
mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 137

MQTT Version 5.0

OASIS Standard

07 March 2019

Specification URIs
This version:

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.docx (Authoritative)
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.pdf

Previous version:
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cos01/mqtt-v5.0-cos01.docx (Authoritative)
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cos01/mqtt-v5.0-cos01.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cos01/mqtt-v5.0-cos01.pdf

Latest version:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.docx (Authoritative)
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

Technical Committee:

OASIS Message Queuing Telemetry Transport (MQTT) TC

Chairs:
Richard Coppen (coppen@uk.ibm.com), IBM

Editors:
Andrew Banks (andrew_banks@uk.ibm.com), IBM
Ed Briggs (edbriggs@microsoft.com), Microsoft
Ken Borgendale (kwb@us.ibm.com), IBM
Rahul Gupta (rahul.gupta@us.ibm.com), IBM

Related work:
This specification replaces or supersedes:

• MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014. OASIS
Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

This specification is related to:

• MQTT and the NIST Cybersecurity Framework Version 1.0. Edited by Geoff Brown and
Louis-Philippe Lamoureux. Latest version: http://docs.oasis-open.org/mqtt/mqtt-nist-
cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html.

Abstract:
MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open,
simple, and designed to be easy to implement. These characteristics make it ideal for use in
many situations, including constrained environments such as for communication in Machine to
Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required
and/or network bandwidth is at a premium.

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless, bi-
directional connections. Its features include:

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.docx
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cos01/mqtt-v5.0-cos01.docx
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cos01/mqtt-v5.0-cos01.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cos01/mqtt-v5.0-cos01.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.docx
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://www.oasis-open.org/committees/mqtt/
mailto:coppen@uk.ibm.com
http://www.ibm.com/
mailto:andrew_banks@uk.ibm.com
http://www.ibm.com/
mailto:edbriggs@microsoft.com
http://www.microsoft.com/
mailto:kwb@us.ibm.com
http://www.ibm.com/
mailto:rahul.gupta@us.ibm.com
http://www.ibm.com/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 137

• Use of the publish/subscribe message pattern which provides one-to-many message
distribution and decoupling of applications.

• A messaging transport that is agnostic to the content of the payload.

• Three qualities of service for message delivery:

o "At most once", where messages are delivered according to the best efforts of the
operating environment. Message loss can occur. This level could be used, for
example, with ambient sensor data where it does not matter if an individual reading is
lost as the next one will be published soon after.

o "At least once", where messages are assured to arrive but duplicates can occur.

o "Exactly once", where messages are assured to arrive exactly once. This level could
be used, for example, with billing systems where duplicate or lost messages could
lead to incorrect charges being applied.

• A small transport overhead and protocol exchanges minimized to reduce network traffic.

• A mechanism to notify interested parties when an abnormal disconnection occurs.

Status:
This document was last revised or approved by the membership of OASIS on the above date.
The level of approval is also listed above. Check the “Latest version” location noted above for
possible later revisions of this document. Any other numbered Versions and other technical work
produced by the Technical Committee (TC) are listed at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=mqtt#technical.

TC members should send comments on this document to the TC’s email list. Others should send
comments to the TC’s public comment list, after subscribing to it by following the instructions at
the “Send A Comment” button on the TC’s web page at https://www.oasis-
open.org/committees/mqtt/.

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents
have been disclosed that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web
page (https://www.oasis-open.org/committees/mqtt/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared Normative for
this Work Product is provided in separate plain text files. In the event of a discrepancy between
any such plain text file and display content in the Work Product's prose narrative document(s),
the content in the separate plain text file prevails.

Citation format:
When referencing this specification the following citation format should be used:

[mqtt-v5.0]

MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. 07
March 2019. OASIS Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.
Latest version: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt#technical
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt#technical
https://www.oasis-open.org/committees/comments/index.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/mqtt/
https://www.oasis-open.org/committees/mqtt/
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/mqtt/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 137

Notices

Copyright © OASIS Open 2019. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be
used only to refer to the organization and its official outputs. OASIS welcomes reference to, and
implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above
guidance.

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 137

Table of Contents

1 Introduction ... 11

1.0 Intellectual property rights policy .. 11

1.1 Organization of the MQTT specification ... 11

1.2 Terminology .. 11

1.3 Normative references ... 13

1.4 Non-normative references .. 13

1.5 Data representation .. 16

1.5.1 Bits ... 16

1.5.2 Two Byte Integer ... 16

1.5.3 Four Byte Integer ... 16

1.5.4 UTF-8 Encoded String ... 16

1.5.5 Variable Byte Integer ... 18

1.5.6 Binary Data .. 19

1.5.7 UTF-8 String Pair .. 19

1.6 Security ... 19

1.7 Editing convention .. 20

1.8 Change history .. 20

1.8.1 MQTT v3.1.1.. 20

1.8.2 MQTT v5.0 ... 20

2 MQTT Control Packet format ... 21

2.1 Structure of an MQTT Control Packet .. 21

2.1.1 Fixed Header ... 21

2.1.2 MQTT Control Packet type .. 21

2.1.3 Flags .. 22

2.1.4 Remaining Length ... 23

2.2 Variable Header .. 23

2.2.1 Packet Identifier ... 23

2.2.2 Properties .. 25
2.2.2.1 Property Length ... 25
2.2.2.2 Property ... 25

2.3 Payload ... 26

2.4 Reason Code .. 27

3 MQTT Control Packets ... 30

3.1 CONNECT – Connection Request ... 30

3.1.1 CONNECT Fixed Header .. 30

3.1.2 CONNECT Variable Header .. 30
3.1.2.1 Protocol Name ... 30
3.1.2.2 Protocol Version... 31
3.1.2.3 Connect Flags .. 31
3.1.2.4 Clean Start ... 32
3.1.2.5 Will Flag ... 32
3.1.2.6 Will QoS ... 33
3.1.2.7 Will Retain .. 33
3.1.2.8 User Name Flag ... 33

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 137

3.1.2.9 Password Flag ... 33
3.1.2.10 Keep Alive .. 34
3.1.2.11 CONNECT Properties .. 34

3.1.2.11.1 Property Length .. 34
3.1.2.11.2 Session Expiry Interval ... 35
3.1.2.11.3 Receive Maximum .. 36
3.1.2.11.4 Maximum Packet Size .. 36
3.1.2.11.5 Topic Alias Maximum ... 37
3.1.2.11.6 Request Response Information .. 37
3.1.2.11.7 Request Problem Information ... 37
3.1.2.11.8 User Property ... 38
3.1.2.11.9 Authentication Method.. 38
3.1.2.11.10 Authentication Data .. 38

3.1.2.12 Variable Header non-normative example ... 39

3.1.3 CONNECT Payload ... 40
3.1.3.1 Client Identifier (ClientID) ... 40
3.1.3.2 Will Properties .. 40

3.1.3.2.1 Property Length .. 40
3.1.3.2.2 Will Delay Interval .. 41
3.1.3.2.3 Payload Format Indicator ... 41
3.1.3.2.4 Message Expiry Interval ... 41
3.1.3.2.5 Content Type .. 42
3.1.3.2.6 Response Topic ... 42
3.1.3.2.7 Correlation Data ... 42
3.1.3.2.8 User Property ... 42

3.1.3.3 Will Topic ... 42
3.1.3.4 Will Payload ... 43
3.1.3.5 User Name ... 43
3.1.3.6 Password ... 43

3.1.4 CONNECT Actions .. 43

3.2 CONNACK – Connect acknowledgement .. 44

3.2.1 CONNACK Fixed Header .. 45

3.2.2 CONNACK Variable Header ... 45
3.2.2.1 Connect Acknowledge Flags.. 45

3.2.2.1.1 Session Present ... 45
3.2.2.2 Connect Reason Code ... 46
3.2.2.3 CONNACK Properties .. 47

3.2.2.3.1 Property Length .. 47
3.2.2.3.2 Session Expiry Interval ... 47
3.2.2.3.3 Receive Maximum .. 48
3.2.2.3.4 Maximum QoS ... 48
3.2.2.3.5 Retain Available ... 49
3.2.2.3.6 Maximum Packet Size .. 49
3.2.2.3.7 Assigned Client Identifier ... 49
3.2.2.3.8 Topic Alias Maximum ... 50
3.2.2.3.9 Reason String .. 50
3.2.2.3.10 User Property ... 50
3.2.2.3.11 Wildcard Subscription Available ... 50
3.2.2.3.12 Subscription Identifiers Available ... 51

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 137

3.2.2.3.13 Shared Subscription Available ... 51
3.2.2.3.14 Server Keep Alive .. 51
3.2.2.3.15 Response Information .. 52
3.2.2.3.16 Server Reference ... 52
3.2.2.3.17 Authentication Method.. 52
3.2.2.3.18 Authentication Data .. 52

