device then scans
QR code to gain
access.

Attacker with
physical access to
Device.

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic).

Medium CM4

T86 Leak certificate or
Device identity
private key to
appear as valid
Device.

Physical or locally
compromised
attacker.

Device appears as valid
Device.

Low CM23

T87 Malicious Device
or party poses as
valid Matter Node
using operational
credentials

Attacker on the
local network or
remotely control
ling a Node on the
local network

Group keys and sensi
tive data revealed to an
invalid Node

Medium CM87

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 945

Threat Description Threat Evaluation Counter
measure

T90 Long range cam
era captures QR
code at Commis
sioning time or
otherwise.

Malicious neigh
bor, robber, or
other nearby
active attacker.

Attacker manages to
connect Device to their
gateway or account.

Medium CM3,
CM89

T92 Microphone in the
house can capture
person speaking
the setup code and
use that to MITM
Commissioning.

Malicious neigh
bor, robber, or
other nearby
active attacker

Attacker manages to
connect the Node to
their gateway or
account

Medium CM3

T94 Remote attack
used to extract
keys and other
secrets.

Attacker able to
access the Device
remotely or over
local network.

Attacker discovery of
Device crypto keys and
other secrets, which
can lead to control of
other Devices if the
Device has such privi
leges.

High CM107,
CM244

T101 Malicious Device
or person with
local network
access attempts to
guess setup code
via online brute
force attack.

Attacker on the
local network.

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic).

High CM5,
CM100

T102 Malicious Device
or person with
knowledge of
passcode verifier
uses offline brute
force attack to
derive setup code.

Attacker with
remote access.

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic).

High CM5,
CM99

T110 Malicious device
or party poses as
valid Matter
Administrative
Node using opera
tional credentials

Attacker on the
local network or
remotely control
ling a Node on the
local network

Control of Node and
access to sensitive Node
data (e.g., IP camera
traffic)

High CM87

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 946 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Threat Description Threat Evaluation Counter
measure

T112 Malicious
Device(s) or per
son(s) with local
network access
attempts to guess
setup code of
many Devices via
online brute force
attack.

Attackers on the
local network.

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic).

Medium CM5,
CM100

T117 Incorrect fusing of
production
Devices.

Contract manufac
turer, factory
worker.

Device assets are vul
nerable, security poli
cies including secure
boot might not be
enforceable, etc.

High CM113

T120 Data from Matter
Nodes is shared
with non-Matter
or unauthorized
entities (e.g. data
leakage to adja
cent non-Matter
Nodes)

Any adversarial
process running in
the node that has
enough privileges
to modify ACLs.
Secure boot is not
sufficient protec
tion if the device
boots rarely and
the malicious
process was
spawned post-boot
up.

Matter data may be
used in inappropriate
or unauthorized ways
potentially harming the
owner.

High CM87

T153 Commis
sioner/Administra
tor adds untrust
worthy Root CA to
Node.

Malicious, com
promised, or
poorly advised
Commis
sioner/Administra
tor.

Attacker can create
NOCs that enable
impersonation and
MITM of Secure Chan
nels.

High CM36

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 947

Threat Description Threat Evaluation Counter
measure

T162 Compromise of
Bridged Device.
Bridged device
can have lower
security than Mat
ter device.
(Applicable to
bridged devices
controlling Matter
device or exposing
data to Matter
devices. Not
applicable to
bridged devices
being controlled
from Matter
devices.)

Attacker who can
compromise a
bridged device.

Control of Matter-side
Devices and access to
sensitive Device data.
Control Camera, unlock
door.

High CM149

T165 Privilege Escala
tion. Bridged
device is able to
impersonate
higher privileged
bridged device.
Unlock door on
presence.
(Applicable to
bridged devices
controlling Matter
device or exposing
data to Matter
devices. Not
applicable to
bridged devices
being controlled
from Matter
devices.)

Attacker that con
trols Bridged
Device can use
that device to
impersonate other
Bridged Devices
(potentially ones
that have more
access to the Mat
ter network.)

Control of all interac
tions between Matter
and bridged devices.
This can include con
trol of Matter devices.

High CM149

T167 Attacker with priv
ileges on Bridged
Ecosystem

Attacker has no
privileges on Mat
ter fabrics but
does have privi
leges on Bridged
Ecosystems.

Control of all interac
tions between Matter
and bridged devices.
This can include con
trol of Matter devices.

High CM149

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 948 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Threat Description Threat Evaluation Counter
measure

T168 DCL Private Key
Exfiltration.

Attacker obtains
one or more pri
vate keys of a com
pany with DCL
writer privilege.

Attacker can add to the
block chain on behalf
of the company. Can
change the OtaUrl to
point to old and
known-vulnerable
firmware or prevent an
update from being
installed.

High CM163

T169 DoS/DDoS of Val
idators Nodes.

Attack can direct a
DoS attack or
resource exhaus
tion attack against
validators.
Attacker only
needs to DoS 1/3+1
of validators to
DoS consensus.

New blocks cannot be
added.

High CM163

T170 Unintended or
premature expo
sure of informa
tion.

Company or certi
fication lab posts
device details to
the chain and it is
validated.

Immutability of block
chain means the infor
mation is permanently
on the chain.

High CM160

T173 Malicious Device
or person with
local network
access and knowl
edge of the pass
code attempts to
pair with a com
missioned device
when someone
else opens the
commissioning
window using Sec
tion 5.6.2, “Basic
Commissioning
Method (BCM)”
and the device’s
Passcode.

Attacker on the
local network

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic)

Medium CM41,
CM152,
CM154

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 949

Threat Description Threat Evaluation Counter
measure

T174 Malicious Device
gains knowledge
of the Passcode on
an uncommis
sioned Device,
commissions the
Device, and then
puts it back into
commissioning
mode with the
same Passcode
using Section 5.6.2,
“Basic Commis
sioning Method
(BCM)” or Section
5.6.3, “Enhanced
Commissioning
Method (ECM)” to
avoid detection.

Attacker on the
local network

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic)

Medium CM41,
CM152

T175 Malicious Device
with knowledge of
the Passcode com
missions an
uncommissioned
Device and then
puts it back into
commissioning
mode with the
same Passcode
using Section 5.6.2,
“Basic Commis
sioning Method
(BCM)” or Section
5.6.3, “Enhanced
Commissioning
Method (ECM)” to
avoid detection.

Attacker on the
local network

Control of Device and
access to sensitive
Device data (e.g. IP
Camera traffic)

Medium CM41,
CM152

T177 Attacker exploits a
vulnerability that
is common to most
or all of the Valida
tor Node software.

Attacker with
some sort of DCL
access (maybe just
read, which is
open to all).

Many Validator Nodes
misbehave (e.g.,
approving adding or
revoking a PAA or
changing an OtaURL).

High CM163

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 950 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Threat Description Threat Evaluation Counter
measure

T180 Attacker accesses
Observer Node or
Validator Node
with unauthenti
cated READ CLI
protocol, mounts a
DoS or DDoS
attack.

Attacker that can
send network
messages to a DCL
Observer Node or
Validator Node.

DCL capacity dimin
ished or eliminated.
Unable to communicate
important things like
revocation of PAA.

High CM163,
CM166

T182 DoS/DDoS of
Observers Nodes.

Attack can direct a
DoS attack or
resource exhaus
tion attack against
Observer Nodes. If
enough Observer
Nodes are
impacted by a DoS
attack, the DCL
may become
unavailable.

DCL unavailable High CM166

T183 DoS on Trustees'
approval process.

Submit many PRO
POSE_ADD_AC
COUNT requests.
The Trustees can
be overwhelmed
with illegitimate
requests. Requires
compromise of a
Trustee, although
replay is possible.

Trustees overloaded Medium CM163

T185 DCL Denial of Ser
vice. Attacker
writes a value to
the ledger that is
very large or out
of bounds.

Authorized
attacker sends a
write request with
very large para
meter payload.

Very large ledger
blocks added to ledger.
This could cause valida
tion problems. DOS on
Observer Nodes if
response is very large.

High CM169

T186 Test House posts
incorrect informa
tion about a ven
dor’s product.

Authorized test
house.

False product info in
ledger

High CM163,
CM167

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 951

Threat Description Threat Evaluation Counter
measure

T226 False information
is provided by a
compromised, vul
nerable, or mali
cious device.

Attacker that is
able to compro
mise an existing
vulnerable device
or introduce a
new malicious
device

Impacts may include
triggering an action
(e.g., unlocking a door
due to a false report of
a person detected in
the home) or tricking
the user into thinking
configuring the wrong
device (e.g., changing
the NodeLabel of a
device to impersonate
another device).

High CM21,
CM22,
CM57,
CM58,
CM59

T230 Spurious com
mands are sent to
a Device, leading
the consumer to
disable it.

Attacker autho
rized by ACL to
send commands to
Device.

Consumer frustration
with and distrust of
Device leading con
sumer to disable Device

High CM244

T231 An attacker
remotely starts a
household appli
ance that belongs
to a device type
which may cause
harm without
attended confir
mation.

Attacker that is
able to access the
device remotely

Cause a flood or a fire
or electric overload in a
home

High CM245

T240 Ability to perform
phishing exploits
using a compro
mised Commis
sionee Device or
Video content
sharing App

Client uses Screen
Sharing and Mes
saging feature to
trick the customer
into thinking a
message comes
from a different
source. User
responds thinking
this is the TV or
Content App ask
ing

Loss of relying party
trust. Display of false
information, including
malicious instructions

High CM248

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 952 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Threat Description Threat Evaluation Counter
measure

T241 Exposure of data
in transit using
MITM, remote
code execution
and adversary lat
eral movement
exploiting WebRTC
communication
protocol

Some clusters uti
lize WebRTC. By
default, the
WebRTC commu
nication is poten
tially vulnerable
to eavesdropping
and MITM

Denial of Service High CM249

T242 Lack of traceabil
ity and identifica
tion of Commis
sionees (Video
content sharing
apps) temporarily
using the TV for
Video content-
sharing

Airbnb/Hoteling
scenario - Renter
commissions a
device as a mes
sage source using
the on-screen flow.
Homeowner
returns and does
not know which
actual device is
sending messages
to their TV. Maybe
the device is hid
den in a closet

Loss of relying party
trust. Display of false
information, including
malicious instructions

High CM248,
CM250

T243 Lack of mecha
nisms to establish
parental control
requirements as
per prevailing
standards and
regional regula
tions

Customer uses
Content Control
feature to set
Parental Controls
on TV to limit
access to content
with rating N,
child opens an
app, app allows
child to access
content with rat
ing N

Regulatory and compli
ance risk - Loss of cus
tomer trust or brand
issues for original man
ufacturer

High CM251

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 953

Threat Description Threat Evaluation Counter
measure

T244 Unknown commis
sioned node acting
maliciously (ex.
Video content
sharing app from
a client device)

Unrecognized
NodeId. Adversary
hijacked client or
phone app sends
commands or
eavesdrops on net
work traffic - Ex: a
UDC/CDC message
indicating PIN
code dialog is
requested.
Attacker leverages
a hijacked camera
to see PIN code
displayed on TV
screen

Loss of relying party
trust. Display of false
information, including
malicious instructions

High CM248,
CM250,
CM253

T245 Adversary exploits
TV static passcode
/ PIN feature to
request that the
TV generate and
display a Passcode

TV reuses the
same Passcode
code every time
(no dynamic pass
code). Vulnerable
to brute-forcing
SPAKE2 (during
PASE)

Denial of Service High CM252

T246 Adversary eaves
drops on network
traffic and
sees/sends
UDC/CDC messages
exploiting a device
vulnerability that
allows adversary
to use information
for discovering
available apps and
push prompts on
the TV

Attacker uses UDC
to mount a DoS by
continually send
ing messages to
the TV to request
commissioning,
allows UDC flow to
partially complete
(performs com
missionable node
discovery) and
times out, effec
tively blocking any
other client from
using this feature

Denial of Service High CM253

Table 93, “Countermeasures” describes the various countermeasures to the threats listed in Table
92, “Threats”.

Table 93. Countermeasures

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 954 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Description

CM2 After initial Commissioning of a Device, subsequent Commissioning can only be
triggered by an Administrator or an equivalent entity where the user gives
administrative consent.

CM3 Commissioning is started with some form of physical user interaction (e.g. power
cycle or button press).

CM4 For Devices subject to physical tampering (e.g. doorbell, camera, door lock,
devices designed for outdoor use cases), the physical interaction to initiate com
missioning and/or the setup code is not accessible to a physical attacker. E.g. setup
Passcode is removable or not on the device, the button for the lock is inside the
house.

CM5 All Devices include a randomly generated setup passcode and a corresponding
passcode verifier derived from the setup passcode via a PBKDF. The setup code
includes at least 27 bits of entropy compliant with a recognized standard (e.g.,
NIST SP 800-90B).

CM6 Unsecured rendezvous are enabled by a user action and, upon time-out or com
missioning failure, will cause deletion of any state information. Examples of "user
actions" are pressing a physical button, power-cycling a Device, and leveraging a
previously commissioned account.

CM7 Minimize OS and other version information advertised during discovery.

CM8 Both commissioning and unsecured rendezvous actions time-out after at most 15
minutes from the beginning of the commissioning mode when commissioning has
not been concluded.

CM15 Devices have a physical button or trigger for factory reset.

CM16 Devices rotate keys at specified triggers (e.g. Factory Device Reset).

CM17 Devices implement Perfect Forward secrecy key agreement protocols that give
assurances that session keys will not be compromised even if long-term secrets
used in the session key exchange are compromised.

CM20 Revoke Device credentials and privileges when the Device is removed from the
home.

CM21 Devices have cryptographically signed firmware, including all firmware and soft
ware on the Device.

CM22 Devices have a verified boot based in an immutable root of trust to verify the
authenticity of firmware.

CM23 All Devices include a Device Attestation Certificate and private key, unique to that
Device.

CM24 Manufacturers control the number of DACs issued under their Vendor ID.

CM28 Private part of code signing key is strongly protected against disclosure or misuse.
For example, it could be stored in an HSM on a secure server outside the factory
with very restricted access to only a small number of Device Manufacturer
employees.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 955

ID Description

CM35 Factory reset removes all local data and key material created during or after com
missioning except data explicitly required to persist across resets.

CM36 A Commissioner / Administrator only adds Root Certificates that it trusts to a
node.

CM39 Cryptographic keys are randomly chosen using the strong entropy separately
required and the cryptographic algorithms and key lengths specified by Matter.

CM41 Administrators can view the set of Fabrics on each Device (i.e., Attributes for the
Node Operational Credentials Cluster).

CM44 Administrator responds to reported or detected attacks and malfunctions (e.g., by
adding Devices to a denylist, notifying the user, changing group keys, or hopping
channels).

CM45 Configuration for secure channel protocol is carefully negotiated and validated by
both parties.

CM46 Devices validate configuration and input changes for length, character type, and
acceptable values and ranges before applying them. This validation is dependent
on the configuration or input being applied (e.g. ACL entries). Configuration and
input validation is explicitly defined in relevant sections of the specification.

CM47 Device management service uses a secure communication mechanism for recon
figuration.

CM51 Battery powered Devices respond to excessive queries by rate limiting (even limit
ing the rate to zero if desired).

CM57 Devices implement resiliency features (e.g., responding to secure boot failures
with recovery or error signaling mode) to detect and handle compromise.

CM58 Devices support OTA firmware updates. Devices validate the authenticity and
integrity of the firmware prior to installation.

CM59 Manufacturers monitor newly discovered vulnerabilities and provide software
updates to address them.

CM62 Protection against physical attacks (especially those that impact cybersecurity) is
needed for some Devices, as determined by the manufacturer.

CM77 All Devices protect the confidentiality of attestation (DAC) private keys. The level
and nature of protection for these keys may vary depending on the nature of the
Device.

CM78 Devices use random initialization vectors.

CM87 All Nodes protect the confidentiality of operational credential private keys. The
level and nature of protection for these keys may vary depending on the nature of
the Nodes.

CM89 The setup code is not photographable (e.g., NFC) or not visible when installed (e.g.,
QR code hidden with a flap).

CM99 Devices utilize multiple hashes in PBKDF.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 956 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

ID Description

CM100 Device exits commissioning mode after 20 failed commissioning attempts.

CM107 Devices include protection (if it exists) against known remote attacks that can be
used to extract or infer cryptographic key material.

CM113 Fusing of Production Devices is done correctly. For example, disabling debug
interfaces, and programming trust anchors for secure boot. There are multiple
options to secure fusing on the factory floor (e.g., physically securing the fusing
station, pre-fusing the silicon, etc).

CM149 Administrators only grant privileges to a Bridge if the Administrator is comfort
able granting those same privileges to all Bridged Devices behind that Bridge.

CM152 Device manufacturers provide a way to secure a static Passcode after initial com
missioning so that it is not available for unauthorized agents.

CM154 A device manufacturer implements Section 5.6.2, “Basic Commissioning Method
(BCM)” only for devices that adequately secure the Passcode.

CM160 Vendors sign off on some other entity posting data about their products to the
DCL.

CM163 Tightly restrict access to Validator Nodes (e.g., with VPN that only permits Valida
tor Nodes, Observer Nodes, and authenticated clients with write access).

CM166 Matter vendors run and use their own Observer Node and restrict access to it to
make sure that it stays available to that company’s DCL clients.

CM167 Matter vendors protect DCL private keys in HSM equipped servers.

CM169 All parameters passed in transactions and queries to the DCL pass input valida
tion checks.

CM183 VID & PID are not advertised before Commissioning.

CM244 Commissioners and Administrators carefully control which Nodes get Administer,
Manage, or Operate privilege, especially for safety-critical systems like Door Locks
and Smoke CO Alarms.

CM245 Device manufacturers consider carefully whether their products that support
remotely starting its operation could do harm to the end user; if so, require some
additional operations (e.g. attended confirmation for remote start).

CM248 Devices with content launching features require source of content origin and per
form verification of origin information and display human-friendly information
before sharing Video content and/or commands to perform sharing of content

CM249 The Screen device and content sharing client support implementing the minimum
required WebRTC security requirements as stated in w3c and webrtc-security
WebRTC security requirements (see https://www.w3.org/TR/webrtc/#privacy-and-
security-considerations and https://webrtc-security.github.io)

CM250 The commissioner require utilizing ACL or similar access control mechanisms for
uniquely identifying and controlling access by Video content-sharing clients so
that access control can be managed and revoked without impacting the primary
device admin account

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 957

https://www.w3.org/TR/webrtc/#privacy-and-security-considerations
https://www.w3.org/TR/webrtc/#privacy-and-security-considerations
https://webrtc-security.github.io

ID Description

CM251 Devices supporting content control functionality will enforce the required
parental controls specific to the content being shared and inform the user of limi
tations of this control, for example, when these settings do not apply to content
provided by Content Apps on the TV

CM252 The Screen device provide access using dynamic passcode or user-defined
passphrase (similar to other casting protocols) with options to reset frequently

CM253 Detect and surface to the user suspicious behavior by unauthenticated network
clients and provide the user with the option to disable any information or func
tionality exposed to unauthenticated clients

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 958 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix A: Tag-length-value (TLV)
Encoding Format

A.1. Scope & Purpose
The Matter TLV (Tag-Length-Value) format is a generalized encoding method for simple structured
data, used throughout this specification.

Values in the Matter TLV format are encoded as TLV elements. Each TLV element has a type. Ele
ment types fall into two categories: primitive types and container types. Primitive types convey fun
damental data values such as integers and strings. Container types convey collections of elements
that themselves are either primitives or containers. The Matter TLV format supports three different
container types: structures, arrays and lists.

All valid TLV encodings consist of a single top-level element. This value can be either a primitive
type or a container type.

A.2. Tags
A TLV element includes an optional numeric tag that identifies its purpose. A TLV element without
a tag is called an anonymous element. For elements with tags, two categories of tags are defined:
profile-specific and context-specific.

A.2.1. Profile-Specific Tags

Profile-specific tags identify elements globally. A profile-specific tag is a 64-bit number composed of
the following fields:

• 16-bit Vendor ID

• 16-bit profile number

• 32-bit tag number

Profile-specific tags are defined either by Matter or by vendors. Additionally the Matter Common
Profile includes a set of predefined profile-specific tags that can be used across organizations.

A.2.2. Context-Specific Tags

Context-specific tags identify elements within the context of a containing structure element. A con
text-specific tag consists of a single 8-bit tag number. The meaning of a context-specific tag derives
from the structure it resides in, implying that the same tag number may have different meanings in
the context of different structures. Effectively, the interpretation of a context-specific tag depends
on the tag attached to the containing element. Because structures themselves can be assigned con
text-specific tags, the interpretation of a context-specific tag may ultimately depend on a nested
chain of such tags.

Context-specific tags can only be assigned to elements that are immediately within a structure. This

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 959

implies that an element with a context-specific tag cannot appear as the outermost element of a TLV
encoding.

A.2.3. Anonymous Tags

A special "anonymous tag" is used to denote TLV elements that lack a tag value. Such a TLV element
is referred to as an anonymous element.

A.2.4. Canonical Ordering of Tags

Where a distinguished ordering of tags is required (e.g. for the purposes of generating a hash or
cryptographic signature of elements within a structure), the following ordering rules SHALL be
used:

• Anonymous tags SHALL be ordered before all other tags.

• Context-specific tags SHALL be ordered before profile-specific tags.