3.2.3 CONNACK Payload .. 53

3.3 PUBLISH – Publish message ... 53

3.3.1 PUBLISH Fixed Header .. 53
3.3.1.1 DUP ... 53
3.3.1.2 QoS .. 54
3.3.1.3 RETAIN .. 54
3.3.1.4 Remaining Length .. 55

3.3.2 PUBLISH Variable Header .. 55
3.3.2.1 Topic Name ... 55
3.3.2.2 Packet Identifier ... 56
3.3.2.3 PUBLISH Properties .. 56

3.3.2.3.1 Property Length .. 56
3.3.2.3.2 Payload Format Indicator ... 56
3.3.2.3.3 Message Expiry Interval` .. 56
3.3.2.3.4 Topic Alias.. 57
3.3.2.3.5 Response Topic ... 58
3.3.2.3.6 Correlation Data ... 58
3.3.2.3.7 User Property ... 58
3.3.2.3.8 Subscription Identifier ... 59
3.3.2.3.9 Content Type .. 59

3.3.3 PUBLISH Payload ... 60

3.3.4 PUBLISH Actions .. 60

3.4 PUBACK – Publish acknowledgement ... 62

3.4.1 PUBACK Fixed Header ... 63

3.4.2 PUBACK Variable Header ... 63
3.4.2.1 PUBACK Reason Code ... 63
3.4.2.2 PUBACK Properties ... 64

3.4.2.2.1 Property Length .. 64
3.4.2.2.2 Reason String .. 64
3.4.2.2.3 User Property ... 64

3.4.3 PUBACK Payload .. 65

3.4.4 PUBACK Actions ... 65

3.5 PUBREC – Publish received (QoS 2 delivery part 1) ... 65

3.5.1 PUBREC Fixed Header ... 65

3.5.2 PUBREC Variable Header .. 65
3.5.2.1 PUBREC Reason Code ... 65
3.5.2.2 PUBREC Properties ... 66

3.5.2.2.1 Property Length .. 66
3.5.2.2.2 Reason String .. 66
3.5.2.2.3 User Property ... 67

3.5.3 PUBREC Payload ... 67

3.5.4 PUBREC Actions ... 67

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 137

3.6 PUBREL – Publish release (QoS 2 delivery part 2) ... 67

3.6.1 PUBREL Fixed Header ... 67

3.6.2 PUBREL Variable Header ... 67
3.6.2.1 PUBREL Reason Code .. 68
3.6.2.2 PUBREL Properties ... 68

3.6.2.2.1 Property Length .. 68
3.6.2.2.2 Reason String .. 68
3.6.2.2.3 User Property ... 69

3.6.3 PUBREL Payload .. 69

3.6.4 PUBREL Actions ... 69

3.7 PUBCOMP – Publish complete (QoS 2 delivery part 3) ... 69

3.7.1 PUBCOMP Fixed Header .. 69

3.7.2 PUBCOMP Variable Header ... 69
3.7.2.1 PUBCOMP Reason Code .. 70
3.7.2.2 PUBCOMP Properties ... 70

3.7.2.2.1 Property Length .. 70
3.7.2.2.2 Reason String .. 70
3.7.2.2.3 User Property ... 70

3.7.3 PUBCOMP Payload .. 71

3.7.4 PUBCOMP Actions ... 71

3.8 SUBSCRIBE - Subscribe request ... 71

3.8.1 SUBSCRIBE Fixed Header ... 71

3.8.2 SUBSCRIBE Variable Header ... 71
3.8.2.1 SUBSCRIBE Properties ... 72

3.8.2.1.1 Property Length .. 72
3.8.2.1.2 Subscription Identifier ... 72
3.8.2.1.3 User Property ... 72

3.8.3 SUBSCRIBE Payload .. 72
3.8.3.1 Subscription Options .. 73

3.8.4 SUBSCRIBE Actions ... 75

3.9 SUBACK – Subscribe acknowledgement ... 77

3.9.1 SUBACK Fixed Header ... 77

3.9.2 SUBACK Variable Header ... 77
3.9.2.1 SUBACK Properties ... 77

3.9.2.1.1 Property Length .. 77
3.9.2.1.2 Reason String .. 78
3.9.2.1.3 User Property ... 78

3.9.3 SUBACK Payload .. 78

3.10 UNSUBSCRIBE – Unsubscribe request ... 79

3.10.1 UNSUBSCRIBE Fixed Header .. 79

3.10.2 UNSUBSCRIBE Variable Header ... 80
3.10.2.1 UNSUBSCRIBE Properties .. 80

3.10.2.1.1 Property Length .. 80
3.10.2.1.2 User Property ... 80

3.10.3 UNSUBSCRIBE Payload .. 80

3.10.4 UNSUBSCRIBE Actions .. 81

3.11 UNSUBACK – Unsubscribe acknowledgement.. 81

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 137

3.11.1 UNSUBACK Fixed Header .. 82

3.11.2 UNSUBACK Variable Header ... 82
3.11.2.1 UNSUBACK Properties .. 82

3.11.2.1.1 Property Length .. 82
3.11.2.1.2 Reason String .. 82
3.11.2.1.3 User Property ... 83

3.11.3 UNSUBACK Payload .. 83

3.12 PINGREQ – PING request ... 83

3.12.1 PINGREQ Fixed Header ... 84

3.12.2 PINGREQ Variable Header ... 84

3.12.3 PINGREQ Payload .. 84

3.12.4 PINGREQ Actions ... 84

3.13 PINGRESP – PING response .. 84

3.13.1 PINGRESP Fixed Header ... 84

3.13.2 PINGRESP Variable Header ... 85

3.13.3 PINGRESP Payload .. 85

3.13.4 PINGRESP Actions ... 85

3.14 DISCONNECT – Disconnect notification .. 85

3.14.1 DISCONNECT Fixed Header .. 85

3.14.2 DISCONNECT Variable Header.. 85
3.14.2.1 Disconnect Reason Code .. 86
3.14.2.2 DISCONNECT Properties .. 88

3.14.2.2.1 Property Length .. 88
3.14.2.2.2 Session Expiry Interval ... 88
3.14.2.2.3 Reason String .. 88
3.14.2.2.4 User Property ... 88
3.14.2.2.5 Server Reference ... 88

3.14.3 DISCONNECT Payload ... 89

3.14.4 DISCONNECT Actions .. 89

3.15 AUTH – Authentication exchange .. 89

3.15.1 AUTH Fixed Header .. 90

3.15.2 AUTH Variable Header .. 90
3.15.2.1 Authenticate Reason Code .. 90
3.15.2.2 AUTH Properties .. 90

3.15.2.2.1 Property Length .. 90
3.15.2.2.2 Authentication Method.. 91
3.15.2.2.3 Authentication Data .. 91
3.15.2.2.4 Reason String .. 91
3.15.2.2.5 User Property ... 91

3.15.3 AUTH Payload ... 91

3.15.4 AUTH Actions .. 91

4 Operational behavior .. 92

4.1 Session State .. 92

4.1.1 Storing Session State .. 92

4.1.2 Session State non-normative examples .. 93

4.2 Network Connections .. 93

4.3 Quality of Service levels and protocol flows ... 93

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 137

4.3.1 QoS 0: At most once delivery .. 94

4.3.2 QoS 1: At least once delivery .. 94

4.3.3 QoS 2: Exactly once delivery .. 95

4.4 Message delivery retry .. 96

4.5 Message receipt ... 97

4.6 Message ordering ... 97

4.7 Topic Names and Topic Filters ... 98

4.7.1 Topic wildcards .. 98
4.7.1.1 Topic level separator .. 98
4.7.1.2 Multi-level wildcard ... 98
4.7.1.3 Single-level wildcard .. 99

4.7.2 Topics beginning with $... 99

4.7.3 Topic semantic and usage .. 100

4.8 Subscriptions .. 101

4.8.1 Non-shared Subscriptions ... 101

4.8.2 Shared Subscriptions .. 101

4.9 Flow Control .. 103

4.10 Request / Response ... 104

4.10.1 Basic Request Response (non-normative) ... 104

4.10.2 Determining a Response Topic value (non-normative) ... 105

4.11 Server redirection ... 106

4.12 Enhanced authentication .. 106

4.12.1 Re-authentication .. 108

4.13 Handling errors ... 109

4.13.1 Malformed Packet and Protocol Errors ... 109

4.13.2 Other errors ... 110

5 Security (non-normative) .. 111

5.1 Introduction ... 111

5.2 MQTT solutions: security and certification .. 111

5.3 Lightweight crytography and constrained devices .. 112

5.4 Implementation notes ... 112

5.4.1 Authentication of Clients by the Server ... 112

5.4.2 Authorization of Clients by the Server ... 112

5.4.3 Authentication of the Server by the Client ... 113

5.4.4 Integrity of Application Messages and MQTT Control Packets ... 113

5.4.5 Privacy of Application Messages and MQTT Control Packets .. 113

5.4.6 Non-repudiation of message transmission .. 114

5.4.7 Detecting compromise of Clients and Servers .. 114

5.4.8 Detecting abnormal behaviors... 114

5.4.9 Handling of Disallowed Unicode code points .. 115
5.4.9.1 Considerations for the use of Disallowed Unicode code points ... 115
5.4.9.2 Interactions between Publishers and Subscribers ... 115
5.4.9.3 Remedies ... 116