• Context-specific tags with numerically lower tag values SHALL be ordered before those with
higher tag values.

• Profile-specific tags with numerically lower Vendor IDs SHALL be ordered before those with
higher Vendor IDs.

• Profile-specific tags with the same Vendor ID, but numerically lower profile numbers SHALL be
ordered before those with higher profile numbers.

• Profile-specific tags with the same Vendor ID and the same profile numbers but numerically
lower tag numbers SHALL be ordered before those with higher tag numbers.

The ordering rules SHALL apply to elements at the same level within a container.

A.3. Lengths
Depending on its type, a TLV element may contain a length field that gives the length, in octets, of
the element’s value field. A length field is only present for string types (character and octet strings).
Other element types either have a predetermined length or are encoded with a marker that identi
fies their end.

A.4. Primitive Types
The Matter TLV format supports the following primitive types:

• Signed integers

• Unsigned integers

• UTF-8 Strings

• Octet Strings

• Single or double-precision floating point numbers (following IEEE 754-2019)

• Booleans

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 960 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

• Nulls

Of the primitive types, integers, floating point numbers, booleans and nulls have a predetermined
length specified by their type. Octet strings and UTF-8 strings include a length field that gives their
lengths in octets.

A.5. Container Types
The Matter TLV format supports the following container types:

• Structures

• Arrays

• Lists

Each of the container types is a form of element collection that can contain primitive types and/or
other container types. The elements appearing immediately within a container type are called its
members. A container type can contain any number of member elements, including none. Con
tainer types can be nested to any depth and in any combination. The end of a container type is
denoted by a special element called the ‘end-of-container’ element. Although encoded as a member,
conceptually the end-of-container element is not included in the members of the containing type.

A.5.1. Structures

A structure is a collection of member elements that each have a distinct meaning. All member ele
ments within a structure SHALL have a unique tag as compared to the other members of the struc
ture. Member elements without tags (anonymous elements) are not allowed in structures. The
encoded ordering of members in a structure may or may not be important depending on the intent
of the sender or the expectations of the receiver. For example, in some situations, senders and
receivers may agree on a particular ordering of elements to make encoding and decoding easier.

Where a distinguished ordering of members is required (for example, for the purposes of generat
ing a hash or cryptographic signature of the structure), the members of the structure SHALL be
encoded as specified in Section A.2.4, “Canonical Ordering of Tags”.

A.5.2. Arrays

An array is an ordered collection of member elements that either do not have distinct meanings, or
whose meanings are implied by their encoded positions in the array. An array can contain any type
of element, including other arrays. All member elements of an array SHALL be anonymous ele
ments – that is, they SHALL be encoded with an anonymous tag.

A.5.3. Lists

A list is an ordered collection of member elements, each of which may be encoded with a tag. The
meanings of member elements in a list are denoted by their position within the list in conjunction
with any associated tag value they may have.

A list can contain any type of element, including other lists. The members of a list may be encoded

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 961

with any form of tag, including an anonymous tag. The tags within a list do not need to be unique
with respect to other members of the list.

A.6. Element Encoding
A TLV element is encoded a single control octet, followed by a sequence of tag, length and value
octets. Depending on the nature of the element, any of the tag, length or value fields may be omit
ted.

Control Octet Tag Length Value

1 octet 0 to 8 octets 0 to 8 octets Variable

A.7. Control Octet Encoding
The control octet specifies the type of a TLV element and how its tag, length and value fields are
encoded. The control octet consists of two subfields: an element type field which occupies the lower
5 bits, and a tag control field which occupies the upper 3 bits.

A.7.1. Element Type Field

The element type field encodes the element’s type as well as how the corresponding length and
value fields are encoded. In the case of Booleans and the Null value, the element type field also
encodes the value itself.

Control Octet Description

Tag Control Element Type

7 6 5 4 3 2 1 0

x x x 0 0 0 0 0 Signed Integer, 1-octet value

x x x 0 0 0 0 1 Signed Integer, 2-octet value

x x x 0 0 0 1 0 Signed Integer, 4-octet value

x x x 0 0 0 1 1 Signed Integer, 8-octet value

x x x 0 0 1 0 0 Unsigned Integer, 1-octet value

x x x 0 0 1 0 1 Unsigned Integer, 2-octet value

x x x 0 0 1 1 0 Unsigned Integer, 4-octet value

x x x 0 0 1 1 1 Unsigned Integer, 8-octet value

x x x 0 1 0 0 0 Boolean False

x x x 0 1 0 0 1 Boolean True

x x x 0 1 0 1 0 Floating Point Number, 4-octet value

x x x 0 1 0 1 1 Floating Point Number, 8-octet value

x x x 0 1 1 0 0 UTF-8 String, 1-octet length

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 962 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Control Octet Description

x x x 0 1 1 0 1 UTF-8 String, 2-octet length

x x x 0 1 1 1 0 UTF-8 String, 4-octet length

x x x 0 1 1 1 1 UTF-8 String, 8-octet length

x x x 1 0 0 0 0 Octet String, 1-octet length

x x x 1 0 0 0 1 Octet String, 2-octet length

x x x 1 0 0 1 0 Octet String, 4-octet length

x x x 1 0 0 1 1 Octet String, 8-octet length

x x x 1 0 1 0 0 Null

x x x 1 0 1 0 1 Structure

x x x 1 0 1 1 0 Array

x x x 1 0 1 1 1 List

0 0 0 1 1 0 0 0 End of Container

x x x 1 1 0 0 0 Reserved (where xxx are not 000)

x x x 1 1 0 0 1 Reserved

x x x 1 1 0 1 0 Reserved

x x x 1 1 0 1 1 Reserved

x x x 1 1 1 0 0 Reserved

x x x 1 1 1 0 1 Reserved

x x x 1 1 1 1 0 Reserved

x x x 1 1 1 1 1 Reserved

For both signed and unsigned integer types the bottom two bits of the element type field signal the
width of the corresponding field as follows:

• 00 — 1 octet

• 01 — 2 octets

• 10 — 4 octets

• 11 — 8 octets

For UTF-8 and octet string types the bottom two bits of the element type field signal the width of the
length field as follows:

• 00 — 1 octet

• 01 — 2 octets

• 10 — 4 octets

• 11 — 8 octets

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 963

For end of container element type the tag control bits are set to 0. Any other combination of the tag
control bits for this element type only is reserved. See Section A.10, “End of Container Encoding”.

A.7.2. Tag Control Field

The tag control field identifies the form of tag assigned to the element (including none) as well as
the encoding of the tag octets.

Control Octet Description

Tag Control Element Type

7 6 5 4 3 2 1 0

0 0 0 x x x x x Anonymous Tag Form, 0 octets

0 0 1 x x x x x Context-specific Tag Form, 1 octet

0 1 0 x x x x x Common Profile Tag Form, 2 octets

0 1 1 x x x x x Common Profile Tag Form, 4 octets

1 0 0 x x x x x Implicit Profile Tag Form, 2 octets

1 0 1 x x x x x Implicit Profile Tag Form, 4 octets

1 1 0 x x x x x Fully-qualified Tag Form, 6 octets

1 1 1 x x x x x Fully-qualified Tag Form, 8 octets

A.8. Tag Encoding
Tags are encoded in 0, 1, 2, 4, 6 or 8 octet widths as specified by the tag control field. Tags consist of
up to three numeric fields: a Vendor ID field, a profile number field, and a tag number field. All fields
are encoded in little-endian order. The tag fields are ordered as follows:

Vendor ID Profile Number Tag Number

0 or 2 octets 0 or 2 octets 1, 2, or 4 octets

A.8.1. Fully-Qualified Tag Form

A profile-specific tag can be encoded in fully-qualified tag form, where the encoding includes all
three tag components (Vendor ID, profile number and tag number). Two variants of this form are
supported, one with a 16-bit tag number and one with a 32-bit tag number. The 16-bit variant
SHALL be used with tag numbers < 65536, while the 32-bit variant SHALL be used with tag num
bers >= 65536.

Tag Control Vendor ID Size Profile Number
Size

Tag Number Size

110b 2 octets 2 octets 2 octets For tag numbers <
65536

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 964 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Tag Control Vendor ID Size Profile Number
Size

Tag Number Size

111b 2 octets 2 octets 4 octets For tag numbers
>= 65536

A.8.2. Implicit Profile Tag Form

A profile-specific tag can also be encoded in implicit profile tag form, where the encoding includes
only the tag number, and the Vendor ID and profile number are inferred from the protocol context
in which the TLV encoding is communicated. This form also has two variants based on the magni
tude of the tag number.

Tag Control Tag Number Size

100b 2 octets For tag numbers < 65536

101b 4 octets For tag numbers >= 65536

A.8.3. Common Profile Tag Form

A special encoding exists for profile-specific tags that are defined by the Matter Common Profile.
These are encoded in the same manner as implicit profile tags except that they are identified as
common profile tags, rather than implicit profile tags in the tag control field.

Tag Control Tag Number Size

010b 2 octets For tag numbers < 65536

011b 4 octets For tag numbers >= 65536

A.8.4. Context-Specific Tag Form

Context-specific tags are encoded as a single octet conveying the tag number.

Tag Control Tag Number Size

001b 1 octets All tag numbers 0 - 255

A.8.5. Anonymous Tag Form

Anonymous elements do not encode any tag octets.

Tag Control Tag Size

000b 0 octets No data encoded

A.9. Length Encoding
Length fields are encoded in 0, 1, 2, 4 or 8 octet widths, as specified by the element type field.
Length fields of more than one octet are encoded in little-endian order. The choice of width for the

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 965

length field is up to the discretion of the sender, implying that a sender can choose to send more
length octets than strictly necessary to encode the value.

A.10. End of Container Encoding
The end of a container type is marked with a special element called the end-of-container element.
The end-of-container element is encoded as a single control octet with the value 18h. The tag con
trol bits within the control octet SHALL be set to zero, implying that end-of-container element can
never have a tag.

Control Octet

1 octet

A.11. Value Encodings

A.11.1. Integers

An integer element is encoded as follows:

Control Octet Tag Value

1 octet 0 to 8 octets 1, 2, 4 or 8 octets

The number of octets in the value field is indicated by the element type field within the control
octet. The choice of value octet count is at the sender’s discretion, implying that a sender is free to
send more octets than strictly necessary to encode the value. Within the value octets, the integer
value is encoded in little-endian format (two’s complement format for signed integers).

A.11.2. UTF-8 and Octet Strings

UTF-8 and octet strings are encoded as follows:

Control Octet Tag Length Value

1 octet 0 to 8 octets 1 to 8 octets 0 to 264-1 octets

The length field of a UTF-8 or octet string encodes the number of octets (not characters) present in
the value field. The number of octets in the length field is implied by the type specified in the ele
ment type field (within the control octet).

For octet strings, the value can be any arbitrary sequence of octets. For UTF-8 strings, the value
octets SHALL encode a valid UTF-8 character (code points) sequence. Senders SHALL NOT include a
terminating null character to mark the end of a string.

A.11.3. Booleans

Boolean elements are encoded as follows:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 966 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Control Octet Tag

1 octet 0 to 8 octets

The value of a Boolean element (true or false) is implied by the type indicated in the element type
field.

A.11.4. Arrays, Structures and Lists

Array, structure and list elements are encoded as follows:

Control Octet Tag Value End-of-Container

1 octet 0 to 8 octets Variable 1 octet

The value field of an array/structure/list element is a sequence of encoded TLV elements that consti
tute the members of the element, followed by an end-of-container element. The end-of-container
element SHALL always be present, even in cases where the end of the array/structure/list element
could be inferred by other means (e.g. the length of the packet containing the TLV encoding).

A.11.5. Floating Point Numbers

A floating point number is encoded as follows:

Control Octet Tag Value

1 octet 0 to 8 octets 4 or 8 octets

The value field of a floating point element contains an IEEE 754-2019 single or double precision
floating point number encoded in little-endian format (specifically, the reverse of the order
described in External Data Representation, RFC 4506). The choice of precision is implied by the type
specified in the element type field (within the control octet). The sender is free to choose either pre
cision at their discretion.

A.11.6. Nulls

A Null value is encoded as follows:

Control Octet Tag

1 octet 0 to 8 octets

A.12. TLV Encoding Examples
In order to better ground the TLV concepts, this subsection provides a set of sample encodings. In
the tables below, type and values column uses a decimal representation for all number whereas the
encoding is represented with hexadecimal numbers.

Table 94, “Sample encoding of primitive types” shows sample encodings for primitive types. All
examples in the table below are encoded as anonymous elements.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 967

Table 94. Sample encoding of primitive types

Type and Value Encoding (hex)

Boolean false 08

Boolean true 09

Signed Integer, 1-octet, value 42 00 2a

Signed Integer, 1-octet, value -17 00 ef

Unsigned Integer, 1-octet, value 42U 04 2a

Signed Integer, 2-octet, value 42 01 2a 00

Signed Integer, 4-octet, value -170000 02 f0 67 fd ff

Signed Integer, 8-octet, value 40000000000 03 00 90 2f 50 09 00 00 00

UTF-8 String, 1-octet length, "Hello!" 0c 06 48 65 6c 6c 6f 21

UTF-8 String, 1-octet length, "Tschüs" 0c 07 54 73 63 68 c3 bc 73

Octet String, 1-octet length, octets 00 01 02 03 04 10 05 00 01 02 03 04

Null 14

Single precision floating point 0.0 0a 00 00 00 00

Single precision floating point (1.0 / 3.0) 0a ab aa aa 3e

Single precision floating point 17.9 0a 33 33 8f 41

Single precision floating point infinity (∞) 0a 00 00 80 7f

Single precision floating point negative infinity
(-∞)

0a 00 00 80 ff

Double precision floating point 0.0 0b 00 00 00 00 00 00 00 00

Double precision floating point (1.0 / 3.0) 0b 55 55 55 55 55 55 d5 3f

Double precision floating point 17.9 0b 66 66 66 66 66 e6 31 40

Double precision floating point infinity (∞) 0b 00 00 00 00 00 00 f0 7f

Double precision floating point negative infinity
(-∞)

0b 00 00 00 00 00 00 f0 ff

Table 95, “Sample encoding of containers” shows sample encodings for container types. In each of
the examples below, the outermost container is encoded as an anonymous element.

Table 95. Sample encoding of containers

Type and Value Encoding (hex)

Empty Structure, {} 15 18

Empty Array, [] 16 18

Empty List, [] 17 18

Structure, two context specific tags, Signed Inte
ger, 1 octet values, {0 = 42, 1 = -17}

15 20 00 2a 20 01 ef 18

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 968 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Type and Value Encoding (hex)

Array, Signed Integer, 1-octet values, [0, 1, 2,
3, 4]

16 00 00 00 01 00 02 00 03 00 04 18

List, mix of anonymous and context tags, Signed
Integer, 1 octet values, [[1, 0 = 42, 2, 3, 0 =
-17]]

17 00 01 20 00 2a 00 02 00 03 20 00 ef 18

Array, mix of element types, [42, -170000, {},
17.9, "Hello!"]

16 00 2a 02 f0 67 fd ff 15 18 0a 33 33 8f 41
0c 06 48 65 6c 6c 6f 21 18

Table 96, “Sample encoding of different tag types” shows sample encoding of a value with different
associated tags, using Vendor ID = : 65522 (0xFFF2), one of the Vendor IDs allocated for testing pur
poses.

Table 96. Sample encoding of different tag types

Type and Value Encoding (hex)

Anonymous tag, Unsigned Integer, 1-octet value,
42U

04 2a

Context tag 1, Unsigned Integer, 1-octet value, 1
= 42U

24 01 2a

Common profile tag 1, Unsigned Integer, 1-octet
value, Matter::1 = 42U

44 01 00 2a

Common profile tag 100000, Unsigned Integer, 1-
octet value, Matter::100000 = 42U

64 a0 86 01 00 2a

Fully qualified tag, Vendor ID 0xFFF1/65521, pro
file number 0xDEED/57069, 2-octet tag 1, Unsigned
Integer, 1-octet value 42, 65521::57069:1 = 42U

c4 f1 ff ed de 01 00 2a

Fully qualified tag, Vendor ID 0xFFF1/65521, pro
file number 0xDEED/57069, 4-octet tag
0xAA55FEED/2857762541, Unsigned Integer, 1-octet
value 42, 65521::57069:2857762541 = 42U

e4 f1 ff ed de ed fe 55 aa 2a

Structure with the fully qualified tag, Vendor ID
0xFFF1/65521, profile number 0xDEED/57069, 2-
octet tag 1. The structure contains a single ele
ment labeled using a fully qualified tag under
the same profile, with 2-octet tag 0xAA55/43605.
65521::57069:1 = {65521::57069:43605 = 42U}

d5 f1 ff ed de 01 00 c4 f1 ff ed de 55 aa 2a
18

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 969

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 970 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix B: Tag-length-value (TLV) Schema
Definitions

B.1. Introduction
A TLV Schema provides a simple textual description of the structure of data encoded in the Matter
TLV format. A single TLV Schema MAY define the structure of multiple different TLV-encoded pay
loads. This section describes the syntax one can use to define a TLV Schema.

B.1.1. Basic Structure

A TLV Schema takes the form of a series of definitions. Each definition describes some construct,
such as a data type. Each definition has an associated human readable name separated from the
definition with a ⇒ symbol. As a mnemonic device, it is useful to read the ⇒ symbol as “is a”. For
example, the following definition defines a data type that MAY be used to represent a sensor sam
ple:

Example

/** Sensor sample structure */
sensor-sample => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER [range 32-bits],
 value [2] : FLOAT64,
}

This example would be read as "sensor-sample is a structure containing a timestamp and value".

A TLV Schema MAY contain multiple definitions. The order of definitions within a TLV Schema is
unimportant.

B.1.2. Keywords

TLV Schemas employ various keywords when describing a construct. These keywords (e.g. STRUC
TURE, SIGNED INTEGER, and range) are an inherent part of the schema language. Keywords in TLV
Schemas are always case-insensitive. However, by convention, keywords associated with types and
other high-level constructs are capitalized for emphasis in text-only contexts.

B.1.3. Naming

Each definition in a TLV Schema assigns a human-readable name to the construct being defined.
This name serves both as a descriptive title as well as a means to refer to the construct from else
where in the schema.

Names in TLV Schemas are limited to ASCII alphanumeric characters, plus dash (-) and underscore
(_). Additionally, all names SHALL begin with either an alphabetic character or an underscore. In
general, any name conforming to these rules MAY be used, as long as it does not collide with a key

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 971

word used by the schema language.

B.1.4. Namespaces

The name assigned to a schema construct SHALL be unique relative to all other named constructs
in the same scope. To facilitate this, TLV Schemas support a namespacing mechanism similar to that
provided in languages like C++.

The names of constructs defined within a namespace definition are only required to be unique
within the given namespace. Namespaces themselves MAY be nested to any depth.

Constructs defined in other namespaces MAY be referenced using a name that gives the enclosing
namespaces, plus the construct name, each separated by dots (.). Such a multi-part name is called a
scoped name. For example:

Namespaces Example

namespace a
{
 x => STRING,
 other-x => b.x
}

namespace b
{
 x => SIGNED INTEGER
}

See namespace-def for further details.

B.1.5. Qualifiers

Constructs within a TLV Schema MAY be annotated with additional information using a qualifier.
Qualifiers appear within square brackets ([…]) immediately following the construct they affect. In
most cases the use of qualifiers is optional, but there are some situations where the schema syntax
requires a qualifier.

Often qualifiers are used to place restrictions on the form or range of values that a construct can
assume. For example a length qualifier MAY be used to constrain the length of a STRING type:

international-standard-book-number => STRING [length 13]

Multiple qualifiers MAY appear within the square brackets, and SHALL be separated by commas.

See Section B.5, “Qualifiers” for further details.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 972 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

B.1.6. Tagging

In a TLV Schema, tag numbers appear as qualifiers attached to a particular named construct, such
as a field within a structure. This association reflects the tag’s role as an alias for the textual name
in the TLV encoding. The syntax for tag qualifiers is defined in tag. For example:

Tagging Example

certificate [my-protocol:1] => STRUCTURE
{
 serial-num [1] : OCTET STRING,
 ...
}

B.2. Definitions
A Matter TLV Schema consists of a set of one or more definitions. The definitions that MAY appear
within a schema are:

• type-def

• field-group-def

• namespace-def

• protocol-def

• vendor-def

B.2.1. Type Definition (type-def)

Type Definition Syntax

type-name [qualifier] => type-or-ref

type-or-ref:
 type
 type-ref

type:
 ANY
 ARRAY
 ARRAY OF
 BOOLEAN
 CHOICE OF
 FLOAT32
 FLOAT64
 LIST
 LIST OF
 NULL
 OCTET STRING
 SIGNED INTEGER

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 973

 STRING
 STRUCTURE
 UNSIGNED INTEGER

type-ref:
 type-name
 scoped-type-name

qualifier:
 tag

A type definition associates a name (type-name) with a schema construct representing a TLV type or
pseudo-type. The given name serves as a descriptive title for the type, as well as a means to refer to
the type from elsewhere in the schema.

Type definitions (type-def) are often used to describe TLV types that appear directly in some form
of communication. For example, a type definition MAY define the structure of data carried within
the payload of a message. Some type definitions may be used to define general purpose TLV con
structs which are then employed in the definitions of other types.

The type (type-name) associated with a type definition MAY be any one of the available TLV types or
pseudo-type. Alternatively, a type definition MAY contain a scoped type (scoped-type-name) referring
to another type definition appearing elsewhere in the schema. This form is referred to as a type ref
erence (type-ref). The ordering of type definitions and type references within a schema is unimpor
tant, implying that a type reference MAY refer to a type that is defined later in the schema.

A tag qualifier MAY be applied to the name within a type definition to associate a default tag with
that name. The default tag will be used in an encoding of the type whenever an explicit tag has not
been given.

B.2.2. FIELD GROUP Definition (field-group-def)

FIELD GROUP Definition Syntax

field-group-name => FIELD GROUP { field-group-members }

field-group-members:
 field-group-member
 field-group-members, field-group-member

field-group-member:
 identifier [id-qualifier] : type-or-ref // field definition
 includes field-group-name // field group include

id-qualifier:
 tag // SHALL be present
 optional

FIELD GROUP declares a collection of fields that MAY be included in a TLV Structure. A FIELD GROUP is

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 974 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

never directly encoded in a TLV encoding. A FIELD GROUP is used with includes statement to define
common patterns of fields such that they MAY be reused across different STRUCTURE definitions.

A FIELD GROUP definition (field-group-def) contains a list of field definitions, each of which gives the
type of the field, its tag, and an associated textual name. The field type MAY be either a fundamen
tal type, a CHOICE OF pseudo-type, an ANY pseudo-type, or a reference to one of these types defined
outside the FIELD GROUP definition.

A FIELD GROUP definition MAY also contain one or more includes statements. Each such statement
identifies another FIELD GROUP whose fields are to be included within the referencing FIELD GROUP.
Such nested inclusion MAY be specified to any depth.

The rules governing the names and tags associated with fields within a FIELD GROUP are the same as
those defined for STRUCTURE.

FIELD GROUP Definition Examples

common-sensor-sample-fields => FIELD GROUP
{
 timestamp [1] : UNSIGNED INTEGER [range 32-bits],
}

temperature-sensor-sample => STRUCTURE [tag-order]
{
 includes common-sensor-sample-fields,

 value [2] : FLOAT64,
}

humidity-sensor-sample => STRUCTURE [tag-order]
{
 includes common-sensor-sample-fields,

 value [2] : UNSIGNED INTEGER [range 64-bits],
}

B.2.3. Namespace Definition (namespace-def)

Namespace Definition Syntax

namespace ns-name { ns-scoped-defs }

ns-name:
 name
 scoped-name

ns-scoped-defs:
 ns-scoped-def
 ns-scoped-defs, ns-scoped-def

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 975

ns-scoped-def:
 type-def
 field-group-def
 protocol-def
 namespace-def

namespace introduces a new naming scope. Definitions that appear within the braces of a name
space definition are scoped to that namespace, such that their names need only be unique within
the bounds of the enclosing scope. The namespace scoped definitions SHALL be separated by com
mas.

In general, four forms of definitions MAY appear within a namespace: type definitions (type-def),
FIELD GROUP definitions (field-group-def), protocol definitions (protocol-def) and further namespace
definitions (namespace-def). Namespace definitions MAY be nested to any level. Protocol defini
tions, however, are restricted such that they SHALL NOT be nested. Thus a namespace can only con
tain a protocol definition if the namespace itself is not located, at any level, within another protocol
definition.

The name used in a namespace definition MAY be either a simple name, such as a, or a scoped-name,
such as a.b.c. When a scoped-name is used, the effect is exactly as if multiple nested namespaces had
been declared, each named after a part of the scoped name.

It is legal to have multiple namespace definitions, each with the same name, defined within the
same scope. The effect is as if there were only a single namespace definition containing a union of
the enclosed definitions. Thus, a namespace definition with the same name as a preceding defini
tion MAY be seen as a kind of continuation of the earlier one.

Namespace Definition Examples

namespace abc
{
 property => FLOAT32 [range 0..50],

 point => STRUCTURE
 {
 day [0] : UNSIGNED INTEGER,
 prop [1] : property
 }
}

namespace matter.protocols.aaa
{
 config => STRUCTURE
 {
 points [0] : ARRAY OF abc.point,
 ...
 }
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 976 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

B.2.4. PROTOCOL Definition (protocol-def)

PROTOCOL Definition Syntax

name => PROTOCOL [qualifier] { protocol-scoped-defs }

qualifier:
 id

protocol-scoped-defs:
 protocol-scoped-def
 protocol-scoped-defs, protocol-scoped-def

protocol-scoped-def:
 type-def
 field-group-def
 namespace-def

PROTOCOL defines a Matter protocol. A Matter protocol is a group of logically related Matter TLV con
structs that together serve a common purpose.

Similar to a namespace definition, a PROTOCOL definition introduces a new naming scope in which fur
ther definitions may appear. The names of definitions appearing within the braces of a PROTOCOL are
scoped in exactly the same way as if they had appeared within a namespace definition. Likewise, con
structs outside the PROTOCOL definition MAY refer to definitions within the protocol by using a
scoped name that includes the protocol name. The PROTOCOL scoped definitions SHALL be separated
by commas.

PROTOCOL definitions MAY appear at the global naming scope, or within a namespace definition.
However, PROTOCOL definitions SHALL NOT be nested within other PROTOCOL definitions at any depth.

Every PROTOCOL definition SHALL include an id qualifier giving the id of the protocol, that uniquely
identifies the protocol among all other protocols. The id given in a PROTOCOL definition SHALL be
unique relative to all other PROTOCOL definitions in a schema. However, it is legal to have multiple
PROTOCOL definitions with the same protocol id, provided that they also have the same name and
appear within the same naming scope. The effect of this is as if there were only a single PROTOCOL
definition containing a union of the enclosed definitions. This makes it possible to break up a PROTO
COL definition across multiple schema files.

PROTOCOL Definition Example

namespace some.names {

 my-protocol => PROTOCOL [VENDOR:0x0008]
 {
 laser-transducer-metadata [1] => STRUCTURE
 {
 serial-num [1] : OCTET STRING,
 ...
 },

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 977

 optics-array [2] => ARRAY OF optical-specification
 }

}

B.2.5. VENDOR Definition (vendor-def)

VENDOR Definition Syntax

name => VENDOR [qualifier]

qualifier:
 id

VENDOR associates a name with a Vendor ID. VENDOR definition SHALL include an id qualifier giving
the id of the vendor.

In a TLV Schema that includes a VENDOR definition, the vendor name MAY be used elsewhere in the
schema as a stand-in for the associated Vendor ID. One such place where a vendor name may
appear is within the id qualifier of a PROTOCOL definition.

VENDOR definitions MAY only appear at the global name scope, implying they SHALL NOT be placed
within the body of a namespace or PROTOCOL definition.

Both the name and id value used in a VENDOR definition SHALL be unique across all such definitions.
However, for convenience, a VENDOR definition MAY be repeated provided that the name and id are
the same.

The Matter vendor (0x00000) is implicitly defined in all schemas, although it MAY be explicitly
defined as well:

VENDOR Definition Example

Matter => VENDOR [0x0000]

B.3. Types
The TLV format supports 10 fundamental types: integers (signed and unsigned), floats, booleans,
UTF-8 strings, octet strings, structures, arrays, lists and nulls. Accordingly, a TLV Schema MAY use
one of the following type constructs to constrain an encoding to be one of these fundamental types.

B.3.1. ARRAY / ARRAY OF

ARRAY Syntax

ARRAY [qualifier] OF type-or-ref // uniform array
ARRAY [qualifier] { type-pattern } // pattern array

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 978 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

qualifier (optional):
 length
 nullable

type-pattern:
 type-pattern-item
 type-pattern, type-pattern-item

type-pattern-item:
 type-or-ref quantifier // unnamed item
 identifier : type-or-ref quantifier // named item

quantifier (optional):
 * // zero or more
 + // one or more
 { count } // exactly count
 { min..max } // between min and max
 { min.. } // at least min

ARRAY and ARRAY OF declare an element that is encoded as a TLV Array.

ARRAY OF declares an array where all the items in the array are of the same fundamental type, or
taken from the same set of possible types. This form of array is called a uniform array, and is gener
ally used to represent ordered collections of values.

ARRAY declares an array where the types of the array items follow a particular pattern. In this form,
known as a pattern array; the allowed type for an item depends on its position in the array. The
overall pattern of types allowed in the array is declared using a schema construct called a linear
type pattern, which is similar to a regular expression (see below). Pattern arrays are typically used
to represent vectors, tuples or paths.

A length qualifier on an array MAY be used to constraint the minimum and maximum number of
items in the array. For a pattern array, the given length constraint SHALL be consistent with (i.e. fall
within) the minimum and maximum number of items implied by the type pattern. In cases where
the length qualifier places a narrower constraint on the length of an array than that implied by the
type pattern, the length qualifier constraint takes precedence.

A nullable qualifier MAY be used to indicate that a TLV Null MAY be encoded in place of the ARRAY or
ARRAY OF. Note that an array that has been replaced by a Null is distinct in terms of its encoding
from an array that has no items.

B.3.1.1. Linear Type Patterns

A linear type pattern describes the sequence of TLV types that MAY appear in a TLV Array or List
element. In its simplest form, a linear type pattern is a list of type definitions, or references to
defined types, where each item constrains the TLV type that appears at the corresponding position
in the collection. The type pattern is always anchored at the start of the collection, with the first
type constraining the first item in the collection. Any type or pseudo-type MAY appear within a lin
ear type pattern.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 979

More complex type patterns can be created by using a quantifier. Quantifiers appear after a type in
a type pattern and specify the number of times the associated type MAY appear at that position in
the collection. Quantifiers borrow common regular expression notation to denote repetition, with *
meaning zero or more, + meaning one or more, and { } expressing specific counts. Using quanti
fiers, one can express complex sequences of types, including some that require arbitrary look-
ahead to match.

B.3.1.2. Item Names

Items or groups of items in a pattern array MAY be given textual names. These names do not affect
the encoding of the array, but serve as user documentation, or as input to code generation tools.
Item names within a pattern array SHALL be unique.

Per the rules for encoding TLV arrays, array items SHALL NOT have tags. Thus the tag qualifier
SHALL NOT be applied to an item name with a pattern array.

ARRAY Example

supported-country-codes => ARRAY [length 0..10] OF STRING [length 2]

weather-tuple => ARRAY
{
 timestamp : UNSIGNED INTEGER [range 32-bits],
 temperature : FLOAT64,
 relative-humidity : UNSIGNED INTEGER [range 0..100],
 precipitation : UNSIGNED INTEGER [range 0..100],
}

named-vector => ARRAY
{
 name : STRING,
 FLOAT64 *,
}

B.3.2. BOOLEAN

BOOLEAN Syntax

BOOLEAN [qualifier]

qualifier (optional):
 nullable

BOOLEAN declares an element that SHALL be encoded as a TLV Boolean.

If the nullable qualifier is given, a TLV Null MAY be encoded in its place.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 980 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

BOOLEAN Example

pathlight-enabled => BOOLEAN

B.3.3. FLOAT32 / FLOAT64

FLOAT Syntax

FLOAT32 [qualifier]
FLOAT64 [qualifier]

qualifier (optional):
 range
 nullable

FLOAT32 declares an element that SHALL be encoded as a TLV floating point number with the ele
ment type indicating a 4-octet IEEE 754-2019 single-precision value. Correspondingly, FLOAT64
declares a TLV element that SHALL be encoded as a TLV floating point number with the element
type indicating an 8-octet IEEE 754-2019 double-precision value.

If the nullable qualifier is given, a TLV Null MAY be encoded in place of the number.

The allowed range of values can be constrained using the range qualifier. If omitted, the value is
constrained by what the relevant TLV type can represent.

FLOAT Example

set-value => FLOAT32 [range 0..50]

B.3.4. SIGNED INTEGER / UNSIGNED INTEGER

Integer Syntax

SIGNED INTEGER [qualifier] { enum }
UNSIGNED INTEGER [qualifier] { enum }

qualifier (optional):
 range
 nullable

enum:
 identifier = int-value

SIGNED INTEGER declares an element that SHALL be encoded as a TLV integer with the element type
indicating the integer is signed. Correspondingly, UNSIGNED INTEGER declares a TLV element that
SHALL be encoded as a TLV integer with the element type indicating the integer is unsigned.

If the nullable qualifier is given, a TLV Null MAY be encoded in place of the integer.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 981

The allowed range of values MAY be constrained using the range qualifier. If omitted, the value is
constrained by what the relevant TLV type can represent.

SIGNED INTEGER and UNSIGNED INTEGER definitions MAY include a set of enumerated values (enum),
each of which associates a textual name (identifier) with a constant integer value (int-value). Each
value SHALL conform to the allowed range of values for the SIGNED INTEGER definition as given by
its sign and any range qualifier. The presence of enumerated values SHALL NOT restrict senders to
only encoding those values. Rather, enumerations merely give symbolic names to particular note
worthy values.

Integer Examples

sensor-value => SIGNED INTEGER [range -100..100]

counter => UNSIGNED INTEGER [range 32-bits]

B.3.5. LIST / LIST OF

LIST Syntax

LIST [list-qualifier] OF type-or-ref // uniform list
LIST [list-qualifier] { type-pattern } // pattern list

list-qualifier (optional):
 length
 nullable

type-pattern:
 type-or-ref quantifier // unnamed item
 identifier [qualifier] : type-or-ref quantifier // named item

quantifier (optional):
 * // zero or more
 + // one or more
 { count } // exactly count
 { min..max } // between min and max
 { min.. } // at least min

qualifier (optional):
 tag

LIST and LIST OF declare an element that is encoded as a TLV List. LIST and LIST OF declare the
same fundamental type, but differ based on how the allowed types of their items are expressed.

LIST OF declares a list where all the items in the list are of the same fundamental type, or taken
from the same set of possible types. This form of list is called a uniform list. Uniform lists are gener
ally used to represent ordered collections of values where the tags differentiate the semantic mean
ing of the value.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 982 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

LIST declares a pattern list where the types of the items in the list follow a particular pattern. In this
form, the allowed type(s) for an item depends on its position in the array. Pattern lists are typically
used to represent path-like constructs.

The overall pattern of types allowed in a pattern list is declared using a schema construct called a
linear type pattern. The syntax and interpretation of linear type patterns for pattern lists are the
same as those for pattern arrays (see Section B.3.1.1, “Linear Type Patterns”).

The length qualifier MAY be used to constraint the minimum and maximum number of items in the
list. For a pattern list, the given length constraint SHALL be consistent with (i.e. fall within) the min
imum and maximum number of items implied by the type pattern. In cases where the length quali
fier places a narrower constraint on the length of a list than that implied by the type pattern, the
length qualifier constraint takes precedence.

A nullable qualifier MAY be used to indicate that a TLV Null MAY be encoded in place of the LIST or
LIST OF. Note that a list that has been replaced by a Null is distinct (in terms of its encoding) from a
list that has no items.

B.3.5.1. Item Names

As with the ARRAY type, items or groups of items in a pattern list MAY be given textual names to dis
tinguish their purposes. Item names within a pattern list SHALL be unique.

B.3.5.2. Item Tags

Items within a pattern list can have a tag qualifier that specifies a particular tag value that SHALL
be encoded with the item. The specific tag can be protocol-specific or context-specific, or the anony
mous tag. The assigned tag values are not required to be unique among the items in a pattern list.

When no explicit tag qualifier is given (which is always the case for uniform lists) the items in a list
automatically assume the default tag of their underlying types, if such a tag is provided. This can
occur in two situations: 1) when the underlying type is a reference to a type definition that declares
a default tag, and 2) when the underlying type is a CHOICE OF whose alternates declare default tags.
See default tag for further information.

If no tag qualifier is given, and no default tag is available, an encoder is allowed to encode list items
with any tag of their choosing.

B.3.6. OCTET STRING

OCTET STRING Syntax

OCTET STRING [qualifier]

qualifier (optional):
 length
 nullable

OCTET STRING declares an element that is encoded as a TLV Octet String, and in particular with the
element type indicating it’s an Octet String.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 983

The minimum and maximum number of bytes can be constrained using the length qualifier.

OCTET STRING Example

address => OCTET STRING [length 8]

B.3.7. NULL

NULL Syntax

NULL

NULL declares an element that SHALL be encoded as a TLV Null. There are no qualifiers that can be
associated with a NULL type.

NULL Example

serial-num => CHOICE OF { STRING, UNSIGNED INTEGER, NULL }

B.3.8. STRING

STRING Syntax

STRING [qualifier]

qualifier (optional):
 length
 nullable

STRING declares an element that is encoded as a TLV UTF-8 String, and in particular with the ele
ment type indicating it’s a UTF-8 String.

If the nullable qualifier is given, a TLV Null MAY be encoded in place of the string.

The minimum and maximum length of the string can be constrained using the length qualifier.

STRING Example

name-field => STRING [length 0..32]

B.3.9. STRUCTURE

STRUCTURE Syntax

STRUCTURE [structure-qualifier] { structure-fields }

structure-qualifier (optional):
 extensible

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 984 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

 order
 nullable

structure-fields:
 structure-field
 structure-fields, structure-field

structure-field:
 identifier [id-qualifier] : type-or-ref // field definition
 includes field-group-name // field group include

id-qualifier:
 tag
 optional

STRUCTURE declares an element that is encoded as a TLV Structure. The STRUCTURE fields SHALL be
separated by commas.

A STRUCTURE definition declares the list of fields that MAY appear within the corresponding TLV
Structure. Each field definition gives the type of the field, its tag, and an associated textual name.
The field type MAY be either a fundamental type, a CHOICE OF pseudo-type, an ANY pseudo-type, or a
reference to one of these types defined outside the STRUCTURE definition.

A STRUCTURE definition MAY also contain one or more includes statements. Each such statement
identifies a FIELD GROUP definition whose fields are to be included within the TLV Structure as if
they had been declared within the STRUCTURE definition itself (see Includes FIELD GROUP below).

An extensible qualifier MAY be used to declare that a structure can be extended at encoding time by
the inclusion of fields not listed in the STRUCTURE definition.

The order qualifiers (any-order, schema-order and tag-order) MAY be used to specify a particular
order for the encoding of fields within a TLV Structure.

A nullable qualifier MAY be used to indicate that a TLV Null MAY be encoded in place of the STRUC
TURE.

B.3.9.1. Fields

Fields within a STRUCTURE are assigned textual names to distinguish them from one another. Each
such name SHALL be distinct from all other field names defined within the STRUCTURE or included
via a includes statement. Fields names do not affect the encoding of the resultant TLV, but MAY
serve as either user documentation or input to code generation tools.

Per the rules of TLV, all fields within a TLV Structure SHALL be encoded with a distinct TLV tag.
Field tags are declared by placing a tag qualifier on the field name. Both protocol-specific and con
text-specific tags are allowed on the fields in a STRUCTURE definition.

For a given field if the tag qualifier is missing then the underlying type SHALL provide a default tag.
This can occur in two situations:

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 985

1. the underlying type is a reference to a type definition that provides a default tag

2. the underlying type is a CHOICE OF pseudo-type whose alternates provide default tags.

The tags associated with includes fields are inherited from the target FIELD GROUP definition.

All tags associated with the fields of a TLV Structure SHALL be unique. This is true not only for tags
declared directly within the STRUCTURE definition, but also for any tags associated with fields that are
incorporated via an includes statement.

The anonymous tag SHALL NOT be used as the tag for a field within a STRUCTURE definition.

The optional qualifier MAY be used to declare a field which can be omitted from the structure
encoding under some circumstances.

B.3.9.2. CHOICE OF Fields

A field within a STRUCTURE definition MAY be defined to be a CHOICE OF (either directly within the
STRUCTURE definition or via a type reference). Over the wire, such a field is encoded as one of the
alternate types given in the CHOICE OF definition. For example, the user-id field in the following
STRUCTURE MAY be encoded as either a TLV UTF-8 String or an Unsigned Integer.

STRUCTURE with CHOICE OF Field Example

user-information => STRUCTURE [extensible]
{
user-id [1] : CHOICE OF
 {
 UNSIGNED INTEGER,
 STRING
 }
}

If a tag qualifier is given for a CHOICE OF field (e.g. [1] as shown above), that tag SHALL be used in
the encoding of the field for all possible alternates. On the other hand, if a tag qualifier is not given,
then the default tag associated with the selected CHOICE OF alternate SHALL be used in the encoding.
For example, in the following structure, a context-tag of 1 will be encoded if the user-id field is an
Unsigned Integer, or 2 if the field is a String.

STRUCTURE with CHOICE OF Field with Default Tag Example

user-information => STRUCTURE [extensible]
{
user-id : CHOICE OF
 {
 id [1] : UNSIGNED INTEGER,
 name [2] : STRING
 }
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 986 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Note that, in all cases, the tag or tags associated with a CHOICE OF field SHALL be unique within the
context of the containing STRUCTURE.

B.3.9.3. Includes FIELD GROUP

A includes statement MAY be used within a STRUCTURE definition to incorporate the fields of a FIELD
GROUP defined outside the STRUCTURE. The fields of the FIELD GROUP are included in the STRUCTURE as if
they had been listed within the STRUCTURE definition itself.

A particular FIELD GROUP SHALL NOT be included more than once within a given STRUCTURE.