5.4.10 Other security considerations .. 116

5.4.11 Use of SOCKS .. 116

5.4.12 Security profiles ... 117

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 137

5.4.12.1 Clear communication profile... 117
5.4.12.2 Secured network communication profile .. 117
5.4.12.3 Secured transport profile .. 117
5.4.12.4 Industry specific security profiles ... 117

6 Using WebSocket as a network transport .. 118

6.1 IANA considerations ... 118

7 Conformance .. 119

7.1 Conformance clauses ... 119

7.1.1 MQTT Server conformance clause ... 119

7.1.2 MQTT Client conformance clause ... 119

Appendix A. Acknowledgments .. 120

Appendix B. Mandatory normative statement (non-normative) .. 121

Appendix C. Summary of new features in MQTT v5.0 (non-normative) ... 136

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 137

1 Introduction 1

1.0 Intellectual property rights policy 2

This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen 3
when the Technical Committee was established. For information on whether any patents have been 4
disclosed that may be essential to implementing this specification, and any offers of patent licensing 5
terms, please refer to the Intellectual Property Rights section of the TC’s web page (https://www.oasis-6
open.org/committees/mqtt/ipr.php). 7

1.1 Organization of the MQTT specification 8

The specification is split into seven chapters: 9

• Chapter 1 - Introduction 10

• Chapter 2 - MQTT Control Packet format 11

• Chapter 3 - MQTT Control Packets 12

• Chapter 4 - Operational behavior 13

• Chapter 5 - Security 14

• Chapter 6 - Using WebSocket as a network transport 15

• Chapter 7 - Conformance Targets 16

 17

1.2 Terminology 18

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 19
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as 20
described in IETF RFC 2119 [RFC2119], except where they appear in text that is marked as non-21
normative. 22

 23

Network Connection: 24

A construct provided by the underlying transport protocol that is being used by MQTT. 25

• It connects the Client to the Server. 26

• It provides the means to send an ordered, lossless, stream of bytes in both directions. 27

Refer to section 4.2 Network Connection for non-normative examples. 28

 29

Application Message: 30

The data carried by the MQTT protocol across the network for the application. When an Application 31
Message is transported by MQTT it contains payload data, a Quality of Service (QoS), a collection of 32
Properties, and a Topic Name. 33

 34

Client: 35

A program or device that uses MQTT. A Client: 36

• opens the Network Connection to the Server 37

• publishes Application Messages that other Clients might be interested in. 38

• subscribes to request Application Messages that it is interested in receiving. 39

• unsubscribes to remove a request for Application Messages. 40

• closes the Network Connection to the Server. 41

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/mqtt/ipr.php
https://www.oasis-open.org/committees/mqtt/ipr.php

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 137

 42

Server: 43

A program or device that acts as an intermediary between Clients which publish Application Messages 44
and Clients which have made Subscriptions. A Server: 45

• accepts Network Connections from Clients. 46

• accepts Application Messages published by Clients. 47

• processes Subscribe and Unsubscribe requests from Clients. 48

• forwards Application Messages that match Client Subscriptions. 49

• closes the Network Connection from the Client. 50

 51

Session: 52

A stateful interaction between a Client and a Server. Some Sessions last only as long as the Network 53
Connection, others can span multiple consecutive Network Connections between a Client and a Server. 54

 55

Subscription: 56

A Subscription comprises a Topic Filter and a maximum QoS. A Subscription is associated with a single 57
Session. A Session can contain more than one Subscription. Each Subscription within a Session has a 58
different Topic Filter. 59

 60

Shared Subscription: 61

A Shared Subscription comprises a Topic Filter and a maximum QoS. A Shared Subscription can be 62
associated with more than one Session to allow a wider range of message exchange patterns. An 63
Application Message that matches a Shared Subscription is only sent to the Client associated with one of 64
these Sessions. A Session can subscribe to more than one Shared Subscription and can contain both 65
Shared Subscriptions and Subscriptions which are not shared. 66

 67

Wildcard Subscription: 68

A Wildcard Subscription is a Subscription with a Topic Filter containing one or more wildcard characters. 69
This allows the subscription to match more than one Topic Name. Refer to section 4.7 for a description of 70
wildcard characters in a Topic Filter. 71

 72

Topic Name: 73

The label attached to an Application Message which is matched against the Subscriptions known to the 74
Server. 75

 76

Topic Filter: 77

An expression contained in a Subscription to indicate an interest in one or more topics. A Topic Filter can 78
include wildcard characters. 79

 80

MQTT Control Packet: 81

A packet of information that is sent across the Network Connection. The MQTT specification defines 82
fifteen different types of MQTT Control Packet, for example the PUBLISH packet is used to convey 83
Application Messages. 84

 85

Malformed Packet: 86

A control packet that cannot be parsed according to this specification. Refer to section 4.13 for 87
information about error handling. 88

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 137

 89

Protocol Error: 90

An error that is detected after the packet has been parsed and found to contain data that is not allowed by 91
the protocol or is inconsistent with the state of the Client or Server. Refer to section 4.13 for information 92
about error handling. 93

 94

Will Message: 95

An Application Message which is published by the Server after the Network Connection is closed in cases 96
where the Network Connection is not closed normally. Refer to section 3.1.2.5 for information about Will 97
Messages. 98

 99

Disallowed Unicode code point: 100

The set of Unicode Control Codes and Unicode Noncharacters which should not be included in a UTF-8 101
Encoded String. Refer to section 1.5.4 for more information about the Disallowed Unicode code points. 102

 103

1.3 Normative references 104

[RFC2119] 105

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 106
10.17487/RFC2119, March 1997, 107

http://www.rfc-editor.org/info/rfc2119 108

 109

[RFC3629] 110

Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 111
10.17487/RFC3629, November 2003, 112

http://www.rfc-editor.org/info/rfc3629 113

 114

[RFC6455] 115

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC 6455, DOI 10.17487/RFC6455, December 116
2011, 117

http://www.rfc-editor.org/info/rfc6455 118

 119

[Unicode] 120

The Unicode Consortium. The Unicode Standard, 121

http://www.unicode.org/versions/latest/ 122

 123

1.4 Non-normative references 124

[RFC0793] 125

Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981, 126
http://www.rfc-editor.org/info/rfc793 127

 128

[RFC5246] 129

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 130
10.17487/RFC5246, August 2008, 131

http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc3629
http://www.rfc-editor.org/info/rfc6455
http://www.unicode.org/versions/latest/
http://www.rfc-editor.org/info/rfc793

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 137

http://www.rfc-editor.org/info/rfc5246 132

 133

[AES] 134

Advanced Encryption Standard (AES) (FIPS PUB 197). 135

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf 136

 137

[CHACHA20] 138

ChaCha20 and Poly1305 for IETF Protocols 139

https://tools.ietf.org/html/rfc7539 140

 141

[FIPS1402] 142

Security Requirements for Cryptographic Modules (FIPS PUB 140-2) 143

https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf 144

 145

[IEEE 802.1AR] 146

IEEE Standard for Local and metropolitan area networks - Secure Device Identity 147

http://standards.ieee.org/findstds/standard/802.1AR-2009.html 148

 149

[ISO29192] 150

ISO/IEC 29192-1:2012 Information technology -- Security techniques -- Lightweight cryptography -- Part 151
1: General 152

https://www.iso.org/standard/56425.html 153

 154

[MQTT NIST] 155

MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 156
Cybersecurity 157

http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html 158

 159

[MQTTV311] 160

MQTT V3.1.1 Protocol Specification 161

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html 162

 163

[ISO20922] 164

MQTT V3.1.1 ISO Standard (ISO/IEC 20922:2016) 165

https://www.iso.org/standard/69466.html 166

 167

[NISTCSF] 168

Improving Critical Infrastructure Cybersecurity Executive Order 13636 169

https://www.nist.gov/sites/default/files/documents/itl/preliminary-cybersecurity-framework.pdf 170

 171

[NIST7628] 172

NISTIR 7628 Guidelines for Smart Grid Cyber Security Catalogue 173

https://www.nist.gov/sites/default/files/documents/smartgrid/nistir-7628_total.pdf 174

http://www.rfc-editor.org/info/rfc5246
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://tools.ietf.org/html/rfc7539
https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
https://www.iso.org/standard/56425.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.iso.org/standard/69466.html
https://www.nist.gov/sites/default/files/documents/itl/preliminary-cybersecurity-framework.pdf
https://www.nist.gov/sites/default/files/documents/smartgrid/nistir-7628_total.pdf