The names assigned to fields within an included FIELD GROUP SHALL be distinct with respect to all
other fields contained within the enclosing STRUCTURE, whether defined directly within the STRUCTURE
itself, or included from another FIELD GROUP.

Likewise, tags assigned to fields within an included FIELD GROUP SHALL be distinct with respect to
all other fields within the enclosing STRUCTURE.

B.4. Pseudo-Types
Pseudo-types are type-like constructs that provide flexibility in schema definitions. Some pseudo-
types, like CHOICE OF and ANY, allow for variance in the fundamental TLV types that may appear in
an encoding. Others make it easier to reuse schema constructs in multiple contexts.

B.4.1. ANY

ANY Syntax

ANY

ANY declares an element that can be encoded as any fundamental TLV type. Note that ANY is not a
fundamental TLV type itself, but rather a pseudo-type that identifies a range of possible encodings.
An ANY type serves a shorthand for (and is exactly equivalent to) a CHOICE OF all possible fundamen
tal types.

There are no qualifiers that can be associated with an ANY type.

ANY Example

app-defined-metadata => ANY

B.4.2. CHOICE OF

CHOICE OF Syntax

CHOICE [qualifier] OF { alternates }

qualifier (optional):
 nullable

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 987

alternates:
 alternate
 alternates, alternate

alternate:
 type-or-ref // unnamed alternate
 identifier [id-qualifier] : type-or-ref // named alternate

id-qualifier:
 tag

CHOICE OF declares an element that MAY be any of a set of TLV types. CHOICE OF is considered a
pseudo-type, rather than a fundamental type, in that the CHOICE OF itself doesn’t have a representa
tion in the final TLV encoding.

The allowed TLV types for a CHOICE OF, known as alternates, are given in the body of the definition.
An alternate MAY be any of the fundamental TLV types, an ANY pseudo-type, or another CHOICE OF
definition (more on this below). Additionally, an alternate MAY be a type reference (in the form of a
scoped type name) referring to a type defined outside of the CHOICE OF definition.

A nullable qualifier MAY be used to indicate that a TLV Null can be encoded in place of the CHOICE
OF. This is exactly the same as if NULL had been listed as one of the alternates.

B.4.2.1. Alternate Names and Tags

Alternates MAY be assigned textual names to distinguish them from one another. Each such name
SHALL be unique within the particular CHOICE OF definition. Alternate names do not affect the
encoding of the resultant TLV. Rather, alternate names serve as user documentation, or as input to
code generation tools.

Named CHOICE OF alternates MAY include at tag qualifier assigning a particular tag value to the
alternate. When qualified in this way, the given tag value serves as a default tag for the alternate
whenever the CHOICE OF appears in a context that doesn’t otherwise specify a tag. The tags assigned
within a CHOICE OF do not need to be unique, although see the discussion of Ambiguous Alternates
below.

Both protocol-specific and context-specific tags are allowed on the alternates of a CHOICE OF defini
tion.

B.4.2.2. Nested CHOICE OF and CHOICE OF Merging

It is legal for an alternate within a CHOICE OF to be another CHOICE OF definition, or a type reference
to such. In this case, the effect is exactly as if the alternates of the inner CHOICE OF definition had
been declared directly with the outer definition. This merging of CHOICE OF alternates occurs to any
level of nesting, and MAY be used as a means of declaring multiple CHOICE OF that are supersets of
other CHOICE OF.

When alternates are merged, their names are preserved. In cases where the same name appears in
nested CHOICE OF definitions, the name of the outer alternate is prepended to that of the inner alter

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 988 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

nate, separated by a dot, to form a unique name for the merged alternate. In these cases, the outer
alternate SHALL have a name in the schema, to ensure uniqueness.

An example of invalid CHOICE OF syntax, which results in a name conflict when alternates are
merged:

CHOICE OF Invalid Alternates Merge Example

CHOICE OF {
 CHOICE OF {
 foo: STRING,
 bar: UNSIGNED INTEGER
 },
 CHOICE OF {
 foo: BOOLEAN,
 bar: FLOAT64
 }
}

The example below shows how a valid schema should look to avoid conflict:

CHOICE OF Valid Alternates Merge Example

CHOICE OF {
 alt1: CHOICE OF {
 foo: STRING,
 bar: UNSIGNED INTEGER
 },
 alt2: CHOICE OF {
 foo: BOOLEAN,
 bar: FLOAT64
 }
}

B.4.2.3. Ambiguous Alternates

A CHOICE OF MAY contain multiple alternates having the same fundamental TLV type (e.g. two alter
nates that are both SIGNED INTEGER). If these alternates are also encoded using the same tag, their
encoded forms are effectively indistinguishable from one another. Such alternates are referred to
as ambiguous alternates.

Ambiguous alternates MAY occur due to the merging of nested CHOICE OF definitions (see above).
They MAY also arise in cases where the tags associated with the alternates are overridden by a tag
qualifier in an outer context; e.g. when a STRUCTURE incorporates a CHOICE OF field that has a specific
tag qualifier assigned to the field.

Ambiguous alternates are legal in TLV Schemas. However, care SHALL be taken when introducing
ambiguous alternates to ensure that a decoder can correctly interpret the resulting encoding. This
can be achieved, for example, by signaling the appropriate interpretation via a data value (e.g. an

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 989

enumerated integer) contained elsewhere in the encoding.

B.5. Qualifiers
Qualifiers are annotations that provide additional information regarding the use or interpretation
of a schema construct. Often qualifiers are used to place restrictions on the form or range of values
that the construct can assume.

B.5.1. any-order / schema-order / tag-order

Order Qualifiers Syntax

STRUCTURE [any-order]
STRUCTURE [schema-order]
STRUCTURE [tag-order]

The any-order, schema-order and tag-order qualifiers MAY be used to specify a particular order for
the encoding of fields within a STRUCTURE.

The any-order qualifier specifies that the encoder of a TLV structure is free to encode the fields of
the structure in any desired order.

The schema-order qualifier specifies that the fields of a structure SHALL be encoded in the order
given within the associated STRUCTURE definition. If the STRUCTURE definition contains one or more
includes statements, the fields of the referenced FIELD GROUPs SHALL be encoded in the order given
in the respective FIELD GROUP definition, and at the position of the includes statement relative to
other fields within the STRUCTURE.

The tag-order qualifier specifies that the fields of a structure SHALL be encoded in the order speci
fied by their tags, as defined in Section A.2.4, “Canonical Ordering of Tags”.

Only a single ordering qualifier MAY be applied to a given STRUCTURE type.

In the absence of an order qualifier, fields within TLV structure MAY generally be encoded in any
order. However, the author of a STRUCTURE definition MAY choose to impose custom ordering con
straints on some or all of the fields if so desired. Such constraints SHALL be clearly described in the
prose documentation for the schema.

B.5.2. extensible

extensible Qualifier Syntax

STRUCTURE [extensible]

The extensible qualifier is only allowed on STRUCTURE types, and declares that the structure MAY be
extended by the inclusion of fields not listed in its definition. When a structure is extended in this
way, any new fields that are included SHALL use tags that are distinct from any of those associated
with defined or included fields.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 990 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Absent the extensible qualifier, a structure encoding SHALL NOT include fields beyond those given
in the STRUCTURE definition.

extensible Qualifier Example

user-information => STRUCTURE [extensible]
{
 user-id [1] : UNSIGNED INTEGER,
 first-name [2] : STRING,
 last-name [3] : STRING,
 email-address [4] : STRING,
}

B.5.3. id

id Qualifier Syntax

vendor-name => VENDOR [id uint-value]

protocol-name => PROTOCOL [id uint-value]

protocol-name => PROTOCOL [id uint-value:uint-value]

protocol-name => PROTOCOL [id vendor-name:uint-value]

The id qualifier is used to specify an identifying number associated with a VENDOR or PROTOCOL defini
tion.

When applied to a VENDOR definition, the id value is a 16-bit unsigned integer specifying the Protocol
Vendor ID, which uniquely identify an organization or company. VENDOR ids are used to scope other
identifiers (e.g. PROTOCOL ids) such that organizations can independently mint these identifiers with
out fear of collision.

When applied to a PROTOCOL definition, the id value MAY take three forms:

• 32-bit unsigned integer, which is composed of a Protocol Vendor ID in the high 16-bits and a
protocol id in the low 16-bits

• two 16-bit unsigned integers (separated by a colon) specifying the Protocol Vendor ID and proto
col id

• vendor-name and 16-bit protocol id (separated by a colon). The vendor-name definition SHALL exist
elsewhere in the schema

id Qualifier Examples

MATTER-VENDOR-AB => VENDOR [0x00AB]

// Equivalent definitions of the protocol introduced by MATTER-VENDOR-AB
vendor-ab-prot8 => PROTOCOL [0x00AB0008]
vendor-ab-prot8 => PROTOCOL [0x00AB:0x0008]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 991

vendor-ab-prot8 => PROTOCOL [MATTER-VENDOR-AB:8]

B.5.4. length

length Qualifier Syntax

type [length count] // exactly count
type [length min..max] // between min and max (inclusive)
type [length min..] // at least min

The length qualifier MAY be used to constrain the number of elements in a collection type, such as
an ARRAY or LIST, or the number of bytes in a STRING or OCTET STRING type.

B.5.5. nullable

nullable Qualifier Syntax

type [nullable]

The nullable qualifier is used with ARRAY, LIST, STRUCTURE, STRING, OCTET STRING, BOOLEAN, SIGNED INTE
GER, UNSIGNED INTEGER, FLOAT32, FLOAT64 types. The nullable qualifier declares that a TLV Null MAY be
substituted for a value of the specified type at a particular point in an encoding. For example, in the
following sensor-sample structure, a null value MAY be encoded for the value field (e.g. in the case
the sensor was off-line at the sample time):

nullable Qualifier Example

sensor-sample => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER,
 value [2] : FLOAT64 [nullable],
}

Applying a nullable qualifier to a type is exactly the same as defining a CHOICE OF type with alter
nates for the primary and NULL. For example, the sensor sample structure could also be defined as
follows:

nullable Qualifier Example

sensor-sample => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER,
 value [2] : CHOICE OF
 {
 FLOAT64,
 NULL
 }

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 992 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

}

B.5.6. optional

optional Qualifier Syntax

...
field-name [optional] : type-or-ref,
...

The optional qualifier declares that a field within a STRUCTURE or FIELD GROUP is optional, and MAY
be omitted by an encoder. The optional qualifier MAY only appear on the name portion of a field
definition within either a STRUCTURE or FIELD GROUP.

Note that an optional field is distinct, both semantically and in terms of encoding, from a field
whose type has been declared nullable. In the former case the field MAY be omitted from the encod
ing altogether. In the latter case the field SHALL appear within the encoding, however its value
MAY be encoded as a TLV Null. It is legal to declare a field that is both optional and nullable.

The conditions under which an optional field can be omitted depend on the semantics of the struc
ture. In some cases, fields MAY be omitted entirely at the discretion of the sender. In other cases,
omission of a field MAY be contingent on the value present in another field. In all cases, prose docu
mentation associated with the field definition SHALL make clear the rules for when the field may
be omitted.

Optional fields are allowed within FIELD GROUP and retain their optionality when included within
STRUCTURE.

optional Qualifier Example

user-information => STRUCTURE [extensible]
{
 user-id [1] : UNSIGNED INTEGER,
 first-name [2] : STRING,
 middle-name [3, optional] : STRING, // MIGHT be omitted
 last-name [4] : STRING,
 email-address [5, optional] : STRING, // MIGHT be omitted
}

B.5.7. range

range Qualifier Syntax

integer-type [range min..max] // explicit constraint (inclusive)
integer-type [range 8-bits] // width constraint
integer-type [range 16-bits]
integer-type [range 32-bits]
integer-type [range 64-bits]

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 993

The range qualifier MAY be used to constrain the range of values for a numeric type such as SIGNED
INTEGER, UNSIGNED INTEGER, FLOAT32, or FLOAT64. Two forms are supported: explicit constraints and
width constraints. Only one form MAY be applied to a given type.

An explicit constraint gives specific minimum and maximum (inclusive) values for the type. These
MAY be any value that is legal for the underlying type.

A width constraint constrains the value to fit within a specific number of bytes. Any of the width
constraints (8-bits, 16-bits, 32-bits or 64-bits) MAY be applied to SIGNED INTEGER and UNSIGNED INTEGER
types, where 8-bits, 16-bits, 32-bits and 64-bits constraints correspond to 1-octet, 2-octet, 4-octet and
8-octet element type respectively; only 32-bits constraint MAY be applied to FLOAT32 type and only
64-bits constraint MAY be applied to FLOAT64 type.

Note that a width constraint range qualifier does not obligate an encoder to always encode the spec
ified number of bits. Per the TLV encoding rules, senders are always free to encode integer and
floating point values in any encoding size, bigger or smaller, that will accommodate the value.

range Qualifier Example

system-status-event => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER [range 32-bits],
 num-processes [2] : UNSIGNED INTEGER [range 16-bits],
 percent-busy [3] : UNSIGNED INTEGER [range 0..100],
}

B.5.8. tag

tag Qualifier Syntax

identifier [tag-num] // context-specific tag
identifier [protocol-id:tag-num] // protocol-specific tag
identifier [protocol-name:tag-num] // protocol-specific tag
identifier [*:tag-num] // protocol-specific tag (cur. protocol)
identifier [anonymous] // no tag

The tag qualifier is allowed on type names, field names within a STRUCTURE (STRUCTURE Fields) or
FIELD GROUP, item names within a LIST (LIST Item Tags), alternate names within a CHOICE OF (CHOICE
OF Fields).

The tag qualifier specifies a numeric tag value to be used when encoding a particular value. For
brevity, the tag keyword SHALL be omitted when specifying a tag qualifier. As a special case, the
keyword anonymous MAY be used to signal a value that SHALL be encoded without a tag.

Matter TLV supports two forms of tags: Protocol-Specific Tags and Context-Specific Tags. A protocol-
specific tag is a colon-separated tuple containing a protocol-id and a tag-num. Protocol ids MAY also
be specified indirectly, by giving the name of a PROTOCOL definition (protocol-name) located else
where in the schema. An asterisk (*) MAY be used as a shorthand to refer to the id of the PROTOCOL
definition in which the tag qualifier appears. This protocol is referred to as the current protocol.

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 994 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

B.5.8.1. Explicit Tags

A tag qualifier that appears on a field within a STRUCTURE or FIELD GROUP, or on an item within a LIST,
specifies the exact tag to be used when encoding the associated field/item. Such a tag is called an
explicit tag, and MAY be either a context-specific, protocol-specific or anonymous (for LIST) tag.

If a field or item lacks a tag qualifier, then the encoding will use a default tag associated with the
underlying field type, if such a tag has been specified.

B.5.8.2. Default Tags

A tag qualifier that appears on a type definition, or on an alternate within a CHOICE OF, serves as a
default tag. A default tag is used to encode a value when an explicit tag has not been given in the
schema.

For example, a field within a STRUCTURE that refers to a type with a default tag will use that tag if no
tag qualifier has been specified on the field itself. Similarly, tag qualifiers that appear on the alter
nates of a CHOICE OF serve as default tags to be used when no other tag has been specified.

Both context-specific and protocol-specific tags MAY be used as default tags. 'anonymous` tag
SHALL NOT be used as default tag.

Default Tag Qualifier Example

vendor-ab-prot8 => PROTOCOL [id 0x00AB0008]
{
ec-pub-key [0x00AB0008:1] => OCTET STRING, // default protocol-specific tag using
 // a numeric protocol id

ec-priv-key [vendor-ab-prot8:2] => STRUCTURE // default protocol-specific
 // tag using a name
{
 priv-key [1] : OCTET STRING, // explicit context-specific tag

 pub-key [2, optional] : ec-pub-key // explicit tag overrides default tag on
 // ec-pub-key

 curve : CHOICE OF // tag depends on choice of id or name
 {
 id [3] : UNSIGNED INTEGER, // default tag if id chosen
 name [4] : STRING // default tag if name chosen
 }
},

ecdsa-sig [*:3] => STRUCTURE // shorthand for vendor-ab-prot8:3
{
 r [1] : OCTET STRING,
 s [2] : OCTET STRING
}
} // end vendor-ab-prot8 PROTOCOL

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 995

B.5.9. Documentation and Comments

TLV Schemas MAY include inline annotations that support the automatic generation of reference
documentation and the production of documented code. TLV Schemas follow the Javadoc style of
annotation wherein documentation is wrapped in the special multi-line comment markers /** and
*/.

Documentation and Comments Example

/** Sensor sample structure */
sensor-sample => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER,
 value [2] : FLOAT64,
}

In certain cases, documentation MAY also be placed after a construct, using /**< and */.

Documentation and Comments for a Construct Example

/** Sensor sample structure */
sensor-sample => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER, /**< Unix timestamp */
 value [2] : FLOAT64, /**< Sensor value */
}

Postfix annotations are allowed on STRUCTURE and FIELD GROUP members, ARRAY and LIST items,
CHOICE OF alternates, SIGNED INTEGER and UNSIGNED INTEGER enumerated values.

Non-documentation comments follow the standard C++ commenting style.

Documentation and Comments C++ Style Example

user-information => STRUCTURE [extensible]
{
 user-id [1] : UNSIGNED INTEGER, // 0 = Unknown user id
 first-name [2] : STRING,
 last-name [3] : STRING,
 email-address [4] : STRING,

 /* TODO: additional fields to be added later */
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 996 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix C: Tag-length-value (TLV) Payload
Text Representation Format

C.1. Introduction
This section describes a means by which to depict TLV payloads in a more user-friendly, textual rep
resentation.

C.2. Format Specification

C.2.1. Tag/Value

TLV elements are tag/value pairs. As such, their general textual representation is as follows:

tag = value

C.2.2. Context-Specific Tags

The basic representation of a context-specific tag is a single scalar number.

TLV entries using context-specific tags MAY use the basic representation alone:

2 = "hello"

If the tag has a name from an associated schema, it MAY be represented using that name. The basic
representation MAY also be appended in parentheses ("(", ")"):

name (2) = "hello"

C.2.3. Protocol-Specific Tags

The basic representation of a protocol-specific tag SHALL be fully-qualified with "::" separating the
vendor id and the protocol number and ":" separating the protocol number and tag number. The
vendor id, protocol number and tag number are each represented using a single scalar number
represented in hexadecimal notation.

0x0000::0x0000:0x01 = 10

If the tag has a name from an associated schema, it MAY be represented using that name. The basic
representation MAY also be appended in parentheses ("(", ")"):

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 997

SmartSensorsCompany::SensingProtocol:Extension (0x00ef::0x00aa:0x01) = 10

C.2.4. Anonymous Tags

TLV entries using anonymous tags SHALL display the value alone:

"hello"

C.2.5. Primitive Types

Signed Integer:

duration = 20

Unsigned Integer:

duration = 20U

If the value is a defined constant, or enumerated value, then the string literal MAY be provided as
well:

mode = FAST (20U)

UTF-8 string:

name = "Jonah"

Octet String (listed as 8-bit hex digits):

data = 2f 2a fd 11 33 e2 ...

Floats:

temp = 20.234

Booleans:

isOn = false

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 998 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

isOn = true

Null:

temp = null

C.2.6. Complex Types: Structure

Braces ({ … }) SHALL be used to convey the start and end of structure scope, with the members
separated by commas (,):

user-record = {
 name = "Jonah",
 pin = 1122
}

C.2.7. Complex Types: Arrays

Square brackets ([…]) SHALL be used to convey array scope, with elements in the array sepa
rated by commas (,). Since elements in the array are required to be anonymous, each element
SHALL display the value alone:

temp-samples = [20, 30, 40]

C.2.8. Complex Types: List

Double square brackets ([[…]]) SHALL be used to convey list scope, with elements in the list
separated by commas (,). Since a diversity of tag types can be used in a list (including duplicates),
the tags SHALL always be present and explicitly stated:

AttributePath = [[EndpointId = 20, ClusterId = 40]]

C.3. Examples

C.3.1. TLV Schema

This is a sample TLV schema that will be used to define example TLV payloads.

temp-sample => STRUCTURE
{
 timestamp [1] : UNSIGNED INTEGER [range 32-bits],
 temperature [2] : FLOAT64,
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 999

accel-sample => STRUCTURE
{
 x [1] : SIGNED INTEGER [range 16-bits],
 y [2] : SIGNED INTEGER [range 16-bits],
 z [3] : SIGNED INTEGER [range 16-bits]
}

temp-features-enum => UNSIGNED INTEGER [range 0...3]
{
 HAS_TEMP_COMPENSATION = 1,
 SUPPORTS_THRESHOLD_TRIGGERS = 2
}

accel-features-enum => UNSIGNED INTEGER [range 0...3]
{
 SUPPORTS_HIGH_SAMPLING = 1,
 SUPPORTS_THRESHOLD_TRIGGERS = 2
}

sensor-state => STRUCTURE
{
 temperature-samples [1] : ARRAY OF temperature-sample,
 accel-samples [2] : ARRAY OF accel-sample,
 manufacturer-name [3]: STRING,

 // List of lists. If present, one or more of the feature lists will be present.
 feature-map [4,optional] : LIST {temp-features[1]: ARRAY OF temp-features-enum,
accel-features[2]: ARRAY OF accel-features-enum},

 supports-idle [5] : BOOLEAN,

 num-power-modes[6]: UNSIGNED INTEGER [range 8-bits],

 supported-extensions[7] : LIST OF STRING
}

C.3.2. TLV Payloads

C.3.2.1. Temperature Sample

temperature-sample-example =
{
 timestamp (1) = 2023423U,
 temperature (2) = 72.0
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1000 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

C.3.2.2. Accelerometer Sample

accelerometer-sample-example =
{
 x (1) = 10,
 y (2) = 20,
 z (3) = 30
}

C.3.2.3. Sensor State

sensor-state-example =
{
 temperature-samples (1) =
 [
 {
 timestamp (1) = 2023423U,
 temperature (2) = 72.0
 },
 {
 timestamp (1) = 2023U,
 temperature (2) = 69.2
 },
],

 accel-samples (2) =
 [
 {
 x (1) = 10,
 y (2) = 20,
 z (3) = 30,
 },
 {
 x (1) = 1,
 y (2) = 2,
 z (3) = 3,
 },
],

 manufacturer-name (3) = "SmartSensors Ltd",

 feature-map (4) =
 [[
 temp-features (1) =
 [
 HAS_TEMP_COMPENSATION (1),
 SUPPORTS_THRESHOLD_TRIGGERS (2)
],

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1001

 accel-features (2) =
 [
 SUPPORTS_THRESHOLD_TRIGGERS (2)
]
]],

 supports-idle (5) = false,

 num-power-modes (6) = 2U,

 supported-extensions (7) =
 [[
 SMARTSENSORS::SensingProtocol:Extension (0x00ef::0x00aa:0x01) =
"SUPPORTS_SMART_AVERAGING"
]]
}

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1002 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix D: Status Report Messages

D.1. Overview
The StatusReport is a core message that encapsulates the result of an operation which a responder
sends as a reply for requests sent from an initiator, using a common message of the Secure Channel
Protocol (Protocol ID = PROTOCOL_ID_SECURE_CHANNEL).

This section details the standard Status Report message format encoding as Matter Message Format
payloads.

D.2. Status Report elements
A Status Report message describes a protocol-specific operation result or status.

The Status Report message SHALL have the following message header values (some of which may
be omitted within protocol messages, as per header flag rules), no matter which protocol actually
generated the status report:

• A Protocol Vendor ID set to 0 (Matter common Vendor ID)

• A Protocol ID set to 0x0000 (PROTOCOL_ID_SECURE_CHANNEL)

• A Protocol Opcode set to 0x40 (StatusReport)

The report message’s Application Payload SHALL consist of:

• A mandatory GENERAL CODE field, providing a general description of the status being reported.

• A mandatory PROTOCOL SPECIFIC STATUS field, providing additional details

• An optional protocol-specific data section that MAY include any additional information that a
protocol requires

◦ Individual protocols define the contents of this data section and how it is handled

D.3. Message Format

Length Octets 0 1

Structure, little-endian

2 octets GeneralCode

4 octets ProtocolId of Protocol-Specific Status

. . .

2 octets ProtocolCode of Protocol-Specific Status

Variable Optional ProtocolData for protocol-specific additional details, MAY be empty

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1003

D.3.1. General status codes (GeneralCode)

General status codes conveyed in the GeneralCode field are uniform codes that convey both success
and failures.

The following general status codes are defined:

Code Numeric
Value

Description

SUCCESS 0 Operation completed successfully.

FAILURE 1 Generic failure, additional details may be included in
the protocol specific status.

BAD_PRECONDITION 2 Operation was rejected by the system because the sys
tem is in an invalid state.

OUT_OF_RANGE 3 A value was out of a required range

BAD_REQUEST 4 A request was unrecognized or malformed

UNSUPPORTED 5 An unrecognized or unsupported request was received

UNEXPECTED 6 A request was not expected at this time

RESOURCE_EXHAUSTED 7 Insufficient resources to process the given request

BUSY 8 Device is busy and cannot handle this request at this
time

TIMEOUT 9 A timeout occurred

CONTINUE 10 Context-specific signal to proceed

ABORTED 11 Failure, may be due to a concurrency error.

INVALID_ARGUMENT 12 An invalid/unsupported argument was provided

NOT_FOUND 13 Some requested entity was not found

ALREADY_EXISTS 14 The sender attempted to create something that already
exists

PERMISSION_DENIED 15 The sender does not have sufficient permissions to exe
cute the requested operations.

DATA_LOSS 16 Unrecoverable data loss or corruption has occurred.

MESSAGE_TOO_LARGE 17 Message size is larger than the recipient can handle.

If none of the specific codes above fits for application usage, a protocol SHALL use FAILURE and
provide more information encoded in the ProtocolId and ProtocolCode subfields.

D.3.2. Protocol-specific codes (ProtocolId and ProtocolCode)

The protocol-specific portion of StatusReport messages is composed of a fully-qualified ProtocolId
which qualifies the subsequent ProtocolCode space.

The ProtocolId is encoded as a 32 bit value of Protocol Vendor ID (upper 16 bits) and Protocol ID

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1004 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

under that Protocol Vendor ID (lower 16 bits), similarly to how message Protocol ID and Protocol
Vendor ID are encoded in the Protocol Header.

The following rules apply to the encoding of the ProtocolCode protocol-specific field:

• ProtocolCode value 0x0000 SHALL be reserved for use as success placeholder when either a Gen
eralCode of SUCCESS (0) or CONTINUE (10) are present.

• ProtocolCode value 0xFFFF SHALL be reserved to indicate that no additional protocol-specific
status code is available.

• When the GeneralCode is FAILURE, the ProtocolCode value of 0xFFFF SHOULD NOT be used, since
the conveyance of specific error codes assists in troubleshooting.

• ProtocolCode values 0x0001 through 0xFFFE SHALL be used to convey protocol-specific status
indications.

Since protocol-specific status reports are meant to convey more information than generic codes, it
is RECOMMENDED to always use a specific ProtocolCode value, rather than 0xFFFF, unless there are
no additional details to convey.

D.3.3. Protocol-specific data (ProtocolData)

The ProtocolData portion of the StatusReport message is composed of all data beyond the Protocol
Code field. If a StatusReport message of size N octets is received, the first 8 octets of payload encode
the GeneralCode, ProtocolId and ProtocolCode, while the remaining N - 8 bytes represent the proto
col-specific ProtocolData.

Encoding of the ProtocolData portion of the payload depends on the ProtocolId and potentially Pro
tocolCode. To decode this data, the ProtocolId has to be examined and decoding SHALL be done
according to that protocol specification. For example:

• A vendor-specific protocol would encode additional custom error metadata in the ProtocolData.

• The Bulk transfer (BDX) protocol does not require additional error information and will always
have ProtocolData empty.

D.4. Presenting StatusReport messages in protocol
specifications
In order to simplify referring to StatusReport messages, the following mnemonic encoding will be
used in the descriptive text for a given protocol.

References to StatusReport messages take one of the following forms:

• No ProtocolData present:

◦ StatusReport(GeneralCode: <value>, ProtocolId: <value>, ProtocolCode: <value>)

▪ Example 1: StatusReport(GeneralCode: FAILURE, ProtocolId: BDX, ProtocolCode:
START_OFFSET_NOT_SUPPORTED)

▪ Encodes as: 01 00 02 00 00 00 52 00

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1005

▪ Example 2: StatusReport(GeneralCode: SUCCESS, ProtocolId: {VendorID=0xFFF1, Proto
colId=0xAABB}, ProtocolCode: 0)

▪ Encodes as: 00 00 BB AA F1 FF 00 00

• Additional ProtocolData present:

◦ StatusReport(GeneralCode: <value>, ProtocolId: <value>, ProtocolCode: <value>, Protocol
Data: <value>)

▪ Example: StatusReport(GeneralCode: FAILURE, ProtocolId: {VendorID=0xFFF1, Proto
colId=0xAABB}, ProtocolCode: 9921, ProtocolData: [0x55, 0x66, 0xEE, 0xFF])

▪ Encodes as: 01 00 BB AA F1 FF C1 26 55 66 EE FF

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1006 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix E: Matter-Specific ASN.1 Object
Identifiers (OIDs)
Matter defines custom ASN.1 OID values, which are listed in the table below under the
1.3.6.1.4.1.37244 private arc. These OID values are assigned by the Connectivity Standards Alliance
for use with Matter.

Table 97. ASN.1 Matter-Specific Object Identifiers

Dot Notation ASN.1 Notation Description

1.3.6.1.4.1.37244.1.1 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-op-cert(1) node-id(1)

Matter Operational Certificate DN
attribute for node identifier

1.3.6.1.4.1.37244.1.2 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-op-cert(1) firmware-signing-
id(2)

Matter Operational Certificate DN
attribute for firmware signing iden
tifier

1.3.6.1.4.1.37244.1.3 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-op-cert(1) ica-id(3)

Matter Operational Certificate DN
attribute for Intermediate CA (ICA)
identifier

1.3.6.1.4.1.37244.1.4 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-op-cert(1) root-ca-id(4)

Matter Operational Certificate DN
attribute for Root Certificate Author
ity (CA) identifier

1.3.6.1.4.1.37244.1.5 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-op-cert(1) fabric-id(5)

Matter Operational Certificate DN
attribute for fabric identifier

1.3.6.1.4.1.37244.1.6 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-op-cert(1) case-authenticated-
tag(6)

Matter Operational Certificate DN
attribute for CASE Authenticated Tag

1.3.6.1.4.1.37244.2.1 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-att-cert(2) vid(1)

Matter Device Attestation Certificate
DN attribute for the Vendor ID (VID)

1.3.6.1.4.1.37244.2.2 iso(1) org(3) dod(6) internet(1) pri
vate(4) enterprise(1) zigbee(37244)
matter-att-cert(2) pid(2)

Matter Device Attestation Certificate
DN attribute for the Product ID (PID)

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1007

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1008 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix F: Cryptographic test vectors for
some procedures

F.1. Certification Declaration CMS test vector
This subsection contains worked examples of encoding a Certification Declaration, which is con
veyed by the Attestation Information payload during the Device Attestation Procedure.

The CSA CD signing certificate and associated private key which are provided in the vectors are
only for exemplary purposes and are not official CD signing material.

The first example Certification Declaration has the following qualities:

• Both dac_origin_vendor_id and dac_origin_product_id are absent

• The product_id_array contains a single PID

The content of this first example is shown below:

===== Algorithm inputs =====
-> format_version = 1
-> vendor_id = 0xFFF1
-> product_id_array = [0x8000]
-> device_type_id = 0x1234
-> certificate_id = "ZIG20141ZB330001-24"
-> security_level = 0
-> security_information = 0
-> version_number = 0x2694
-> certification_type = 0
-> dac_origin_vendor_id is not present
-> dac_origin_product_id is not present
-> authorized_paa_list is not present

-> Sample CSA CD Signing Certificate:
-----BEGIN CERTIFICATE-----
MIIBszCCAVqgAwIBAgIIRdrzneR6oI8wCgYIKoZIzj0EAwIwKzEpMCcGA1UEAwwg
TWF0dGVyIFRlc3QgQ0QgU2lnbmluZyBBdXRob3JpdHkwIBcNMjEwNjI4MTQyMzQz
WhgPOTk5OTEyMzEyMzU5NTlaMCsxKTAnBgNVBAMMIE1hdHRlciBUZXN0IENEIFNp
Z25pbmcgQXV0aG9yaXR5MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEPDmJIkUr
VcrzicJb0bykZWlSzLkOiGkkmthHRlMBTL+V1oeWXgNrUhxRA35rjO3vyh60QEZp
T6CIgu7WUZ3suqNmMGQwEgYDVR0TAQH/BAgwBgEB/wIBATAOBgNVHQ8BAf8EBAMC
AQYwHQYDVR0OBBYEFGL6gjNZrPqplj4c+hQK3fUE83FgMB8GA1UdIwQYMBaAFGL6
gjNZrPqplj4c+hQK3fUE83FgMAoGCCqGSM49BAMCA0cAMEQCICxUXOTkV9im8NnZ
u+vW7OHd/n+MbZps83UyH8b6xxOEAiBUB3jodDlyUn7t669YaGIgtUB48s1OYqdq
58u5L/VMiw==
-----END CERTIFICATE-----

-> Sample CSA CD Signing Private Key:
-----BEGIN EC PRIVATE KEY-----

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1009

MHcCAQEEIK7zSEEW6UgexXvgRy30G/SZBk5QJK2GnspeiJgC1IB1oAoGCCqGSM49
AwEHoUQDQgAEPDmJIkUrVcrzicJb0bykZWlSzLkOiGkkmthHRlMBTL+V1oeWXgNr
UhxRA35rjO3vyh60QEZpT6CIgu7WUZ3sug==
-----END EC PRIVATE KEY-----

===== Intermediate outputs =====
-> Encoded TLV of sample Certification Declaration (54 bytes):
00000000 15 24 00 01 25 01 f1 ff 36 02 05 00 80 18 25 03 |.$..%...6.....%.|
00000010 34 12 2c 04 13 5a 49 47 32 30 31 34 31 5a 42 33 |4.,..ZIG20141ZB3|
00000020 33 30 30 30 31 2d 32 34 24 05 00 24 06 00 25 07 |30001-24$..$..%.|
00000030 94 26 24 08 00 18 |.&$...|
00000036

===== Algorithm outputs =====
-> Encoded CMS SignedData of Certification Declaration (235 bytes):
00000000 30 81 e8 06 09 2a 86 48 86 f7 0d 01 07 02 a0 81 |0....*.H........|
00000010 da 30 81 d7 02 01 03 31 0d 30 0b 06 09 60 86 48 |.0.....1.0...`.H|
00000020 01 65 03 04 02 01 30 45 06 09 2a 86 48 86 f7 0d |.e....0E..*.H...|
00000030 01 07 01 a0 38 04 36 15 24 00 01 25 01 f1 ff 36 |....8.6.$..%...6|
00000040 02 05 00 80 18 25 03 34 12 2c 04 13 5a 49 47 32 |.....%.4.,..ZIG2|
00000050 30 31 34 31 5a 42 33 33 30 30 30 31 2d 32 34 24 |0141ZB330001-24$|
00000060 05 00 24 06 00 25 07 94 26 24 08 00 18 31 7c 30 |..$..%..&$...1|0|
00000070 7a 02 01 03 80 14 62 fa 82 33 59 ac fa a9 96 3e |z.....b..3Y....>|
00000080 1c fa 14 0a dd f5 04 f3 71 60 30 0b 06 09 60 86 |........q`0...`.|
00000090 48 01 65 03 04 02 01 30 0a 06 08 2a 86 48 ce 3d |H.e....0...*.H.=|
000000a0 04 03 02 04 46 30 44 02 20 43 a6 3f 2b 94 3d f3 |....F0D. C.?+.=.|
000000b0 3c 38 b3 e0 2f ca a7 5f e3 53 2a eb bf 5e 63 f5 |<8../.._.S*..^c.|
000000c0 bb db c0 b1 f0 1d 3c 4f 60 02 20 4c 1a bf 5f 18 |......<O`. L.._.|
000000d0 07 b8 18 94 b1 57 6c 47 e4 72 4e 4d 96 6c 61 2e |.....WlG.rNM.la.|
000000e0 d3 fa 25 c1 18 c3 f2 b3 f9 03 69 |..%.......i|
000000eb

The second example Certification Declaration has the following qualities:

• Both dac_origin_vendor_id and dac_origin_product_id are present

• The product_id_array contains a two PIDs (0x8001, 0x8002)

• It uses the authorized_paa_list to indicate the Subject Key Identifier (SKI) extension value of the
expected PAA in the certificate chain of the Device Attestation Certificate for a product carrying
this Certification Declaration

The content of this second example is shown below:

===== Algorithm inputs =====
-> format_version = 1
-> vendor_id = 0xFFF2
-> product_id_array = [0x8001, 0x8002]
-> device_type_id = 0x1234
-> certificate_id = "ZIG20142ZB330002-24"
-> security_level = 0

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1010 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

-> security_information = 0
-> version_number = 0x2694
-> certification_type = 0
-> dac_origin_vendor_id = 0xFFF1
-> dac_origin_product_id = 0x8000
-> authorized_paa_list = [78:5c:e7:05:b8:6b:8f:4e:6f:c7:93:aa:60:cb:43:ea:69:68:82:d5
]

-> Sample CSA CD Signing Certificate:
-----BEGIN CERTIFICATE-----
MIIBszCCAVqgAwIBAgIIRdrzneR6oI8wCgYIKoZIzj0EAwIwKzEpMCcGA1UEAwwg
TWF0dGVyIFRlc3QgQ0QgU2lnbmluZyBBdXRob3JpdHkwIBcNMjEwNjI4MTQyMzQz
WhgPOTk5OTEyMzEyMzU5NTlaMCsxKTAnBgNVBAMMIE1hdHRlciBUZXN0IENEIFNp
Z25pbmcgQXV0aG9yaXR5MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEPDmJIkUr
VcrzicJb0bykZWlSzLkOiGkkmthHRlMBTL+V1oeWXgNrUhxRA35rjO3vyh60QEZp
T6CIgu7WUZ3suqNmMGQwEgYDVR0TAQH/BAgwBgEB/wIBATAOBgNVHQ8BAf8EBAMC
AQYwHQYDVR0OBBYEFGL6gjNZrPqplj4c+hQK3fUE83FgMB8GA1UdIwQYMBaAFGL6
gjNZrPqplj4c+hQK3fUE83FgMAoGCCqGSM49BAMCA0cAMEQCICxUXOTkV9im8NnZ
u+vW7OHd/n+MbZps83UyH8b6xxOEAiBUB3jodDlyUn7t669YaGIgtUB48s1OYqdq
58u5L/VMiw==
-----END CERTIFICATE-----

-> Sample CSA CD Signing Private Key:
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIK7zSEEW6UgexXvgRy30G/SZBk5QJK2GnspeiJgC1IB1oAoGCCqGSM49
AwEHoUQDQgAEPDmJIkUrVcrzicJb0bykZWlSzLkOiGkkmthHRlMBTL+V1oeWXgNr
UhxRA35rjO3vyh60QEZpT6CIgu7WUZ3sug==
-----END EC PRIVATE KEY-----

===== Intermediate outputs =====
-> Encoded TLV of sample Certification Declaration (90 bytes):
00000000 15 24 00 01 25 01 f2 ff 36 02 05 01 80 05 02 80 |.$..%...6.......|
00000010 18 25 03 34 12 2c 04 13 5a 49 47 32 30 31 34 32 |.%.4.,..ZIG20142|
00000020 5a 42 33 33 30 30 30 32 2d 32 34 24 05 00 24 06 |ZB330002-24$..$.|
00000030 00 25 07 94 26 24 08 00 25 09 f1 ff 25 0a 00 80 |.%..&$..%...%...|
00000040 36 0b 10 14 78 5c e7 05 b8 6b 8f 4e 6f c7 93 aa |6...x\...k.No...|
00000050 60 cb 43 ea 69 68 82 d5 18 18 |`.C.ih....|
0000005a

===== Algorithm outputs =====
-> Encoded CMS SignedData of Certification Declaration (273 bytes):
00000000 30 82 01 0d 06 09 2a 86 48 86 f7 0d 01 07 02 a0 |0.....*.H.......|
00000010 81 ff 30 81 fc 02 01 03 31 0d 30 0b 06 09 60 86 |..0.....1.0...`.|
00000020 48 01 65 03 04 02 01 30 69 06 09 2a 86 48 86 f7 |H.e....0i..*.H..|
00000030 0d 01 07 01 a0 5c 04 5a 15 24 00 01 25 01 f2 ff |.....\.Z.$..%...|
00000040 36 02 05 01 80 05 02 80 18 25 03 34 12 2c 04 13 |6........%.4.,..|
00000050 5a 49 47 32 30 31 34 32 5a 42 33 33 30 30 30 32 |ZIG20142ZB330002|
00000060 2d 32 34 24 05 00 24 06 00 25 07 94 26 24 08 00 |-24$..$..%..&$..|
00000070 25 09 f1 ff 25 0a 00 80 36 0b 10 14 78 5c e7 05 |%...%...6...x\..|
00000080 b8 6b 8f 4e 6f c7 93 aa 60 cb 43 ea 69 68 82 d5 |.k.No...`.C.ih..|
00000090 18 18 31 7d 30 7b 02 01 03 80 14 62 fa 82 33 59 |..1}0{.....b..3Y|

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1011

000000a0 ac fa a9 96 3e 1c fa 14 0a dd f5 04 f3 71 60 30 |....>........q`0|
000000b0 0b 06 09 60 86 48 01 65 03 04 02 01 30 0a 06 08 |...`.H.e....0...|
000000c0 2a 86 48 ce 3d 04 03 02 04 47 30 45 02 20 4a e9 |*.H.=....G0E. J.|
000000d0 c9 b7 f8 aa 68 61 0a dd 84 e4 12 91 fc 8f 4d c5 |....ha........M.|
000000e0 33 fc a2 9d c1 ff f2 25 3c 09 cd 32 f7 75 02 21 |3......%<..2.u.!|
000000f0 00 9c 0a 5f de f9 e0 08 d1 cc 8b b7 c3 95 9c db |..._............|
00000100 65 c4 61 25 cb 72 95 08 1e 47 b5 c1 31 e4 d1 f4 |e.a%.r...G..1...|
00000110 8c |.|
00000111

F.2. Device Attestation Response test vector
This subsection contains a worked example of the Attestation Information to be generated in the
AttestationResponse Command when executing the Device Attestation Procedure.