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 137

 175

[NSAB] 176

NSA Suite B Cryptography 177

http://www.nsa.gov/ia/programs/suiteb_cryptography/ 178

 179

[PCIDSS] 180

PCI-DSS Payment Card Industry Data Security Standard 181

https://www.pcisecuritystandards.org/pci_security/ 182

 183

[RFC1928] 184

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L. Jones, "SOCKS Protocol Version 5", RFC 185
1928, DOI 10.17487/RFC1928, March 1996, 186

http://www.rfc-editor.org/info/rfc1928 187

 188

[RFC4511] 189

Sermersheim, J., Ed., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, DOI 190
10.17487/RFC4511, June 2006, 191

http://www.rfc-editor.org/info/rfc4511 192

 193

[RFC5280] 194

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key 195
Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 196
10.17487/RFC5280, May 2008, 197

http://www.rfc-editor.org/info/rfc5280 198

 199

[RFC6066] 200

Eastlake 3rd, D., "Transport Layer Security (TLS) Extensions: Extension Definitions", RFC 6066, DOI 201
10.17487/RFC6066, January 2011, 202

http://www.rfc-editor.org/info/rfc6066 203

 204

[RFC6749] 205

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 206
2012, 207

http://www.rfc-editor.org/info/rfc6749 208

 209

[RFC6960] 210

Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, "X.509 Internet Public 211
Key Infrastructure Online Certificate Status Protocol - OCSP", RFC 6960, DOI 10.17487/RFC6960, June 212
2013, 213

http://www.rfc-editor.org/info/rfc6960 214

 215

[SARBANES] 216

Sarbanes-Oxley Act of 2002. 217

http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm 218

 219

http://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.pcisecuritystandards.org/pci_security/
http://www.rfc-editor.org/info/rfc1928
http://www.rfc-editor.org/info/rfc4511
http://www.rfc-editor.org/info/rfc5280
http://www.rfc-editor.org/info/rfc6066
http://www.rfc-editor.org/info/rfc6749
http://www.rfc-editor.org/info/rfc6960
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/html/PLAW-107publ204.htm

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 137

[USEUPRIVSH] 220

U.S.-EU Privacy Shield Framework 221

https://www.privacyshield.gov 222

 223

[RFC3986] 224

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 225
66, RFC 3986, DOI 10.17487/RFC3986, January 2005, 226

http://www.rfc-editor.org/info/rfc3986 227

 228

[RFC1035] 229

Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 230
10.17487/RFC1035, November 1987, 231

http://www.rfc-editor.org/info/rfc1035 232

 233

[RFC2782] 234

Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for specifying the location of services (DNS SRV)", 235
RFC 2782, DOI 10.17487/RFC2782, February 2000, 236

http://www.rfc-editor.org/info/rfc2782 237

 238

1.5 Data representation 239

1.5.1 Bits 240

Bits in a byte are labelled 7 to 0. Bit number 7 is the most significant bit, the least significant bit is 241
assigned bit number 0. 242

 243

1.5.2 Two Byte Integer 244

Two Byte Integer data values are 16-bit unsigned integers in big-endian order: the high order byte 245
precedes the lower order byte. This means that a 16-bit word is presented on the network as Most 246
Significant Byte (MSB), followed by Least Significant Byte (LSB). 247

 248

1.5.3 Four Byte Integer 249

Four Byte Integer data values are 32-bit unsigned integers in big-endian order: the high order byte 250
precedes the successively lower order bytes. This means that a 32-bit word is presented on the network 251
as Most Significant Byte (MSB), followed by the next most Significant Byte (MSB), followed by the next 252
most Significant Byte (MSB), followed by Least Significant Byte (LSB). 253

 254

1.5.4 UTF-8 Encoded String 255

Text fields within the MQTT Control Packets described later are encoded as UTF-8 strings. UTF-8 256
[RFC3629] is an efficient encoding of Unicode [Unicode] characters that optimizes the encoding of ASCII 257
characters in support of text-based communications. 258

 259

https://www.privacyshield.gov/
http://www.rfc-editor.org/info/rfc3986
http://www.rfc-editor.org/info/rfc1035
http://www.rfc-editor.org/info/rfc2782

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 137

Each of these strings is prefixed with a Two Byte Integer length field that gives the number of bytes in a 260
UTF-8 encoded string itself, as illustrated in Figure 1.1 Structure of UTF-8 Encoded Strings below. 261
Consequently, the maximum size of a UTF-8 Encoded String is 65,535 bytes. 262

 263

Unless stated otherwise all UTF-8 encoded strings can have any length in the range 0 to 65,535 bytes. 264

 265

Figure 1-1 Structure of UTF-8 Encoded Strings 266

Bit 7 6 5 4 3 2 1 0

byte 1 String length MSB

byte 2 String length LSB

byte 3 …. UTF-8 encoded character data, if length > 0.

 267

The character data in a UTF-8 Encoded String MUST be well-formed UTF-8 as defined by the Unicode 268
specification [Unicode] and restated in RFC 3629 [RFC3629]. In particular, the character data MUST NOT 269
include encodings of code points between U+D800 and U+DFFF [MQTT-1.5.4-1]. If the Client or Server 270
receives an MQTT Control Packet containing ill-formed UTF-8 it is a Malformed Packet. Refer to section 271
4.13 for information about handling errors. 272

 273

A UTF-8 Encoded String MUST NOT include an encoding of the null character U+0000. [MQTT-1.5.4-2]. 274
If a receiver (Server or Client) receives an MQTT Control Packet containing U+0000 it is a Malformed 275
Packet. Refer to section 4.13 for information about handling errors. 276

 277

The data SHOULD NOT include encodings of the Unicode [Unicode] code points listed below. If a 278
receiver (Server or Client) receives an MQTT Control Packet containing any of them it MAY treat it as a 279
Malformed Packet. These are the Disallowed Unicode code points. Refer to section 5.4.9 for more 280
information about handling Disallowed Unicode code points. 281

 282

• U+0001..U+001F control characters 283

• U+007F..U+009F control characters 284

• Code points defined in the Unicode specification [Unicode] to be non-characters (for example 285
U+0FFFF) 286

 287

A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always interpreted as U+FEFF ("ZERO WIDTH NO-288
BREAK SPACE") wherever it appears in a string and MUST NOT be skipped over or stripped off by a 289
packet receiver [MQTT-1.5.4-3]. 290

 291

Non-normative example 292

For example, the string A𪛔 which is LATIN CAPITAL Letter A followed by the code point U+2A6D4 293

(which represents a CJK IDEOGRAPH EXTENSION B character) is encoded as follows: 294

 295

Figure 1-2 UTF-8 Encoded String non-normative example 296

Bit 7 6 5 4 3 2 1 0

byte 1 String Length MSB (0x00)

 0 0 0 0 0 0 0 0

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 137

byte 2 String Length LSB (0x05)

 0 0 0 0 0 1 0 1

byte 3 ‘A’ (0x41)

 0 1 0 0 0 0 0 1

byte 4 (0xF0)

 1 1 1 1 0 0 0 0

byte 5 (0xAA)

 1 0 1 0 1 0 1 0

byte 6 (0x9B)

 1 0 0 1 1 0 1 1

byte 7 (0x94)

 1 0 0 1 0 1 0 0

 297

1.5.5 Variable Byte Integer 298

The Variable Byte Integer is encoded using an encoding scheme which uses a single byte for values up 299
to 127. Larger values are handled as follows. The least significant seven bits of each byte encode the 300
data, and the most significant bit is used to indicate whether there are bytes following in the 301
representation. Thus, each byte encodes 128 values and a "continuation bit". The maximum number of 302
bytes in the Variable Byte Integer field is four. The encoded value MUST use the minimum number of 303
bytes necessary to represent the value [MQTT-1.5.5-1]. This is shown in Table 1-1 Size of Variable Byte 304
Integer. 305

 306

Table 1-1 Size of Variable Byte Integer 307

Digits From To

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16,383 (0xFF, 0x7F)

3 16,384 (0x80, 0x80, 0x01) 2,097,151 (0xFF, 0xFF, 0x7F)

4 2,097,152 (0x80, 0x80, 0x80, 0x01) 268,435,455 (0xFF, 0xFF, 0xFF, 0x7F)

 308

Non-normative comment 309

The algorithm for encoding a non-negative integer (X) into the Variable Byte Integer encoding 310
scheme is as follows: 311

 312

do 313
 encodedByte = X MOD 128 314
 X = X DIV 128 315
 // if there are more data to encode, set the top bit of this byte 316
 if (X > 0) 317
 encodedByte = encodedByte OR 128 318

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 19 of 137

 endif 319
 'output' encodedByte 320
while (X > 0) 321

 322

Where MOD is the modulo operator (% in C), DIV is integer division (/ in C), and OR is bit-wise or 323
(| in C). 324

 325

Non-normative comment 326

The algorithm for decoding a Variable Byte Integer type is as follows: 327

 328

multiplier = 1 329
value = 0 330
do 331
 encodedByte = 'next byte from stream' 332
 value += (encodedByte AND 127) * multiplier 333
 if (multiplier > 128*128*128) 334
 throw Error(Malformed Variable Byte Integer) 335
 multiplier *= 128 336
while ((encodedByte AND 128) != 0) 337