The Device Attestation key pair shown is an example, not to be reused in implementations.

NOTE
This test vector does NOT contain the optional Firmware Information payload. It is
omitted.

===== Algorithm inputs =====
-> AttestationNonce (example):
e0:42:1b:91:c6:fd:cd:b4:0e:2a:4d:2c:f3:1d:b2:b4:e1:8b:41:1b:1d:3a:d4:d1:2a:9d:90:aa:8e
:52:fa:e2
-> Attestation challenge (example): 7a:49:53:05:d0:77:79:a4:94:dd:39:a0:85:1b:66:0d

-> Device attestation private key (example):
38:f3:e0:a1:f1:45:ba:1b:f3:e4:4b:55:2d:ef:65:27:3d:1d:8e:27:6a:a3:14:ac:74:2e:b1:28:93
:3b:a6:4b
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIDjz4KHxRbob8+RLVS3vZSc9HY4naqMUrHQusSiTO6ZLoAoGCCqGSM49
AwEHoUQDQgAEzlz477BdTu55DQpx1cARu3RyQNuiFFiEXTPjSwr2ZRYzBjqASy/4
XcqyAZoKtvVZV3X+jYX716B8joN9pNWouQ==
-----END EC PRIVATE KEY-----

-> Device attestation public key (example):
04:ce:5c:f8:ef:b0:5d:4e:ee:79:0d:0a:71:d5:c0:11:bb:74:72:40:db:a2:14:58:84:5d:33:e3:4b
:0a:f6:65:16:33:06:3a:80:4b:2f:f8:5d:ca:b2:01:9a:0a:b6:f5:59:57:75:fe:8d:85:fb:d7:a0:7
c:8e:83:7d:a4:d5:a8:b9
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEzlz477BdTu55DQpx1cARu3RyQNui
FFiEXTPjSwr2ZRYzBjqASy/4XcqyAZoKtvVZV3X+jYX716B8joN9pNWouQ==
-----END PUBLIC KEY-----

-> Desired timestamp: 2021-06-15T20:15:57Z
-> Desired timestamp in epoch-s: 677103357
-> vendor specific [0xfff1:0x3e:0x1] =
73:61:6d:70:6c:65:5f:76:65:6e:64:6f:72:5f:72:65:73:65:72:76:65:64:31
("sample_vendor_reserved1")

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1012 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

-> vendor specific [0xfff1:0x3e:0x3] =
76:65:6e:64:6f:72:5f:72:65:73:65:72:76:65:64:33:5f:65:78:61:6d:70:6c:65
("vendor_reserved3_example")

===== Intermediate outputs =====
-> attestation_elements_message:
00000000 15 31 01 11 01 30 82 01 0d 06 09 2a 86 48 86 f7 |.1...0.....*.H..|
00000010 0d 01 07 02 a0 81 ff 30 81 fc 02 01 03 31 0d 30 |.......0.....1.0|
00000020 0b 06 09 60 86 48 01 65 03 04 02 01 30 69 06 09 |...`.H.e....0i..|
00000030 2a 86 48 86 f7 0d 01 07 01 a0 5c 04 5a 15 24 00 |*.H.......\.Z.$.|
00000040 01 25 01 f2 ff 36 02 05 01 80 05 02 80 18 25 03 |.%...6........%.|
00000050 34 12 2c 04 13 5a 49 47 32 30 31 34 32 5a 42 33 |4.,..ZIG20142ZB3|
00000060 33 30 30 30 32 2d 32 34 24 05 00 24 06 00 25 07 |30002-24$..$..%.|
00000070 94 26 24 08 00 25 09 f1 ff 25 0a 00 80 36 0b 10 |.&$..%...%...6..|
00000080 14 78 5c e7 05 b8 6b 8f 4e 6f c7 93 aa 60 cb 43 |.x\...k.No...`.C|
00000090 ea 69 68 82 d5 18 18 31 7d 30 7b 02 01 03 80 14 |.ih....1}0{.....|
000000a0 62 fa 82 33 59 ac fa a9 96 3e 1c fa 14 0a dd f5 |b..3Y....>......|
000000b0 04 f3 71 60 30 0b 06 09 60 86 48 01 65 03 04 02 |..q`0...`.H.e...|
000000c0 01 30 0a 06 08 2a 86 48 ce 3d 04 03 02 04 47 30 |.0...*.H.=....G0|
000000d0 45 02 20 4a e9 c9 b7 f8 aa 68 61 0a dd 84 e4 12 |E. J.....ha.....|
000000e0 91 fc 8f 4d c5 33 fc a2 9d c1 ff f2 25 3c 09 cd |...M.3......%<..|
000000f0 32 f7 75 02 21 00 9c 0a 5f de f9 e0 08 d1 cc 8b |2.u.!..._.......|
00000100 b7 c3 95 9c db 65 c4 61 25 cb 72 95 08 1e 47 b5 |.....e.a%.r...G.|
00000110 c1 31 e4 d1 f4 8c 30 02 20 e0 42 1b 91 c6 fd cd |.1....0. .B.....|
00000120 b4 0e 2a 4d 2c f3 1d b2 b4 e1 8b 41 1b 1d 3a d4 |..*M,......A..:.|
00000130 d1 2a 9d 90 aa 8e 52 fa e2 26 03 fd c6 5b 28 d0 |.*....R..&...[(.|
00000140 f1 ff 3e 00 01 00 17 73 61 6d 70 6c 65 5f 76 65 |..>....sample_ve|
00000150 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 31 d0 f1 |ndor_reserved1..|
00000160 ff 3e 00 03 00 18 76 65 6e 64 6f 72 5f 72 65 73 |.>....vendor_res|
00000170 65 72 76 65 64 33 5f 65 78 61 6d 70 6c 65 18 |erved3_example.|
0000017f

-> attestation_tbs := attestation_elements_message || attestation_challenge
-> attestation_tbs (NOT sent over the wire):
00000000 15 31 01 11 01 30 82 01 0d 06 09 2a 86 48 86 f7 |.1...0.....*.H..|
00000010 0d 01 07 02 a0 81 ff 30 81 fc 02 01 03 31 0d 30 |.......0.....1.0|
00000020 0b 06 09 60 86 48 01 65 03 04 02 01 30 69 06 09 |...`.H.e....0i..|
00000030 2a 86 48 86 f7 0d 01 07 01 a0 5c 04 5a 15 24 00 |*.H.......\.Z.$.|
00000040 01 25 01 f2 ff 36 02 05 01 80 05 02 80 18 25 03 |.%...6........%.|
00000050 34 12 2c 04 13 5a 49 47 32 30 31 34 32 5a 42 33 |4.,..ZIG20142ZB3|
00000060 33 30 30 30 32 2d 32 34 24 05 00 24 06 00 25 07 |30002-24$..$..%.|
00000070 94 26 24 08 00 25 09 f1 ff 25 0a 00 80 36 0b 10 |.&$..%...%...6..|
00000080 14 78 5c e7 05 b8 6b 8f 4e 6f c7 93 aa 60 cb 43 |.x\...k.No...`.C|
00000090 ea 69 68 82 d5 18 18 31 7d 30 7b 02 01 03 80 14 |.ih....1}0{.....|
000000a0 62 fa 82 33 59 ac fa a9 96 3e 1c fa 14 0a dd f5 |b..3Y....>......|
000000b0 04 f3 71 60 30 0b 06 09 60 86 48 01 65 03 04 02 |..q`0...`.H.e...|
000000c0 01 30 0a 06 08 2a 86 48 ce 3d 04 03 02 04 47 30 |.0...*.H.=....G0|
000000d0 45 02 20 4a e9 c9 b7 f8 aa 68 61 0a dd 84 e4 12 |E. J.....ha.....|
000000e0 91 fc 8f 4d c5 33 fc a2 9d c1 ff f2 25 3c 09 cd |...M.3......%<..|
000000f0 32 f7 75 02 21 00 9c 0a 5f de f9 e0 08 d1 cc 8b |2.u.!..._.......|
00000100 b7 c3 95 9c db 65 c4 61 25 cb 72 95 08 1e 47 b5 |.....e.a%.r...G.|

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1013

00000110 c1 31 e4 d1 f4 8c 30 02 20 e0 42 1b 91 c6 fd cd |.1....0. .B.....|
00000120 b4 0e 2a 4d 2c f3 1d b2 b4 e1 8b 41 1b 1d 3a d4 |..*M,......A..:.|
00000130 d1 2a 9d 90 aa 8e 52 fa e2 26 03 fd c6 5b 28 d0 |.*....R..&...[(.|
00000140 f1 ff 3e 00 01 00 17 73 61 6d 70 6c 65 5f 76 65 |..>....sample_ve|
00000150 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 31 d0 f1 |ndor_reserved1..|
00000160 ff 3e 00 03 00 18 76 65 6e 64 6f 72 5f 72 65 73 |.>....vendor_res|
00000170 65 72 76 65 64 33 5f 65 78 61 6d 70 6c 65 18 7a |erved3_example.z|
00000180 49 53 05 d0 77 79 a4 94 dd 39 a0 85 1b 66 0d |IS..wy...9...f.|
0000018f

-> SHA-256 of attestation_tbs used for signature (NOT sent over the wire):
1d:f1:05:b1:30:84:c3:cc:13:19:9e:df:07:b8:76:9e:be:2e:26:0d:84:8f:27:a6:ca:b6:6d:d9:a5
:8c:ea:b1

-> Fixed K for sample signature of attestation_tbs:
c5:35:83:3f:47:86:4f:cb:d8:b5:e3:2e:fb:a8:84:35:c0:fb:0c:9f:db:0f:00:34:98:0a:41:84:cc
:f0:52:4d

-> Attestation signature:
79:82:53:5d:24:cf:e1:4a:71:ab:04:24:cf:0b:ac:f1:e3:45:48:7e:d5:0f:1a:c0:bc:25:9e:cc:fb
:39:08:1e:d7:a7:52:18:8d:9f:76:f9:06:37:03:eb:24:0f:9c:d1:4b:0a:43:e7:41:fe:60:ef:2a:8
1:63:5a:ea:5b:48:4d

===== Algorithm outputs =====
-> AttestationElements field of AttestationResponse (len 383 bytes):
00000000 15 31 01 11 01 30 82 01 0d 06 09 2a 86 48 86 f7 |.1...0.....*.H..|
00000010 0d 01 07 02 a0 81 ff 30 81 fc 02 01 03 31 0d 30 |.......0.....1.0|
00000020 0b 06 09 60 86 48 01 65 03 04 02 01 30 69 06 09 |...`.H.e....0i..|
00000030 2a 86 48 86 f7 0d 01 07 01 a0 5c 04 5a 15 24 00 |*.H.......\.Z.$.|
00000040 01 25 01 f2 ff 36 02 05 01 80 05 02 80 18 25 03 |.%...6........%.|
00000050 34 12 2c 04 13 5a 49 47 32 30 31 34 32 5a 42 33 |4.,..ZIG20142ZB3|
00000060 33 30 30 30 32 2d 32 34 24 05 00 24 06 00 25 07 |30002-24$..$..%.|
00000070 94 26 24 08 00 25 09 f1 ff 25 0a 00 80 36 0b 10 |.&$..%...%...6..|
00000080 14 78 5c e7 05 b8 6b 8f 4e 6f c7 93 aa 60 cb 43 |.x\...k.No...`.C|
00000090 ea 69 68 82 d5 18 18 31 7d 30 7b 02 01 03 80 14 |.ih....1}0{.....|
000000a0 62 fa 82 33 59 ac fa a9 96 3e 1c fa 14 0a dd f5 |b..3Y....>......|
000000b0 04 f3 71 60 30 0b 06 09 60 86 48 01 65 03 04 02 |..q`0...`.H.e...|
000000c0 01 30 0a 06 08 2a 86 48 ce 3d 04 03 02 04 47 30 |.0...*.H.=....G0|
000000d0 45 02 20 4a e9 c9 b7 f8 aa 68 61 0a dd 84 e4 12 |E. J.....ha.....|
000000e0 91 fc 8f 4d c5 33 fc a2 9d c1 ff f2 25 3c 09 cd |...M.3......%<..|
000000f0 32 f7 75 02 21 00 9c 0a 5f de f9 e0 08 d1 cc 8b |2.u.!..._.......|
00000100 b7 c3 95 9c db 65 c4 61 25 cb 72 95 08 1e 47 b5 |.....e.a%.r...G.|
00000110 c1 31 e4 d1 f4 8c 30 02 20 e0 42 1b 91 c6 fd cd |.1....0. .B.....|
00000120 b4 0e 2a 4d 2c f3 1d b2 b4 e1 8b 41 1b 1d 3a d4 |..*M,......A..:.|
00000130 d1 2a 9d 90 aa 8e 52 fa e2 26 03 fd c6 5b 28 d0 |.*....R..&...[(.|
00000140 f1 ff 3e 00 01 00 17 73 61 6d 70 6c 65 5f 76 65 |..>....sample_ve|
00000150 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 31 d0 f1 |ndor_reserved1..|
00000160 ff 3e 00 03 00 18 76 65 6e 64 6f 72 5f 72 65 73 |.>....vendor_res|
00000170 65 72 76 65 64 33 5f 65 78 61 6d 70 6c 65 18 |erved3_example.|
0000017f

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1014 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

-> AttestationSignature field of AttestationResponse (len 64 bytes):
00000000 79 82 53 5d 24 cf e1 4a 71 ab 04 24 cf 0b ac f1 |y.S]$..Jq..$....|
00000010 e3 45 48 7e d5 0f 1a c0 bc 25 9e cc fb 39 08 1e |.EH~.....%...9..|
00000020 d7 a7 52 18 8d 9f 76 f9 06 37 03 eb 24 0f 9c d1 |..R...v..7..$...|
00000030 4b 0a 43 e7 41 fe 60 ef 2a 81 63 5a ea 5b 48 4d |K.C.A.`.*.cZ.[HM|
00000040

F.3. Node Operational CSR Response test vector
This subsection contains a worked example of the NOCSR Information to be generated in the CSR
Response Command when executing the Node Operational CSR Procedure.

The CSR shown is valid for the provided Node Operational public key.

The Device Attestation key pair shown is an example, not to be reused in implementations.

===== Algorithm inputs =====
-> CSRNonce:
81:4a:4d:4c:1c:4a:8e:bb:ea:db:0a:e2:82:f9:91:eb:13:ac:5f:9f:ce:94:30:93:19:aa:94:09:6c
:8c:d4:b8
-> Attestation challenge (example): 7a:49:53:05:d0:77:79:a4:94:dd:39:a0:85:1b:66:0d

-> Device attestation private key (example):
38:f3:e0:a1:f1:45:ba:1b:f3:e4:4b:55:2d:ef:65:27:3d:1d:8e:27:6a:a3:14:ac:74:2e:b1:28:93
:3b:a6:4b
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIDjz4KHxRbob8+RLVS3vZSc9HY4naqMUrHQusSiTO6ZLoAoGCCqGSM49
AwEHoUQDQgAEzlz477BdTu55DQpx1cARu3RyQNuiFFiEXTPjSwr2ZRYzBjqASy/4
XcqyAZoKtvVZV3X+jYX716B8joN9pNWouQ==
-----END EC PRIVATE KEY-----

-> Device attestation public key (example):
04:ce:5c:f8:ef:b0:5d:4e:ee:79:0d:0a:71:d5:c0:11:bb:74:72:40:db:a2:14:58:84:5d:33:e3:4b
:0a:f6:65:16:33:06:3a:80:4b:2f:f8:5d:ca:b2:01:9a:0a:b6:f5:59:57:75:fe:8d:85:fb:d7:a0:7
c:8e:83:7d:a4:d5:a8:b9
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEzlz477BdTu55DQpx1cARu3RyQNui
FFiEXTPjSwr2ZRYzBjqASy/4XcqyAZoKtvVZV3X+jYX716B8joN9pNWouQ==
-----END PUBLIC KEY-----

===== Intermediate outputs =====
-> Candidate Operational Private Key:
1c:18:82:e8:7f:80:d8:1a:25:9a:62:b6:ea:02:db:08:17:e2:10:68:46:84:2b:eb:3a:ab:c2:53:86
:a9:1e:89
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBwYguh/gNgaJZpituoC2wgX4hBoRoQr6zqrwlOGqR6JoAoGCCqGSM49
AwEHoUQDQgAEXKJ542aCwtRs59TPiWeEZwi1ufhbnNr9jKiFJhLLDwx6cTFOyNyc
ljTd7v7p9j8Oi9faz8O2pFMqrdiallHNbg==
-----END EC PRIVATE KEY-----

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1015

-> Candidate Operational Public Key:
04:5c:a2:79:e3:66:82:c2:d4:6c:e7:d4:cf:89:67:84:67:08:b5:b9:f8:5b:9c:da:fd:8c:a8:85:26
:12:cb:0f:0c:7a:71:31:4e:c8:dc:9c:96:34:dd:ee:fe:e9:f6:3f:0e:8b:d7:da:cf:c3:b6:a4:53:2
a:ad:d8:9a:96:51:cd:6e
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEXKJ542aCwtRs59TPiWeEZwi1ufhb
nNr9jKiFJhLLDwx6cTFOyNycljTd7v7p9j8Oi9faz8O2pFMqrdiallHNbg==
-----END PUBLIC KEY-----

Certificate Request:
 Data:
 Version: 1 (0x0)
 Subject: O = CSA
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:5c:a2:79:e3:66:82:c2:d4:6c:e7:d4:cf:89:67:
 84:67:08:b5:b9:f8:5b:9c:da:fd:8c:a8:85:26:12:
 cb:0f:0c:7a:71:31:4e:c8:dc:9c:96:34:dd:ee:fe:
 e9:f6:3f:0e:8b:d7:da:cf:c3:b6:a4:53:2a:ad:d8:
 9a:96:51:cd:6e
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 Attributes:
 Requested Extensions:
 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:20:0e:67:5e:e1:b3:bb:fe:15:2a:17:4a:f5:35:e2:
 2d:55:ce:10:c1:50:ca:c0:1b:31:18:de:05:e8:fd:9f:10:48:
 02:21:00:d8:8c:57:cc:6e:74:f0:e5:48:8a:26:16:7a:07:fd:
 6d:be:f1:aa:ad:72:1c:58:0b:6e:ae:21:be:5e:6d:0c:72
-> CSR bytes DER:
00000000 30 81 da 30 81 81 02 01 00 30 0e 31 0c 30 0a 06 |0..0.....0.1.0..|
00000010 03 55 04 0a 0c 03 43 53 41 30 59 30 13 06 07 2a |.U....CSA0Y0...*|
00000020 86 48 ce 3d 02 01 06 08 2a 86 48 ce 3d 03 01 07 |.H.=....*.H.=...|
00000030 03 42 00 04 5c a2 79 e3 66 82 c2 d4 6c e7 d4 cf |.B..\.y.f...l...|
00000040 89 67 84 67 08 b5 b9 f8 5b 9c da fd 8c a8 85 26 |.g.g....[......&|
00000050 12 cb 0f 0c 7a 71 31 4e c8 dc 9c 96 34 dd ee fe |....zq1N....4...|
00000060 e9 f6 3f 0e 8b d7 da cf c3 b6 a4 53 2a ad d8 9a |..?........S*...|
00000070 96 51 cd 6e a0 11 30 0f 06 09 2a 86 48 86 f7 0d |.Q.n..0...*.H...|
00000080 01 09 0e 31 02 30 00 30 0a 06 08 2a 86 48 ce 3d |...1.0.0...*.H.=|
00000090 04 03 02 03 48 00 30 45 02 20 0e 67 5e e1 b3 bb |....H.0E. .g^...|
000000a0 fe 15 2a 17 4a f5 35 e2 2d 55 ce 10 c1 50 ca c0 |..*.J.5.-U...P..|
000000b0 1b 31 18 de 05 e8 fd 9f 10 48 02 21 00 d8 8c 57 |.1.......H.!...W|
000000c0 cc 6e 74 f0 e5 48 8a 26 16 7a 07 fd 6d be f1 aa |.nt..H.&.z..m...|
000000d0 ad 72 1c 58 0b 6e ae 21 be 5e 6d 0c 72 |.r.X.n.!.^m.r|
000000dd

-> Sample vendor_reserved1:
73:61:6d:70:6c:65:5f:76:65:6e:64:6f:72:5f:72:65:73:65:72:76:65:64:31

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1016 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