 338

where AND is the bit-wise and operator (& in C). 339

 340

When this algorithm terminates, value contains the Variable Byte Integer value. 341

 342

1.5.6 Binary Data 343

Binary Data is represented by a Two Byte Integer length which indicates the number of data bytes, 344
followed by that number of bytes. Thus, the length of Binary Data is limited to the range of 0 to 65,535 345
Bytes. 346

 347

1.5.7 UTF-8 String Pair 348

A UTF-8 String Pair consists of two UTF-8 Encoded Strings. This data type is used to hold name-value 349
pairs. The first string serves as the name, and the second string contains the value. 350

 351

Both strings MUST comply with the requirements for UTF-8 Encoded Strings [MQTT-1.5.7-1]. If a receiver 352
(Client or Server) receives a string pair which does not meet these requirements it is a Malformed Packet. 353
Refer to section 4.13 for information about handling errors. 354

 355

1.6 Security 356

MQTT Client and Server implementations SHOULD offer Authentication, Authorization and secure 357
communication options, such as those discussed in Chapter 5. Applications concerned with critical 358
infrastructure, personally identifiable information, or other personal or sensitive information are strongly 359
advised to use these security capabilities. 360

 361

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 20 of 137

1.7 Editing convention 362

Text highlighted in Yellow within this specification identifies conformance statements. Each conformance 363
statement has been assigned a reference in the format [MQTT-x.x.x-y] where x.x.x is the section number 364
and y is a statement counter within the section. 365

 366

1.8 Change history 367

1.8.1 MQTT v3.1.1 368

MQTT v3.1.1 was the first OASIS standard version of MQTT [MQTTV311]. 369

MQTT v3.1.1 is also standardized as ISO/IEC 20922:2016 [ISO20922]. 370

 371

1.8.2 MQTT v5.0 372

MQTT v5.0 adds a significant number of new features to MQTT while keeping much of the core in place. 373
The major functional objectives are: 374

• Enhancements for scalability and large scale systems 375

• Improved error reporting 376

• Formalize common patterns including capability discovery and request response 377

• Extensibility mechanisms including user properties 378

• Performance improvements and support for small clients 379

 380

Refer to Appendix C for a summary of changes in MQTT v5.0. 381

 382

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 21 of 137

2 MQTT Control Packet format 383

2.1 Structure of an MQTT Control Packet 384

The MQTT protocol operates by exchanging a series of MQTT Control Packets in a defined way. This 385
section describes the format of these packets. 386

 387

An MQTT Control Packet consists of up to three parts, always in the following order as shown below. 388

 389

Figure 2-1 Structure of an MQTT Control Packet 390

Fixed Header, present in all MQTT Control Packets

Variable Header, present in some MQTT Control Packets

Payload, present in some MQTT Control Packets

 391

2.1.1 Fixed Header 392

Each MQTT Control Packet contains a Fixed Header as shown below. 393

 394

Figure 2-2 Fixed Header format 395

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type Flags specific to each MQTT Control
Packet type

byte 2… Remaining Length

 396

2.1.2 MQTT Control Packet type 397

Position: byte 1, bits 7-4. 398

Represented as a 4-bit unsigned value, the values are shown below. 399

 400

Table 2-1 MQTT Control Packet types 401

Name Value Direction of flow Description

Reserved 0 Forbidden Reserved

CONNECT 1 Client to Server Connection request

CONNACK 2 Server to Client Connect acknowledgment

PUBLISH 3 Client to Server or

Server to Client

Publish message

PUBACK 4 Client to Server or

Server to Client

Publish acknowledgment (QoS 1)

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 137

PUBREC 5 Client to Server or

Server to Client

Publish received (QoS 2 delivery part 1)

PUBREL 6 Client to Server or

Server to Client

Publish release (QoS 2 delivery part 2)

PUBCOMP 7 Client to Server or

Server to Client

Publish complete (QoS 2 delivery part 3)

SUBSCRIBE 8 Client to Server Subscribe request

SUBACK 9 Server to Client Subscribe acknowledgment

UNSUBSCRIBE 10 Client to Server Unsubscribe request

UNSUBACK 11 Server to Client Unsubscribe acknowledgment

PINGREQ 12 Client to Server PING request

PINGRESP 13 Server to Client PING response

DISCONNECT 14 Client to Server or

Server to Client

Disconnect notification

AUTH 15 Client to Server or
Server to Client

Authentication exchange

 402

2.1.3 Flags 403

The remaining bits [3-0] of byte 1 in the Fixed Header contain flags specific to each MQTT Control Packet 404
type as shown below. Where a flag bit is marked as “Reserved”, it is reserved for future use and MUST 405
be set to the value listed [MQTT-2.1.3-1]. If invalid flags are received it is a Malformed Packet. Refer to 406
section 4.13 for details about handling errors. 407

 408

Table 2-2 Flag Bits 409

MQTT Control
Packet

Fixed Header flags Bit 3 Bit 2 Bit 1 Bit 0

CONNECT Reserved 0 0 0 0

CONNACK Reserved 0 0 0 0

PUBLISH Used in MQTT v5.0 DUP QoS RETAIN

PUBACK Reserved 0 0 0 0

PUBREC Reserved 0 0 0 0

PUBREL Reserved 0 0 1 0

PUBCOMP Reserved 0 0 0 0

SUBSCRIBE Reserved 0 0 1 0

SUBACK Reserved 0 0 0 0

UNSUBSCRIBE Reserved 0 0 1 0

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 137

UNSUBACK Reserved 0 0 0 0

PINGREQ Reserved 0 0 0 0

PINGRESP Reserved 0 0 0 0

DISCONNECT Reserved 0 0 0 0

AUTH Reserved 0 0 0 0

 410

DUP = Duplicate delivery of a PUBLISH packet 411

QoS = PUBLISH Quality of Service 412

RETAIN = PUBLISH retained message flag 413

Refer to section 3.3.1 for a description of the DUP, QoS, and RETAIN flags in the PUBLISH packet. 414

 415

2.1.4 Remaining Length 416

Position: starts at byte 2. 417

 418

The Remaining Length is a Variable Byte Integer that represents the number of bytes remaining within 419
the current Control Packet, including data in the Variable Header and the Payload. The Remaining Length 420
does not include the bytes used to encode the Remaining Length. The packet size is the total number of 421
bytes in an MQTT Control Packet, this is equal to the length of the Fixed Header plus the Remaining 422
Length. 423

 424

2.2 Variable Header 425

Some types of MQTT Control Packet contain a Variable Header component. It resides between the Fixed 426
Header and the Payload. The content of the Variable Header varies depending on the packet type. The 427
Packet Identifier field of Variable Header is common in several packet types. 428

 429

2.2.1 Packet Identifier 430

The Variable Header component of many of the MQTT Control Packet types includes a Two Byte Integer 431
Packet Identifier field. These MQTT Control Packets are PUBLISH (where QoS > 0), PUBACK, PUBREC, 432
PUBREL, PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK. 433

 434

MQTT Control Packets that require a Packet Identifier are shown below: 435

 436

Table 2-3 MQTT Control Packets that contain a Packet Identifier 437

MQTT Control
Packet

Packet Identifier field

CONNECT NO

CONNACK NO

PUBLISH YES (If QoS > 0)

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 137

PUBACK YES

PUBREC YES

PUBREL YES

PUBCOMP YES

SUBSCRIBE YES

SUBACK YES

UNSUBSCRIBE YES

UNSUBACK YES

PINGREQ NO

PINGRESP NO

DISCONNECT NO

AUTH NO

 438

A PUBLISH packet MUST NOT contain a Packet Identifier if its QoS value is set to 0 [MQTT-2.2.1-2]. 439

 440

Each time a Client sends a new SUBSCRIBE, UNSUBSCRIBE,or PUBLISH (where QoS > 0) MQTT 441
Control Packet it MUST assign it a non-zero Packet Identifier that is currently unused [MQTT-2.2.1-3]. 442

 443

Each time a Server sends a new PUBLISH (with QoS > 0) MQTT Control Packet it MUST assign it a non 444
zero Packet Identifier that is currently unused [MQTT-2.2.1-4]. 445

 446

The Packet Identifier becomes available for reuse after the sender has processed the corresponding 447
acknowledgement packet, defined as follows. In the case of a QoS 1 PUBLISH, this is the corresponding 448
PUBACK; in the case of QoS 2 PUBLISH it is PUBCOMP or a PUBREC with a Reason Code of 128 or 449
greater. For SUBSCRIBE or UNSUBSCRIBE it is the corresponding SUBACK or UNSUBACK. 450

 451

Packet Identifiers used with PUBLISH, SUBSCRIBE and UNSUBSCRIBE packets form a single, unified 452
set of identifiers separately for the Client and the Server in a Session. A Packet Identifier cannot be used 453
by more than one command at any time. 454

 455

A PUBACK, PUBREC , PUBREL, or PUBCOMP packet MUST contain the same Packet Identifier as the 456
PUBLISH packet that was originally sent [MQTT-2.2.1-5]. A SUBACK and UNSUBACK MUST contain the 457
Packet Identifier that was used in the corresponding SUBSCRIBE and UNSUBSCRIBE packet 458
respectively [MQTT-2.2.1-6]. 459

 460

The Client and Server assign Packet Identifiers independently of each other. As a result, Client-Server 461
pairs can participate in concurrent message exchanges using the same Packet Identifiers. 462

 463

Non-normative comment 464

It is possible for a Client to send a PUBLISH packet with Packet Identifier 0x1234 and then 465
receive a different PUBLISH packet with Packet Identifier 0x1234 from its Server before it 466
receives a PUBACK for the PUBLISH packet that it sent. 467

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 137

 468

 Client Server 469

PUBLISH Packet Identifier=0x1234 ‒→ 470

 ←‒ PUBLISH Packet Identifier=0x1234 471

PUBACK Packet Identifier=0x1234 ‒→ 472

 ←‒ PUBACK Packet Identifier=0x1234 473

 474

 475

2.2.2 Properties 476

The last field in the Variable Header of the CONNECT, CONNACK, PUBLISH, PUBACK, PUBREC, 477
PUBREL, PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK, DISCONNECT, and 478
AUTH packet is a set of Properties. In the CONNECT packet there is also an optional set of Properties in 479
the Will Properties field with the Payload. 480

 481

The set of Properties is composed of a Property Length followed by the Properties. 482

 483

2.2.2.1 Property Length 484

The Property Length is encoded as a Variable Byte Integer. The Property Length does not include the 485
bytes used to encode itself, but includes the length of the Properties. If there are no properties, this MUST 486
be indicated by including a Property Length of zero [MQTT-2.2.2-1]. 487

 488

2.2.2.2 Property 489

A Property consists of an Identifier which defines its usage and data type, followed by a value. The 490
Identifier is encoded as a Variable Byte Integer. A Control Packet which contains an Identifier which is not 491
valid for its packet type, or contains a value not of the specified data type, is a Malformed Packet. If 492
received, use a CONNACK or DISCONNECT packet with Reason Code 0x81 (Malformed Packet) as 493
described in section 4.13 Handling errors. There is no significance in the order of Properties with different 494
Identifiers. 495

 496

Table 2-4 - Properties 497

Identifier Name (usage) Type Packet / Will Properties

 Dec Hex

1 0x01 Payload Format Indicator Byte PUBLISH, Will Properties

2 0x02 Message Expiry Interval Four Byte Integer PUBLISH, Will Properties

3 0x03 Content Type UTF-8 Encoded String PUBLISH, Will Properties

8 0x08 Response Topic UTF-8 Encoded String PUBLISH, Will Properties

9 0x09 Correlation Data Binary Data PUBLISH, Will Properties

11 0x0B Subscription Identifier Variable Byte Integer PUBLISH, SUBSCRIBE

17 0x11 Session Expiry Interval Four Byte Integer CONNECT, CONNACK, DISCONNECT

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 26 of 137

18 0x12 Assigned Client Identifier UTF-8 Encoded String CONNACK

19 0x13 Server Keep Alive Two Byte Integer CONNACK

21 0x15 Authentication Method UTF-8 Encoded String CONNECT, CONNACK, AUTH

22 0x16 Authentication Data Binary Data CONNECT, CONNACK, AUTH

23 0x17 Request Problem Information Byte CONNECT

24 0x18 Will Delay Interval Four Byte Integer Will Properties

25 0x19 Request Response
Information

Byte CONNECT

26 0x1A Response Information UTF-8 Encoded String CONNACK

28 0x1C Server Reference UTF-8 Encoded String CONNACK, DISCONNECT

31 0x1F Reason String UTF-8 Encoded String CONNACK, PUBACK, PUBREC,
PUBREL, PUBCOMP, SUBACK,
UNSUBACK, DISCONNECT, AUTH

33 0x21 Receive Maximum Two Byte Integer CONNECT, CONNACK

34 0x22 Topic Alias Maximum Two Byte Integer CONNECT, CONNACK

35 0x23 Topic Alias Two Byte Integer PUBLISH

36 0x24 Maximum QoS Byte CONNACK

37 0x25 Retain Available Byte CONNACK

38 0x26 User Property UTF-8 String Pair CONNECT, CONNACK, PUBLISH, Will
Properties, PUBACK, PUBREC,
PUBREL, PUBCOMP, SUBSCRIBE,
SUBACK, UNSUBSCRIBE,
UNSUBACK, DISCONNECT, AUTH

39 0x27 Maximum Packet Size Four Byte Integer CONNECT, CONNACK

40 0x28 Wildcard Subscription
Available

Byte CONNACK

41 0x29 Subscription Identifier
Available

Byte CONNACK

42 0x2A Shared Subscription
Available

Byte CONNACK

 498

Non-normative comment 499

Although the Property Identifier is defined as a Variable Byte Integer, in this version of the 500
specification all of the Property Identifiers are one byte long. 501

 502

2.3 Payload 503

Some MQTT Control Packets contain a Payload as the final part of the packet. In the PUBLISH packet 504
this is the Application Message 505

 506

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 137

Table 2-5 - MQTT Control Packets that contain a Payload 507

MQTT Control
Packet

Payload

CONNECT Required

CONNACK None

PUBLISH Optional

PUBACK None

PUBREC None

PUBREL None

PUBCOMP None

SUBSCRIBE Required

SUBACK Required

UNSUBSCRIBE Required

UNSUBACK Required

PINGREQ None

PINGRESP None

DISCONNECT None

AUTH None

 508

2.4 Reason Code 509

A Reason Code is a one byte unsigned value that indicates the result of an operation. Reason Codes less 510
than 0x80 indicate successful completion of an operation. The normal Reason Code for success is 0. 511
Reason Code values of 0x80 or greater indicate failure. 512

 513

The CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP, DISCONNECT and AUTH Control Packets 514
have a single Reason Code as part of the Variable Header. The SUBACK and UNSUBACK packets 515
contain a list of one or more Reason Codes in the Payload. 516

 517

The Reason Codes share a common set of values as shown below. 518

 519

Table 2-6 - Reason Codes 520

Reason Code Name Packets

 Decimal Hex

0 0x00 Success CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP,
UNSUBACK, AUTH

0 0x00 Normal disconnection DISCONNECT

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 137

0 0x00 Granted QoS 0 SUBACK

1 0x01 Granted QoS 1 SUBACK

2 0x02 Granted QoS 2 SUBACK

4 0x04 Disconnect with Will Message DISCONNECT

16 0x10 No matching subscribers PUBACK, PUBREC

17 0x11 No subscription existed UNSUBACK

24 0x18 Continue authentication AUTH

25 0x19 Re-authenticate AUTH

128 0x80 Unspecified error CONNACK, PUBACK, PUBREC, SUBACK,
UNSUBACK, DISCONNECT

129 0x81 Malformed Packet CONNACK, DISCONNECT

130 0x82 Protocol Error CONNACK, DISCONNECT

131 0x83 Implementation specific error CONNACK, PUBACK, PUBREC, SUBACK,
UNSUBACK, DISCONNECT

132 0x84 Unsupported Protocol Version CONNACK

133 0x85 Client Identifier not valid CONNACK

134 0x86 Bad User Name or Password CONNACK

135 0x87 Not authorized CONNACK, PUBACK, PUBREC, SUBACK,
UNSUBACK, DISCONNECT

136 0x88 Server unavailable CONNACK

137 0x89 Server busy CONNACK, DISCONNECT

138 0x8A Banned CONNACK

139 0x8B Server shutting down DISCONNECT

140 0x8C Bad authentication method CONNACK, DISCONNECT

141 0x8D Keep Alive timeout DISCONNECT

142 0x8E Session taken over DISCONNECT

143 0x8F Topic Filter invalid SUBACK, UNSUBACK, DISCONNECT

144 0x90 Topic Name invalid CONNACK, PUBACK, PUBREC, DISCONNECT

145 0x91 Packet Identifier in use PUBACK, PUBREC, SUBACK, UNSUBACK

146 0x92 Packet Identifier not found PUBREL, PUBCOMP

147 0x93 Receive Maximum exceeded DISCONNECT

148 0x94 Topic Alias invalid DISCONNECT

149 0x95 Packet too large CONNACK, DISCONNECT

150 0x96 Message rate too high DISCONNECT

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 29 of 137

151 0x97 Quota exceeded CONNACK, PUBACK, PUBREC, SUBACK,
DISCONNECT

152 0x98 Administrative action DISCONNECT

153 0x99 Payload format invalid CONNACK, PUBACK, PUBREC, DISCONNECT

154 0x9A Retain not supported CONNACK, DISCONNECT

155 0x9B QoS not supported CONNACK, DISCONNECT

156 0x9C Use another server CONNACK, DISCONNECT

157 0x9D Server moved CONNACK, DISCONNECT

158 0x9E Shared Subscriptions not
supported

SUBACK, DISCONNECT

159 0x9F Connection rate exceeded CONNACK, DISCONNECT

160 0xA0 Maximum connect time DISCONNECT

161 0xA1 Subscription Identifiers not
supported

SUBACK, DISCONNECT

162 0xA2 Wildcard Subscriptions not
supported

SUBACK, DISCONNECT

 521

Non-normative comment 522

For Reason Code 0x91 (Packet identifier in use), the response to this is either to try to fix the 523
state, or to reset the Session state by connecting using Clean Start set to 1, or to decide if the 524
Client or Server implementations are defective. 525