-> Sample vendor_reserved3:
76:65:6e:64:6f:72:5f:72:65:73:65:72:76:65:64:33:5f:65:78:61:6d:70:6c:65
-> nocsr_elements_message:
00000000 15 30 01 dd 30 81 da 30 81 81 02 01 00 30 0e 31 |.0..0..0.....0.1|
00000010 0c 30 0a 06 03 55 04 0a 0c 03 43 53 41 30 59 30 |.0...U....CSA0Y0|
00000020 13 06 07 2a 86 48 ce 3d 02 01 06 08 2a 86 48 ce |...*.H.=....*.H.|
00000030 3d 03 01 07 03 42 00 04 5c a2 79 e3 66 82 c2 d4 |=....B..\.y.f...|
00000040 6c e7 d4 cf 89 67 84 67 08 b5 b9 f8 5b 9c da fd |l....g.g....[...|
00000050 8c a8 85 26 12 cb 0f 0c 7a 71 31 4e c8 dc 9c 96 |...&....zq1N....|
00000060 34 dd ee fe e9 f6 3f 0e 8b d7 da cf c3 b6 a4 53 |4.....?........S|
00000070 2a ad d8 9a 96 51 cd 6e a0 11 30 0f 06 09 2a 86 |*....Q.n..0...*.|
00000080 48 86 f7 0d 01 09 0e 31 02 30 00 30 0a 06 08 2a |H......1.0.0...*|
00000090 86 48 ce 3d 04 03 02 03 48 00 30 45 02 20 0e 67 |.H.=....H.0E. .g|
000000a0 5e e1 b3 bb fe 15 2a 17 4a f5 35 e2 2d 55 ce 10 |^.....*.J.5.-U..|
000000b0 c1 50 ca c0 1b 31 18 de 05 e8 fd 9f 10 48 02 21 |.P...1.......H.!|
000000c0 00 d8 8c 57 cc 6e 74 f0 e5 48 8a 26 16 7a 07 fd |...W.nt..H.&.z..|
000000d0 6d be f1 aa ad 72 1c 58 0b 6e ae 21 be 5e 6d 0c |m....r.X.n.!.^m.|
000000e0 72 30 02 20 81 4a 4d 4c 1c 4a 8e bb ea db 0a e2 |r0. .JML.J......|
000000f0 82 f9 91 eb 13 ac 5f 9f ce 94 30 93 19 aa 94 09 |......_...0.....|
00000100 6c 8c d4 b8 30 03 17 73 61 6d 70 6c 65 5f 76 65 |l...0..sample_ve|
00000110 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 31 30 05 |ndor_reserved10.|
00000120 18 76 65 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 |.vendor_reserved|
00000130 33 5f 65 78 61 6d 70 6c 65 18 |3_example.|
0000013a

-> nocsr_tbs (NOT sent over the wire):
00000000 15 30 01 dd 30 81 da 30 81 81 02 01 00 30 0e 31 |.0..0..0.....0.1|
00000010 0c 30 0a 06 03 55 04 0a 0c 03 43 53 41 30 59 30 |.0...U....CSA0Y0|
00000020 13 06 07 2a 86 48 ce 3d 02 01 06 08 2a 86 48 ce |...*.H.=....*.H.|
00000030 3d 03 01 07 03 42 00 04 5c a2 79 e3 66 82 c2 d4 |=....B..\.y.f...|
00000040 6c e7 d4 cf 89 67 84 67 08 b5 b9 f8 5b 9c da fd |l....g.g....[...|
00000050 8c a8 85 26 12 cb 0f 0c 7a 71 31 4e c8 dc 9c 96 |...&....zq1N....|
00000060 34 dd ee fe e9 f6 3f 0e 8b d7 da cf c3 b6 a4 53 |4.....?........S|
00000070 2a ad d8 9a 96 51 cd 6e a0 11 30 0f 06 09 2a 86 |*....Q.n..0...*.|
00000080 48 86 f7 0d 01 09 0e 31 02 30 00 30 0a 06 08 2a |H......1.0.0...*|
00000090 86 48 ce 3d 04 03 02 03 48 00 30 45 02 20 0e 67 |.H.=....H.0E. .g|
000000a0 5e e1 b3 bb fe 15 2a 17 4a f5 35 e2 2d 55 ce 10 |^.....*.J.5.-U..|
000000b0 c1 50 ca c0 1b 31 18 de 05 e8 fd 9f 10 48 02 21 |.P...1.......H.!|
000000c0 00 d8 8c 57 cc 6e 74 f0 e5 48 8a 26 16 7a 07 fd |...W.nt..H.&.z..|
000000d0 6d be f1 aa ad 72 1c 58 0b 6e ae 21 be 5e 6d 0c |m....r.X.n.!.^m.|
000000e0 72 30 02 20 81 4a 4d 4c 1c 4a 8e bb ea db 0a e2 |r0. .JML.J......|
000000f0 82 f9 91 eb 13 ac 5f 9f ce 94 30 93 19 aa 94 09 |......_...0.....|
00000100 6c 8c d4 b8 30 03 17 73 61 6d 70 6c 65 5f 76 65 |l...0..sample_ve|
00000110 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 31 30 05 |ndor_reserved10.|
00000120 18 76 65 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 |.vendor_reserved|
00000130 33 5f 65 78 61 6d 70 6c 65 18 7a 49 53 05 d0 77 |3_example.zIS..w|
00000140 79 a4 94 dd 39 a0 85 1b 66 0d |y...9...f.|
0000014a

-> SHA-256 of nocsr_tbs used for signature (NOT sent over the wire):
e2:62:65:69:65:2b:49:e1:5b:6e:d5:b2:42:92:bf:28:e8:e0:e9:5d:e4:25:14:e1:03:a4:30:30:18

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1017

:16:cf:3f

-> Fixed K for sample signature of nocsr_tbs:
a9:c0:d7:f2:b5:1f:51:e3:75:05:3d:c7:0e:53:f5:4e:b1:86:59:c7:d2:99:47:94:f6:8d:b5:08:bb
:53:05:5f

-> Attestation signature:
87:8e:46:cf:fa:83:c8:32:96:eb:27:2e:bc:37:1c:1f:ef:ee:6d:69:54:f3:78:9f:d3:d2:27:e1:64
:13:d3:d4:75:a6:2f:d0:12:b9:19:d9:95:8b:c7:3d:7c:63:b3:cc:1e:f2:b6:2c:18:e0:cc:10:2e:d
1:ba:4d:ac:85:fe:ea

===== Algorithm outputs =====
-> NOCSRElements field of CSRResponse (len 314 bytes):
00000000 15 30 01 dd 30 81 da 30 81 81 02 01 00 30 0e 31 |.0..0..0.....0.1|
00000010 0c 30 0a 06 03 55 04 0a 0c 03 43 53 41 30 59 30 |.0...U....CSA0Y0|
00000020 13 06 07 2a 86 48 ce 3d 02 01 06 08 2a 86 48 ce |...*.H.=....*.H.|
00000030 3d 03 01 07 03 42 00 04 5c a2 79 e3 66 82 c2 d4 |=....B..\.y.f...|
00000040 6c e7 d4 cf 89 67 84 67 08 b5 b9 f8 5b 9c da fd |l....g.g....[...|
00000050 8c a8 85 26 12 cb 0f 0c 7a 71 31 4e c8 dc 9c 96 |...&....zq1N....|
00000060 34 dd ee fe e9 f6 3f 0e 8b d7 da cf c3 b6 a4 53 |4.....?........S|
00000070 2a ad d8 9a 96 51 cd 6e a0 11 30 0f 06 09 2a 86 |*....Q.n..0...*.|
00000080 48 86 f7 0d 01 09 0e 31 02 30 00 30 0a 06 08 2a |H......1.0.0...*|
00000090 86 48 ce 3d 04 03 02 03 48 00 30 45 02 20 0e 67 |.H.=....H.0E. .g|
000000a0 5e e1 b3 bb fe 15 2a 17 4a f5 35 e2 2d 55 ce 10 |^.....*.J.5.-U..|
000000b0 c1 50 ca c0 1b 31 18 de 05 e8 fd 9f 10 48 02 21 |.P...1.......H.!|
000000c0 00 d8 8c 57 cc 6e 74 f0 e5 48 8a 26 16 7a 07 fd |...W.nt..H.&.z..|
000000d0 6d be f1 aa ad 72 1c 58 0b 6e ae 21 be 5e 6d 0c |m....r.X.n.!.^m.|
000000e0 72 30 02 20 81 4a 4d 4c 1c 4a 8e bb ea db 0a e2 |r0. .JML.J......|
000000f0 82 f9 91 eb 13 ac 5f 9f ce 94 30 93 19 aa 94 09 |......_...0.....|
00000100 6c 8c d4 b8 30 03 17 73 61 6d 70 6c 65 5f 76 65 |l...0..sample_ve|
00000110 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 31 30 05 |ndor_reserved10.|
00000120 18 76 65 6e 64 6f 72 5f 72 65 73 65 72 76 65 64 |.vendor_reserved|
00000130 33 5f 65 78 61 6d 70 6c 65 18 |3_example.|
0000013a
-> AttestationSignature field of CSRResponse (len 64 bytes):
00000000 87 8e 46 cf fa 83 c8 32 96 eb 27 2e bc 37 1c 1f |..F....2..'..7..|
00000010 ef ee 6d 69 54 f3 78 9f d3 d2 27 e1 64 13 d3 d4 |..miT.x...'.d...|
00000020 75 a6 2f d0 12 b9 19 d9 95 8b c7 3d 7c 63 b3 cc |u./........=|c..|
00000030 1e f2 b6 2c 18 e0 cc 10 2e d1 ba 4d ac 85 fe ea |...,.......M....|
00000040

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Page 1018 Copyright © Connectivity Standards Alliance, Inc. All rights reserved.

Appendix G: Minimal Resource
Requirements
This is a list of various resources required by a Node implementation, along with references to
where the minimal requirements for each resource type are defined.

Resource Minimal requirement definition

Fabric Section 11.18.5, “Attributes”

Operational Certificate Section 11.18.5, “Attributes”

ACL Entry Section 9.10.5.3, “ACL Attribute”

ACL Entry subject AccessControlEntryStruct

ACL Entry target AccessControlEntryStruct

Scene "Maximum Number of Scenes" in Scenes Man
agement cluster in the Cluster Library

Binding Section 9.6.1, “Binding Mutation”

Group Section 2.11.1.2, “Group Limits”

Group key Section 2.11.1.2, “Group Limits”

Group peer state entries Section 4.17.2, “Group Peer State”

Read path Section 2.11.2.1, “Read Interaction Limits”

Subscription Section 2.11.2.2, “Subscribe Interaction Limits”

Subscription path Section 2.11.2.2, “Subscribe Interaction Limits”

IPv6 multicast group Section 2.11.1.2, “Group Limits”

IPv6 Prefix Section 4.2.2, “Matter Node Behavior”

IPv6 route Section 4.2.2, “Matter Node Behavior”

IPv6 neighbor cache entry Section 4.2.2, “Matter Node Behavior”

CASE session Section 4.14.2.8, “Minimal Number of CASE Ses
sions”.

ICD Check-In registered clients ClientsSupportedPerFabric

Matter Specification R1.3 Connectivity Standards Alliance Document 23-27349 April 17, 2024

Copyright © Connectivity Standards Alliance, Inc. All rights reserved. Page 1019

	Matter Specification
	Copyright Notice, License and Disclaimer
	Participants
	Document Control
	Revision History
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope and Purpose
	1.2. Acronyms and Abbreviations
	1.3. Definitions
	1.4. Standards Terminology Mapping
	1.5. Conformance Levels
	1.6. References
	1.6.1. CSA Reference Documents
	1.6.2. External Reference Documents

	1.7. Informative References
	1.7.1. CSA Reference Documents

	1.8. Conventions
	1.8.1. Enumerations and Reserved Values
	1.8.2. Reserved Bit Fields
	1.8.3. Number Format
	1.8.4. Provisional

	Chapter 2. Architecture
	2.1. Overview
	2.2. Layered Architecture
	2.3. Network Topology
	2.3.1. Single network
	2.3.2. Star network topology

	2.4. Scoped names
	2.5. Identifiers
	2.5.1. Fabric References and Fabric Identifier
	2.5.2. Vendor Identifier (Vendor ID, VID)
	2.5.3. Product Identifier (Product ID, PID)
	2.5.4. Group Identifier (GID)
	2.5.5. Node Identifier
	2.5.6. IPv6 Addressing

	2.6. Device identity
	2.7. Security
	2.8. Device Commissioning
	2.9. Intermittently Connected Device (ICD)
	2.9.1. Sleepy End Device (SED)

	2.10. Data Model Root
	2.11. Stack Limits
	2.11.1. System Model Limits
	2.11.2. Interaction Model Limits

	2.12. List of Provisional Items
	2.12.1. Invoke Multiple Paths
	2.12.2. Proxy Service
	2.12.3. Diagnostic Logs Cluster
	2.12.4. Long Idle Time ICD
	2.12.5. ICD Check-In Protocol feature
	2.12.6. Tag compression encoding for AttributePathIB, EventPathIB, and AttributeDataIB

	Chapter 3. Cryptographic Primitives
	3.1. Deterministic Random Bit Generator (DRBG)
	3.2. True Random Number Generator (TRNG)
	3.3. Hash function (Hash)
	3.4. Keyed-Hash Message Authentication Code (HMAC)
	3.5. Public Key Cryptography
	3.5.1. Group
	3.5.2. Key generation
	3.5.3. Signature and verification
	3.5.4. ECDH
	3.5.5. Certificate validation
	3.5.6. Time and date considerations for certificate path validation

	3.6. Data Confidentiality and Integrity
	3.6.1. Generate and encrypt
	3.6.2. Decrypt and verify

	3.7. Message privacy
	3.7.1. Privacy encryption
	3.7.2. Privacy decryption

	3.8. Key Derivation Function (KDF)
	3.9. Password-Based Key Derivation Function (PBKDF)
	3.10. Password-Authenticated Key Exchange (PAKE)
	3.10.1. Computation of pA
	3.10.2. Computation of pB
	3.10.3. Computation of transcript TT
	3.10.4. Computation of cA, cB and Ke

	Chapter 4. Secure Channel
	4.1. General Description
	4.1.1. Messages

	4.2. IPv6 Reachability
	4.2.1. Stub Router Behavior
	4.2.2. Matter Node Behavior

	4.3. Discovery
	4.3.1. Commissionable Node Discovery
	4.3.2. Operational Discovery
	4.3.3. Commissioner Discovery
	4.3.4. Common TXT Key/Value Pairs

	4.4. Message Frame Format
	4.4.1. Message Header Field Descriptions
	4.4.2. Message Footer Field Descriptions
	4.4.3. Protocol Header Field Descriptions
	4.4.4. Message Size Requirements

	4.5. Message Framing Over Stream-Oriented Transports
	4.5.1. Message Length (16/32 bits)

	4.6. Message Counters
	4.6.1. Message Counter Types
	4.6.2. Secure Session Message Counters
	4.6.3. Check-In Counter
	4.6.4. Message Counters as Encryption Nonces
	4.6.5. Replay Prevention and Duplicate Message Detection
	4.6.6. Counter Processing of Outgoing Messages
	4.6.7. Counter Processing of Incoming Messages

	4.7. Message Processing
	4.7.1. Message Transmission
	4.7.2. Message Reception

	4.8. Message Security
	4.8.1. Data confidentiality and integrity with data origin authentication parameters
	4.8.2. Security Processing of Outgoing Messages
	4.8.3. Security Processing of Incoming Messages

	4.9. Message Privacy
	4.9.1. Privacy Key
	4.9.2. Privacy Nonce
	4.9.3. Privacy Processing of Outgoing Messages
	4.9.4. Privacy Processing of Incoming Messages

	4.10. Message Exchanges
	4.10.1. Exchange Role
	4.10.2. Exchange ID
	4.10.3. Exchange Context
	4.10.4. Exchange Message Dispatch
	4.10.5. Exchange Message Processing

	4.11. Secure Channel Protocol
	4.11.1. Secure Channel Protocol Messages
	4.11.2. Parameters and Constants

	4.12. Message Reliability Protocol (MRP)
	4.12.1. Reliable Messaging Header Fields
	4.12.2. Reliable transfer
	4.12.3. Peer Exchange Management
	4.12.4. Transport Considerations
	4.12.5. Reliable Message Processing
	4.12.6. Reliable Message State
	4.12.7. MRP Messages
	4.12.8. Parameters and Constants

	4.13. Unicast Communication
	4.13.1. Session Establishment Phase
	4.13.2. Application Data Phase

	4.14. Session Establishment
	4.14.1. Passcode-Authenticated Session Establishment (PASE)
	4.14.2. Certificate Authenticated Session Establishment (CASE)

	4.15. Group Communication
	4.15.1. Groupcast Session Context
	4.15.2. Sending a group message
	4.15.3. Receiving a group message

	4.16. Group Key Management
	4.16.1. Operational Groups
	4.16.2. Operational Group Key Derivation
	4.16.3. Epoch Keys
	4.16.4. Distribution of Key Material

	4.17. Message Counter Synchronization Protocol (MCSP)
	4.17.1. Message Counter Synchronization Methods
	4.17.2. Group Peer State
	4.17.3. MCSP Messages
	4.17.4. Unsynchronized Message Processing
	4.17.5. Message Counter Synchronization Exchange
	4.17.6. Message Counter Synchronization Session Context
	4.17.7. Sequence Diagram

	4.18. Bluetooth Transport Protocol (BTP)
	4.18.1. BTP Session Interface
	4.18.2. BTP Frame Format
	4.18.3. BTP Control Frames
	4.18.4. BTP GATT Service
	4.18.5. Parameters and Constants
	4.18.6. Bluetooth SIG Considerations

	4.19. Check-In Protocol
	4.19.1. Requirements
	4.19.2. Message Content
	4.19.3. Algorithms
	4.19.4. Protocol Operation

	Chapter 5. Commissioning
	5.1. Onboarding Payload
	5.1.1. Onboarding Payload Contents
	5.1.2. Onboarding Material Representation
	5.1.3. QR Code
	5.1.4. Manual Pairing Code
	5.1.5. TLV Content
	5.1.6. Concatenation
	5.1.7. Generation of the Passcode
	5.1.8. NFC Tag

	5.2. Initiating Commissioning
	5.2.1. Purpose and Scope
	5.2.2. User Journey Details

	5.3. User Directed Commissioning
	5.3.1. Overview
	5.3.2. UDC Protocol Messages
	5.3.3. Message format
	5.3.4. Message Exchanges
	5.3.5. IdentificationDeclaration Message
	5.3.6. CommissionerDeclaration Message
	5.3.7. Example Message Exchanges

	5.4. Device Discovery
	5.4.1. Purpose and Scope
	5.4.2. Announcement by Device
	5.4.3. Discovery by Commissioner

	5.5. Commissioning Flows
	5.5.1. Commissioning Flows Error Handling
	5.5.2. Commissioning Flow Diagrams

	5.6. Administrator Assisted Commissioning Flows
	5.6.1. Introduction
	5.6.2. Basic Commissioning Method (BCM)
	5.6.3. Enhanced Commissioning Method (ECM)
	5.6.4. Open Commissioning Window

	5.7. Device Commissioning Flows
	5.7.1. Standard Commissioning Flow
	5.7.2. User-Intent Commissioning Flow
	5.7.3. Custom Commissioning Flow
	5.7.4. Manual Pairing Code and QR Code Inclusion

	5.8. In-field Upgrade to Matter

	Chapter 6. Device Attestation and Operational Credentials
	6.1. Certificate Common Conventions
	6.1.1. Encoding of Matter-specific RDNs
	6.1.2. Key Identifier Extension Constraints
	6.1.3. Certificate Sizes
	6.1.4. Presentation of example certificates

	6.2. Device Attestation
	6.2.1. Introduction
	6.2.2. Device Attestation Certificate (DAC)
	6.2.3. Device Attestation Procedure
	6.2.4. Device attestation revocation

	6.3. Certification Declaration
	6.3.1. Certification Declaration (CD) Format
	6.3.2. Firmware Information
	6.3.3. Firmware information validation examples

	6.4. Node Operational Credentials Specification
	6.4.1. Introduction
	6.4.2. Node Operational Credentials Management
	6.4.3. Node Operational Identifier Composition
	6.4.4. Node Operational Key Pair
	6.4.5. Node Operational Credentials Certificates
	6.4.6. Node Operational Credentials Procedure
	6.4.7. Node Operational Certificate Signing Request (NOCSR)
	6.4.8. Node Operational Certificate Renewal
	6.4.9. Node Operational Certificate Revocation
	6.4.10. Security Considerations

	6.5. Operational Certificate Encoding
	6.5.1. Introduction
	6.5.2. Matter certificate
	6.5.3. Version Number
	6.5.4. Serial Number
	6.5.5. Signature Algorithm
	6.5.6. Issuer and Subject
	6.5.7. Validity
	6.5.8. Public Key Algorithm
	6.5.9. EC Curve Identifier
	6.5.10. Public Key
	6.5.11. Extensions
	6.5.12. Matter certificate Extensions Encoding Rules
	6.5.13. Signature
	6.5.14. Invalid Matter certificates
	6.5.15. Examples

	6.6. Access Control
	6.6.1. Scope and Purpose
	6.6.2. Model
	6.6.3. Access Control List Examples
	6.6.4. Access Control Cluster update side-effects
	6.6.5. Conceptual Access Control Privilege Granting Algorithm
	6.6.6. Applying Privileges to Action Paths

	Chapter 7. Data Model Specification
	7.1. Practical Information
	7.1.1. Revision History
	7.1.2. Scope & Purpose
	7.1.3. Origin Story
	7.1.4. Overview
	7.1.5. Glossary
	7.1.6. Conventions

	7.2. Data Qualities
	7.2.1. Common Data Table Columns
	7.2.2. Description Section
	7.2.3. Other Data Table Columns

	7.3. Conformance
	7.3.1. Operands in Conformance
	7.3.2. Feature Code in Conformance
	7.3.3. Element in Conformance
	7.3.4. Optional Conformance
	7.3.5. Provisional Conformance
	7.3.6. Mandatory Conformance
	7.3.7. Disallowed Conformance
	7.3.8. Deprecated Conformance
	7.3.9. Exclusivity Conformance
	7.3.10. Otherwise Conformance
	7.3.11. Quality Conformance
	7.3.12. Expressions and Optionality
	7.3.13. Choice
	7.3.14. Blank Conformance
	7.3.15. Feature Conformance

	7.4. Element
	7.4.1. Encoded Element Processing

	7.5. Fabric
	7.5.1. Accessing Fabric
	7.5.2. Fabric-Index
	7.5.3. Fabric-Scoped Data
	7.5.4. Fabric-Scoped IDs

	7.6. Access
	7.6.1. Read Access
	7.6.2. Write Access
	7.6.3. Invoke Access
	7.6.4. Fabric-Scoped Quality
	7.6.5. Fabric-Sensitive Quality
	7.6.6. View Privilege
	7.6.7. Operate Privilege
	7.6.8. Manage Privilege
	7.6.9. Administer Privilege
	7.6.10. Timed Interaction

	7.7. Other Qualities
	7.7.1. Changes Omitted Quality
	7.7.2. Fixed Quality
	7.7.3. Singleton Quality
	7.7.4. Diagnostics Quality
	7.7.5. Large Message Quality
	7.7.6. Non-Volatile Quality
	7.7.7. Reportable Quality
	7.7.8. Quieter Reporting Quality
	7.7.9. Scene Quality
	7.7.10. Nullable Quality

	7.8. Node
	7.9. Endpoint
	7.10. Cluster
	7.10.1. Cluster Revision
	7.10.2. Cluster Optional Features
	7.10.3. Cluster Data Version
	7.10.4. New Cluster
	7.10.5. Cluster Aliasing
	7.10.6. Cluster Inheritance
	7.10.7. Status Codes
	7.10.8. Cluster Classification

	7.11. Command
	7.11.1. Command Fields

	7.12. Attribute
	7.12.1. Persistence

	7.13. Global Elements
	7.13.1. ClusterRevision Attribute
	7.13.2. FeatureMap Attribute
	7.13.3. AttributeList Attribute
	7.13.4. AcceptedCommandList Attribute
	7.13.5. GeneratedCommandList Attribute
	7.13.6. EventList Attribute
	7.13.7. FabricIndex Field

	7.14. Event
	7.14.1. Event Record
	7.14.2. Buffering
	7.14.3. Event Filtering
	7.14.4. Fabric-Sensitive Event

	7.15. Device Type
	7.15.1. Device Type Revision
	7.15.2. Device Type Composition
	7.15.3. Device Type Classification
	7.15.4. Extra Clusters on an Endpoint

	7.16. Non-Standard
	7.17. Data Field
	7.17.1. Nullable
	7.17.2. Optional or Deprecated
	7.17.3. Constraint & Value
	7.17.4. Default Column

	7.18. Data Types
	7.18.1. Base Data Types
	7.18.2. Derived Data Types

	7.19. Manufacturer Specific Extensions
	7.19.1. Manufacturer Extensible Identifiers
	7.19.2. Manufacturer Extensible Identifier (MEI)
	7.19.3. Manufacturer Extensions
	7.19.4. Discoverability

	Chapter 8. Interaction Model Specification
	8.1. Practical Information
	8.1.1. Revision History
	8.1.2. Scope & Purpose
	8.1.3. Origin Story
	8.1.4. Purpose
	8.1.5. Glossary
	8.1.6. Conventions & Conformance

	8.2. Concepts
	8.2.1. Path
	8.2.2. Interaction
	8.2.3. Transaction
	8.2.4. Action
	8.2.5. Common Action Behavior

	8.3. Status and Interaction
	8.3.1. Status Response Action

	8.4. Read Interaction
	8.4.1. Read Transaction
	8.4.2. Read Request Action
	8.4.3. Report Data Action

	8.5. Subscribe Interaction
	8.5.1. Subscribe Transaction
	8.5.2. Subscribe Request Action
	8.5.3. Subscribe Response Action

	8.6. Report Transaction
	8.6.1. Report Transaction Non-Empty
	8.6.2. Report Transaction Empty

	8.7. Write Interaction
	8.7.1. Write Transaction
	8.7.2. Write Request Action
	8.7.3. Write Response Action
	8.7.4. Timed Request Action

	8.8. Invoke Interaction
	8.8.1. Invoke Transaction
	8.8.2. Invoke Request Action
	8.8.3. Invoke Response Action

	8.9. Common Action Information Blocks and Paths
	8.9.1. Path Information
	8.9.2. Attribute Information Blocks
	8.9.3. Event Information Blocks and Paths
	8.9.4. Command Information Blocks and Paths
	8.9.5. Status Information Blocks and Paths

	8.10. Status Codes
	8.10.1. Status Code Table

	Chapter 9. System Model Specification
	9.1. Practical Information
	9.1.1. Revision History
	9.1.2. Scope and Purpose
	9.1.3. Origin Story
	9.1.4. Overview

	9.2. Endpoint Composition
	9.2.1. Endpoint Composition Patterns
	9.2.2. Root Node Endpoint
	9.2.3. Disambiguation
	9.2.4. Dynamic Endpoint Allocation
	9.2.5. Superset Device Types

	9.3. Interaction Model Relationships
	9.3.1. Subscription

	9.4. Binding Relationship
	9.5. Descriptor Cluster
	9.5.1. Revision History
	9.5.2. Classification
	9.5.3. Cluster ID
	9.5.4. Features
	9.5.5. Data Types
	9.5.6. Attributes

	9.6. Binding Cluster
	9.6.1. Binding Mutation
	9.6.2. Revision History
	9.6.3. Classification
	9.6.4. Cluster ID
	9.6.5. Data Types
	9.6.6. Attributes

	9.7. Label Cluster
	9.7.1. Revision History
	9.7.2. Classification
	9.7.3. Cluster ID
	9.7.4. Data Types
	9.7.5. Attributes

	9.8. Fixed Label Cluster
	9.8.1. Revision History
	9.8.2. Classification
	9.8.3. Cluster ID
	9.8.4. Attributes

	9.9. User Label Cluster
	9.9.1. Revision History
	9.9.2. Classification
	9.9.3. Cluster ID
	9.9.4. Attributes

	9.10. Access Control Cluster
	9.10.1. Revision History
	9.10.2. Classification
	9.10.3. Cluster ID
	9.10.4. Data Types
	9.10.5. Attributes
	9.10.6. Error handling
	9.10.7. Events

	9.11. Group Relationship
	9.12. Bridge for non-Matter devices
	9.12.1. Introduction
	9.12.2. Exposing functionality and metadata of Bridged Devices
	9.12.3. Discovery of Bridged Devices
	9.12.4. Configuration of Bridged Devices
	9.12.5. New features for Bridged Devices
	9.12.6. Changes to the set of Bridged Devices
	9.12.7. Changes to device names and grouping of Bridged Devices
	9.12.8. Setup flow for a Bridge (plus Bridged Devices)
	9.12.9. Access Control
	9.12.10. Software update (OTA)
	9.12.11. Best practices for Bridge Manufacturers
	9.12.12. Best practices for Administrators

	9.13. Bridged Device Basic Information Cluster
	9.13.1. Revision History
	9.13.2. Classification
	9.13.3. Cluster ID
	9.13.4. Attributes
	9.13.5. Events

	9.14. Actions Cluster
	9.14.1. Revision History
	9.14.2. Classification
	9.14.3. Cluster ID
	9.14.4. Data Types
	9.14.5. Attributes
	9.14.6. Commands
	9.14.7. Events
	9.14.8. Examples

	9.15. Proxy Architecture
	9.15.1. Motivation
	9.15.2. Subscription Proxy: Overview
	9.15.3. Composition & Paths
	9.15.4. Proxy Subscriptions
	9.15.5. Schemas and Data Serialization/Deserialization
	9.15.6. Indirect Proxies
	9.15.7. Proxy Discovery & Assignment Flow
	9.15.8. Constraints
	9.15.9. Certification
	9.15.10. Security & Privacy
	9.15.11. Parameters and Constants
	9.15.12. Proxy Discovery Cluster
	9.15.13. Proxy Configuration Cluster
	9.15.14. Valid Proxies Cluster

	9.16. Intermittently Connected Devices Behavior
	9.16.1. ICD Server Behavior
	9.16.2. ICD Client Behavior

	9.17. ICD Management Cluster
	9.17.1. Revision History
	9.17.2. Classification
	9.17.3. Cluster ID
	9.17.4. Features
	9.17.5. Data Types
	9.17.6. Attributes
	9.17.7. Commands

	Chapter 10. Interaction Model Encoding Specification
	10.1. Overview
	10.2. Messages
	10.2.1. IM Protocol Messages
	10.2.2. Common Action Information Encoding
	10.2.3. Chunking
	10.2.4. Transaction Flows

	10.3. Data Types
	10.3.1. Analog - Integer
	10.3.2. Analog - Floating Point
	10.3.3. Discrete - Enumeration
	10.3.4. Discrete - Bitmap
	10.3.5. Composite - String
	10.3.6. Composite - Octet String
	10.3.7. Collection - Struct
	10.3.8. Collection - List
	10.3.9. Derived Types
	10.3.10. Field IDs

	10.4. Sample Clusters
	10.4.1. Disco Ball Cluster
	10.4.2. Super Disco Ball Cluster

	10.5. Sample Device Types
	10.5.1. Disco Ball Device Type
	10.5.2. Super Disco Ball Device Type
	10.5.3. Disco Spot Device Type
	10.5.4. Disco Dance System Device Type
	10.5.5. Weather Station Device Type

	10.6. Information Blocks
	10.6.1. Tag Rules
	10.6.2. AttributePathIB
	10.6.3. DataVersionFilterIB
	10.6.4. AttributeDataIB
	10.6.5. AttributeReportIB
	10.6.6. EventFilterIB
	10.6.7. ClusterPathIB
	10.6.8. EventPathIB
	10.6.9. EventDataIB
	10.6.10. EventReportIB
	10.6.11. CommandPathIB
	10.6.12. CommandDataIB
	10.6.13. InvokeResponseIB
	10.6.14. CommandStatusIB
	10.6.15. EventStatusIB
	10.6.16. AttributeStatusIB
	10.6.17. StatusIB

	10.7. Message Definitions
	10.7.1. StatusResponseMessage
	10.7.2. ReadRequestMessage
	10.7.3. ReportDataMessage
	10.7.4. SubscribeRequestMessage
	10.7.5. SubscribeResponseMessage
	10.7.6. WriteRequestMessage
	10.7.7. WriteResponseMessage
	10.7.8. TimedRequestMessage
	10.7.9. InvokeRequestMessage
	10.7.10. InvokeResponseMessage

	Chapter 11. Service and Device Management
	11.1. Basic Information Cluster
	11.1.1. Revision History
	11.1.2. Classification
	11.1.3. Cluster ID
	11.1.4. Data Types
	11.1.5. Attributes
	11.1.6. Events

	11.2. Group Key Management Cluster
	11.2.1. Revision History
	11.2.2. Classification
	11.2.3. Cluster ID
	11.2.4. Features
	11.2.5. Data Types
	11.2.6. Attributes
	11.2.7. Commands

	11.3. Localization Configuration Cluster
	11.3.1. Revision History
	11.3.2. Classification
	11.3.3. Cluster ID
	11.3.4. Attributes

	11.4. Time Format Localization Cluster
	11.4.1. Revision History
	11.4.2. Classification
	11.4.3. Cluster ID
	11.4.4. Features
	11.4.5. Data Types
	11.4.6. Attributes

	11.5. Unit Localization Cluster
	11.5.1. Revision History
	11.5.2. Classification
	11.5.3. Cluster ID
	11.5.4. Features
	11.5.5. Data Types
	11.5.6. Attributes

	11.6. Power Source Configuration Cluster
	11.6.1. Revision History
	11.6.2. Classification
	11.6.3. Cluster ID
	11.6.4. Attributes

	11.7. Power Source Cluster
	11.7.1. Revision History
	11.7.2. Classification
	11.7.3. Cluster ID
	11.7.4. Features
	11.7.5. Dependencies
	11.7.6. Data Types
	11.7.7. Attributes
	11.7.8. Events
	11.7.9. Configuration Examples

	11.8. Power Topology Cluster
	11.8.1. Revision History
	11.8.2. Classification
	11.8.3. Cluster ID
	11.8.4. Features
	11.8.5. Attributes

	11.9. Network Commissioning Cluster
	11.9.1. Revision History
	11.9.2. Classification
	11.9.3. Cluster ID
	11.9.4. Features
	11.9.5. Data Types
	11.9.6. Attributes
	11.9.7. Commands
	11.9.8. Usage of networking configurations

	11.10. General Commissioning Cluster
	11.10.1. Revision History
	11.10.2. Classification
	11.10.3. Cluster ID
	11.10.4. Data Types
	11.10.5. Attributes
	11.10.6. Commands

	11.11. Diagnostic Logs Cluster
	11.11.1. Revision History
	11.11.2. Classification
	11.11.3. Cluster ID
	11.11.4. Data Types
	11.11.5. Commands

	11.12. General Diagnostics Cluster
	11.12.1. Revision History
	11.12.2. Classification
	11.12.3. Cluster ID
	11.12.4. Features
	11.12.5. Data Types
	11.12.6. Attributes
	11.12.7. Commands
	11.12.8. Events

	11.13. Software Diagnostics Cluster
	11.13.1. Revision History
	11.13.2. Classification
	11.13.3. Cluster ID
	11.13.4. Features
	11.13.5. Data Types
	11.13.6. Attributes
	11.13.7. Commands
	11.13.8. Events

	11.14. Thread Network Diagnostics Cluster
	11.14.1. Revision History
	11.14.2. Classification
	11.14.3. Cluster ID
	11.14.4. Features
	11.14.5. Data Types
	11.14.6. Attributes
	11.14.7. Commands
	11.14.8. Events

	11.15. Wi-Fi Network Diagnostics Cluster
	11.15.1. Revision History
	11.15.2. Classification
	11.15.3. Cluster ID
	11.15.4. Features
	11.15.5. Data Types
	11.15.6. Attributes
	11.15.7. Commands
	11.15.8. Events

	11.16. Ethernet Network Diagnostics Cluster
	11.16.1. Revision History
	11.16.2. Classification
	11.16.3. Cluster ID
	11.16.4. Features
	11.16.5. Data Types
	11.16.6. Attributes
	11.16.7. Commands

	11.17. Time Synchronization Cluster
	11.17.1. Revision History
	11.17.2. Classification
	11.17.3. Cluster ID
	11.17.4. Terminology
	11.17.5. Features
	11.17.6. Data Types
	11.17.7. Status Codes
	11.17.8. Attributes
	11.17.9. Commands
	11.17.10. Events
	11.17.11. Time Synchronization at Commissioning
	11.17.12. Time Synchronization during operation
	11.17.13. Time source prioritization
	11.17.14. Time synchronization maintenance
	11.17.15. Acting as an NTP Server
	11.17.16. Implementation Guidance

	11.18. Node Operational Credentials Cluster
	11.18.1. Revision History
	11.18.2. Classification
	11.18.3. Cluster ID
	11.18.4. Data Types
	11.18.5. Attributes
	11.18.6. Commands

	11.19. Administrator Commissioning Cluster
	11.19.1. Revision History
	11.19.2. Classification
	11.19.3. Cluster ID
	11.19.4. Features
	11.19.5. Data Types
	11.19.6. Status Codes
	11.19.7. Attributes
	11.19.8. Commands

	11.20. Over-the-Air (OTA) Software Update
	11.20.1. Scope & Purpose
	11.20.2. Functional overview
	11.20.3. Software update workflow
	11.20.4. Security considerations
	11.20.5. Some special situations
	11.20.6. OTA Software Update Provider Cluster
	11.20.7. OTA Software Update Requestor Cluster

	11.21. Over-the-Air (OTA) Software Update File Format
	11.21.1. Scope & Purpose
	11.21.2. General Structure
	11.21.3. Security considerations

	11.22. Bulk Data Exchange Protocol (BDX)
	11.22.1. Overview
	11.22.2. Terminology
	11.22.3. Protocol Opcodes and Status Report Values
	11.22.4. Security and Transport Constraints
	11.22.5. Transfer Management Messages
	11.22.6. Data Transfer Messages
	11.22.7. Synchronous Transfers Message Flows
	11.22.8. Asynchronous Tranfers Message Flows

	11.23. Distributed Compliance Ledger
	11.23.1. Scope & Purpose
	11.23.2. Schemas
	11.23.3. Vendor Schema
	11.23.4. PAA Schema
	11.23.5. DeviceModel Schema
	11.23.6. DeviceSoftwareVersionModel Schema
	11.23.7. DeviceSoftwareCompliance / Compliance test result Schema
	11.23.8. Device Attestation PKI Revocation Distribution Points Schema
	11.23.9. APIs / CLI

	Chapter 12. Multiple Fabrics
	12.1. Introduction
	12.2. User Consent
	12.3. Administrator-Assisted Commissioning Method
	12.4. Node Behavior

	Chapter 13. Security Requirements
	13.1. Overview
	13.2. Device vs. Node
	13.3. Commissioning
	13.4. Factory Reset
	13.5. Firmware
	13.6. Security Best Practices
	13.6.1. Cryptography
	13.6.2. Commissioning and Administration
	13.6.3. Firmware
	13.6.4. Manufacturing
	13.6.5. Resiliency
	13.6.6. Battery Powered Devices
	13.6.7. Tamper Resistance
	13.6.8. Bridging
	13.6.9. Distributed Compliance Ledger

	13.7. Threats and Countermeasures

	Appendix A: Tag-length-value (TLV) Encoding Format
	A.1. Scope & Purpose
	A.2. Tags
	A.2.1. Profile-Specific Tags
	A.2.2. Context-Specific Tags
	A.2.3. Anonymous Tags
	A.2.4. Canonical Ordering of Tags

	A.3. Lengths
	A.4. Primitive Types
	A.5. Container Types
	A.5.1. Structures
	A.5.2. Arrays
	A.5.3. Lists

	A.6. Element Encoding
	A.7. Control Octet Encoding
	A.7.1. Element Type Field
	A.7.2. Tag Control Field

	A.8. Tag Encoding
	A.8.1. Fully-Qualified Tag Form
	A.8.2. Implicit Profile Tag Form
	A.8.3. Common Profile Tag Form
	A.8.4. Context-Specific Tag Form
	A.8.5. Anonymous Tag Form

	A.9. Length Encoding
	A.10. End of Container Encoding
	A.11. Value Encodings
	A.11.1. Integers
	A.11.2. UTF-8 and Octet Strings
	A.11.3. Booleans
	A.11.4. Arrays, Structures and Lists
	A.11.5. Floating Point Numbers
	A.11.6. Nulls

	A.12. TLV Encoding Examples

	Appendix B: Tag-length-value (TLV) Schema Definitions
	B.1. Introduction
	B.1.1. Basic Structure
	B.1.2. Keywords
	B.1.3. Naming
	B.1.4. Namespaces
	B.1.5. Qualifiers
	B.1.6. Tagging

	B.2. Definitions
	B.2.1. Type Definition (type-def)
	B.2.2. FIELD GROUP Definition (field-group-def)
	B.2.3. Namespace Definition (namespace-def)
	B.2.4. PROTOCOL Definition (protocol-def)
	B.2.5. VENDOR Definition (vendor-def)

	B.3. Types
	B.3.1. ARRAY / ARRAY OF
	B.3.2. BOOLEAN
	B.3.3. FLOAT32 / FLOAT64
	B.3.4. SIGNED INTEGER / UNSIGNED INTEGER
	B.3.5. LIST / LIST OF
	B.3.6. OCTET STRING
	B.3.7. NULL
	B.3.8. STRING
	B.3.9. STRUCTURE

	B.4. Pseudo-Types
	B.4.1. ANY
	B.4.2. CHOICE OF

	B.5. Qualifiers
	B.5.1. any-order / schema-order / tag-order
	B.5.2. extensible
	B.5.3. id
	B.5.4. length
	B.5.5. nullable
	B.5.6. optional
	B.5.7. range
	B.5.8. tag
	B.5.9. Documentation and Comments

	Appendix C: Tag-length-value (TLV) Payload Text Representation Format
	C.1. Introduction
	C.2. Format Specification
	C.2.1. Tag/Value
	C.2.2. Context-Specific Tags
	C.2.3. Protocol-Specific Tags
	C.2.4. Anonymous Tags
	C.2.5. Primitive Types
	C.2.6. Complex Types: Structure
	C.2.7. Complex Types: Arrays
	C.2.8. Complex Types: List

	C.3. Examples
	C.3.1. TLV Schema
	C.3.2. TLV Payloads

	Appendix D: Status Report Messages
	D.1. Overview
	D.2. Status Report elements
	D.3. Message Format
	D.3.1. General status codes (GeneralCode)
	D.3.2. Protocol-specific codes (ProtocolId and ProtocolCode)
	D.3.3. Protocol-specific data (ProtocolData)

	D.4. Presenting StatusReport messages in protocol specifications

	Appendix E: Matter-Specific ASN.1 Object Identifiers (OIDs)
	Appendix F: Cryptographic test vectors for some procedures
	F.1. Certification Declaration CMS test vector
	F.2. Device Attestation Response test vector
	F.3. Node Operational CSR Response test vector

	Appendix G: Minimal Resource Requirements