 526

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 137

3 MQTT Control Packets 527

 528

3.1 CONNECT – Connection Request 529

After a Network Connection is established by a Client to a Server, the first packet sent from the Client to 530
the Server MUST be a CONNECT packet [MQTT-3.1.0-1]. 531

 532

A Client can only send the CONNECT packet once over a Network Connection. The Server MUST 533
process a second CONNECT packet sent from a Client as a Protocol Error and close the Network 534
Connection [MQTT-3.1.0-2]. Refer to section 4.13 for information about handling errors. 535

 536

The Payload contains one or more encoded fields. They specify a unique Client identifier for the Client, a 537
Will Topic, Will Payload, User Name and Password. All but the Client identifier can be omitted and their 538
presence is determined based on flags in the Variable Header. 539

 540

3.1.1 CONNECT Fixed Header 541

Figure 3-1 - CONNECT packet Fixed Header 542

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (1) Reserved

 0 0 0 1 0 0 0 0

byte 2… Remaining Length

 543

Remaining Length field 544

This is the length of the Variable Header plus the length of the Payload. It is encoded as a Variable Byte 545
Integer. 546

 547

3.1.2 CONNECT Variable Header 548

The Variable Header for the CONNECT Packet contains the following fields in this order: Protocol Name, 549
Protocol Level, Connect Flags, Keep Alive, and Properties. The rules for encoding Properties are 550
described in section 2.2.2. 551

 552

3.1.2.1 Protocol Name 553

Figure 3-2 - Protocol Name bytes 554

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 137

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

byte 6 ‘T’ 0 1 0 1 0 1 0 0

 555

The Protocol Name is a UTF-8 Encoded String that represents the protocol name “MQTT”, capitalized as 556
shown. The string, its offset and length will not be changed by future versions of the MQTT specification. 557

 558

A Server which support multiple protocols uses the Protocol Name to determine whether the data is 559
MQTT. The protocol name MUST be the UTF-8 String "MQTT". If the Server does not want to accept the 560
CONNECT, and wishes to reveal that it is an MQTT Server it MAY send a CONNACK packet with 561
Reason Code of 0x84 (Unsupported Protocol Version), and then it MUST close the Network Connection 562
[MQTT-3.1.2-1]. 563

 564

Non-normative comment 565

Packet inspectors, such as firewalls, could use the Protocol Name to identify MQTT traffic. 566

 567

3.1.2.2 Protocol Version 568

Figure 3-3 - Protocol Version byte 569

 Description 7 6 5 4 3 2 1 0

Protocol Level

byte 7 Version(5) 0 0 0 0 0 1 0 1

 570

The one byte unsigned value that represents the revision level of the protocol used by the Client. The 571
value of the Protocol Version field for version 5.0 of the protocol is 5 (0x05). 572

 573

A Server which supports multiple versions of the MQTT protocol uses the Protocol Version to determine 574
which version of MQTT the Client is using. If the Protocol Version is not 5 and the Server does not want 575
to accept the CONNECT packet, the Server MAY send a CONNACK packet with Reason Code 0x84 576
(Unsupported Protocol Version) and then MUST close the Network Connection [MQTT-3.1.2-2]. 577

 578

3.1.2.3 Connect Flags 579

The Connect Flags byte contains several parameters specifying the behavior of the MQTT connection. It 580
also indicates the presence or absence of fields in the Payload. 581

Figure 3-4 - Connect Flag bits 582

Bit 7 6 5 4 3 2 1 0

 User Name
Flag

Password
Flag

Will Retain Will QoS Will Flag Clean
Start

Reserved

byte 8 X X X X X X X 0

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 137

The Server MUST validate that the reserved flag in the CONNECT packet is set to 0 [MQTT-3.1.2-3]. If 583
the reserved flag is not 0 it is a Malformed Packet. Refer to section 4.13 for information about handling 584
errors. 585

 586

3.1.2.4 Clean Start 587

Position: bit 1 of the Connect Flags byte. 588

 589

This bit specifies whether the Connection starts a new Session or is a continuation of an existing Session. 590
Refer to section 4.1 for a definition of the Session State. 591

 592

If a CONNECT packet is received with Clean Start is set to 1, the Client and Server MUST discard any 593
existing Session and start a new Session [MQTT-3.1.2-4]. Consequently, the Session Present flag in 594
CONNACK is always set to 0 if Clean Start is set to 1. 595

 596

If a CONNECT packet is received with Clean Start set to 0 and there is a Session associated with the Client 597
Identifier, the Server MUST resume communications with the Client based on state from the existing 598
Session [MQTT-3.1.2-5]. If a CONNECT packet is received with Clean Start set to 0 and there is no Session 599
associated with the Client Identifier, the Server MUST create a new Session [MQTT-3.1.2-6]. 600

 601

3.1.2.5 Will Flag 602

Position: bit 2 of the Connect Flags. 603

 604

If the Will Flag is set to 1 this indicates that a Will Message MUST be stored on the Server and associated 605
with the Session [MQTT-3.1.2-7]. The Will Message consists of the Will Properties, Will Topic, and Will 606
Payload fields in the CONNECT Payload. The Will Message MUST be published after the Network 607
Connection is subsequently closed and either the Will Delay Interval has elapsed or the Session ends, 608
unless the Will Message has been deleted by the Server on receipt of a DISCONNECT packet with 609
Reason Code 0x00 (Normal disconnection) or a new Network Connection for the ClientID is opened 610
before the Will Delay Interval has elapsed [MQTT-3.1.2-8]. 611

Situations in which the Will Message is published include, but are not limited to: 612

• An I/O error or network failure detected by the Server. 613

• The Client fails to communicate within the Keep Alive time. 614

• The Client closes the Network Connection without first sending a DISCONNECT packet with a 615
Reason Code 0x00 (Normal disconnection). 616

• The Server closes the Network Connection without first receiving a DISCONNECT packet with a 617
Reason Code 0x00 (Normal disconnection). 618

 619

If the Will Flag is set to 1, the Will Properties, Will Topic, and Will Payload fields MUST be present in the 620
Payload [MQTT-3.1.2-9]. The Will Message MUST be removed from the stored Session State in the 621
Server once it has been published or the Server has received a DISCONNECT packet with a Reason 622
Code of 0x00 (Normal disconnection) from the Client [MQTT-3.1.2-10]. 623

 624

The Server SHOULD publish Will Messages promptly after the Network Connection is closed and the Will 625
Delay Interval has passed, or when the Session ends, whichever occurs first. In the case of a Server 626
shutdown or failure, the Server MAY defer publication of Will Messages until a subsequent restart. If this 627
happens, there might be a delay between the time the Server experienced failure and when the Will 628
Message is published. 629

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 137

 630

Refer to section 3.1.3.2 for information about the Will Delay Interval. 631

 632

Non-normative comment 633

The Client can arrange for the Will Message to notify that Session Expiry has occurred by setting 634
the Will Delay Interval to be longer than the Session Expiry Interval and sending DISCONNECT 635
with Reason Code 0x04 (Disconnect with Will Message). 636

 637

3.1.2.6 Will QoS 638

Position: bits 4 and 3 of the Connect Flags. 639

 640

These two bits specify the QoS level to be used when publishing the Will Message. 641

 642

If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00) [MQTT-3.1.2-11]. 643

If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2 (0x02) [MQTT-3.1.2-12]. A 644
value of 3 (0x03) is a Malformed Packet. Refer to section 4.13 for information about handling errors. 645

 646

3.1.2.7 Will Retain 647

Position: bit 5 of the Connect Flags. 648

 649

This bit specifies if the Will Message is to be retained when it is published. 650

 651

If the Will Flag is set to 0, then Will Retain MUST be set to 0 [MQTT-3.1.2-13]. If the Will Flag is set to 1 652
and Will Retain is set to 0, the Server MUST publish the Will Message as a non-retained message 653
[MQTT-3.1.2-14]. If the Will Flag is set to 1 and Will Retain is set to 1, the Server MUST publish the Will 654
Message as a retained message [MQTT-3.1.2-15]. 655

 656

3.1.2.8 User Name Flag 657

Position: bit 7 of the Connect Flags. 658

 659

If the User Name Flag is set to 0, a User Name MUST NOT be present in the Payload [MQTT-3.1.2-16]. If 660
the User Name Flag is set to 1, a User Name MUST be present in the Payload [MQTT-3.1.2-17]. 661

 662

3.1.2.9 Password Flag 663

Position: bit 6 of the Connect Flags. 664

 665

If the Password Flag is set to 0, a Password MUST NOT be present in the Payload [MQTT-3.1.2-18]. If 666
the Password Flag is set to 1, a Password MUST be present in the Payload [MQTT-3.1.2-19]. 667

 668

Non-normative comment 669

This version of the protocol allows the sending of a Password with no User Name, where MQTT 670
v3.1.1 did not. This reflects the common use of Password for credentials other than a password. 671

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 137

 672

3.1.2.10 Keep Alive 673

Figure 3-5 - Keep Alive bytes 674

Bit 7 6 5 4 3 2 1 0

byte 9 Keep Alive MSB

byte 10 Keep Alive LSB

 675

The Keep Alive is a Two Byte Integer which is a time interval measured in seconds. It is the maximum 676
time interval that is permitted to elapse between the point at which the Client finishes transmitting one 677
MQTT Control Packet and the point it starts sending the next. It is the responsibility of the Client to ensure 678
that the interval between MQTT Control Packets being sent does not exceed the Keep Alive value. If 679
Keep Alive is non-zero and in the absence of sending any other MQTT Control Packets, the Client MUST 680
send a PINGREQ packet [MQTT-3.1.2-20]. 681

 682

If the Server returns a Server Keep Alive on the CONNACK packet, the Client MUST use that value 683
instead of the value it sent as the Keep Alive [MQTT-3.1.2-21]. 684

 685

The Client can send PINGREQ at any time, irrespective of the Keep Alive value, and check for a 686
corresponding PINGRESP to determine that the network and the Server are available. 687

 688

If the Keep Alive value is non-zero and the Server does not receive an MQTT Control Packet from the 689
Client within one and a half times the Keep Alive time period, it MUST close the Network Connection to 690
the Client as if the network had failed [MQTT-3.1.2-22]. 691

 692

If a Client does not receive a PINGRESP packet within a reasonable amount of time after it has sent a 693
PINGREQ, it SHOULD close the Network Connection to the Server. 694

 695

A Keep Alive value of 0 has the effect of turning off the Keep Alive mechanism. If Keep Alive is 0 the 696
Client is not obliged to send MQTT Control Packets on any particular schedule. 697

 698

Non-normative comment 699

The Server may have other reasons to disconnect the Client, for instance because it is shutting 700
down. Setting Keep Alive does not guarantee that the Client will remain connected. 701

 702

Non-normative comment 703

The actual value of the Keep Alive is application specific; typically, this is a few minutes. The 704
maximum value of 65,535 is 18 hours 12 minutes and 15 seconds. 705

 706

3.1.2.11 CONNECT Properties 707

3.1.2.11.1 Property Length 708

The length of the Properties in the CONNECT packet Variable Header encoded as a Variable Byte 709
Integer. 710

 711

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 35 of 137

3.1.2.11.2 Session Expiry Interval 712

17 (0x11) Byte, Identifier of the Session Expiry Interval. 713

Followed by the Four Byte Integer representing the Session Expiry Interval in seconds. It is a Protocol 714
Error to include the Session Expiry Interval more than once. 715

 716

If the Session Expiry Interval is absent the value 0 is used. If it is set to 0, or is absent, the Session ends 717
when the Network Connection is closed. 718

 719

If the Session Expiry Interval is 0xFFFFFFFF (UINT_MAX), the Session does not expire. 720

 721

The Client and Server MUST store the Session State after the Network Connection is closed if the 722
Session Expiry Interval is greater than 0 [MQTT-3.1.2-23]. 723

 724

Non-normative comment 725

The clock in the Client or Server may not be running for part of the time interval, for instance 726
because the Client or Server are not running. This might cause the deletion of the state to be 727
delayed. 728

 729

Refer to section 4.1 for more information about Sessions. Refer to section 4.1.1 for details and limitations 730
of stored state. 731

 732

When the Session expires the Client and Server need not process the deletion of state atomically. 733

 734

Non-normative comment 735

Setting Clean Start to 1 and a Session Expiry Interval of 0, is equivalent to setting CleanSession 736
to 1 in the MQTT Specification Version 3.1.1. Setting Clean Start to 0 and no Session Expiry 737
Interval, is equivalent to setting CleanSession to 0 in the MQTT Specification Version 3.1.1. 738

 739

Non-normative comment 740

A Client that only wants to process messages while connected will set the Clean Start to 1 and 741
set the Session Expiry Interval to 0. It will not receive Application Messages published before it 742
connected and has to subscribe afresh to any topics that it is interested in each time it connects. 743

 744

Non-normative comment 745

A Client might be connecting to a Server using a network that provides intermittent connectivity. 746
This Client can use a short Session Expiry Interval so that it can reconnect when the network is 747
available again and continue reliable message delivery. If the Client does not reconnect, allowing 748
the Session to expire, then Application Messages will be lost. 749

 750

Non-normative comment 751

When a Client connects with a long Session Expiry Interval, it is requesting that the Server 752
maintain its MQTT session state after it disconnects for an extended period. Clients should only 753
connect with a long Session Expiry Interval if they intend to reconnect to the Server at some later 754
point in time. When a Client has determined that it has no further use for the Session it should 755
disconnect with a Session Expiry Interval set to 0. 756

 757

Non-normative comment 758

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 137

The Client should always use the Session Present flag in the CONNACK to determine whether 759
the Server has a Session State for this Client. 760

 761

Non-normative comment 762

The Client can avoid implementing its own Session expiry and instead rely on the Session 763
Present flag returned from the Server to determine if the Session had expired. If the Client does 764
implement its own Session expiry, it needs to store the time at which the Session State will be 765
deleted as part of its Session State. 766

 767

3.1.2.11.3 Receive Maximum 768

33 (0x21) Byte, Identifier of the Receive Maximum. 769

Followed by the Two Byte Integer representing the Receive Maximum value. It is a Protocol Error to 770
include the Receive Maximum value more than once or for it to have the value 0. 771

 772

The Client uses this value to limit the number of QoS 1 and QoS 2 publications that it is willing to process 773
concurrently. There is no mechanism to limit the QoS 0 publications that the Server might try to send. 774

 775

The value of Receive Maximum applies only to the current Network Connection. If the Receive Maximum 776
value is absent then its value defaults to 65,535. 777

 778

Refer to section 4.9 Flow Control for details of how the Receive Maximum is used. 779

 780

3.1.2.11.4 Maximum Packet Size 781

39 (0x27) Byte, Identifier of the Maximum Packet Size. 782

Followed by a Four Byte Integer representing the Maximum Packet Size the Client is willing to accept. If 783
the Maximum Packet Size is not present, no limit on the packet size is imposed beyond the limitations in 784
the protocol as a result of the remaining length encoding and the protocol header sizes. 785

 786

It is a Protocol Error to include the Maximum Packet Size more than once, or for the value to be set to 787
zero. 788

 789

 Non-normative comment 790

It is the responsibility of the application to select a suitable Maximum Packet Size value if it 791
chooses to restrict the Maximum Packet Size. 792

 793

The packet size is the total number of bytes in an MQTT Control Packet, as defined in section 2.1.4. The 794
Client uses the Maximum Packet Size to inform the Server that it will not process packets exceeding this 795
limit. 796

 797

The Server MUST NOT send packets exceeding Maximum Packet Size to the Client [MQTT-3.1.2-24]. If 798
a Client receives a packet whose size exceeds this limit, this is a Protocol Error, the Client uses 799
DISCONNECT with Reason Code 0x95 (Packet too large), as described in section 4.13. 800

 801

Where a Packet is too large to send, the Server MUST discard it without sending it and then behave as if 802
it had completed sending that Application Message [MQTT-3.1.2-25]. 803

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 137

 804

In the case of a Shared Subscription where the message is too large to send to one or more of the Clients 805
but other Clients can receive it, the Server can choose either discard the message without sending the 806
message to any of the Clients, or to send the message to one of the Clients that can receive it. 807

 808

Non-normative comment 809

Where a packet is discarded without being sent, the Server could place the discarded packet on a 810
‘dead letter queue’ or perform other diagnostic action. Such actions are outside the scope of this 811
specification. 812

 813

3.1.2.11.5 Topic Alias Maximum 814

34 (0x22) Byte, Identifier of the Topic Alias Maximum. 815

Followed by the Two Byte Integer representing the Topic Alias Maximum value. It is a Protocol Error to 816
include the Topic Alias Maximum value more than once. If the Topic Alias Maximum property is absent, 817
the default value is 0. 818

 819

This value indicates the highest value that the Client will accept as a Topic Alias sent by the Server. The 820
Client uses this value to limit the number of Topic Aliases that it is willing to hold on this Connection. The 821
Server MUST NOT send a Topic Alias in a PUBLISH packet to the Client greater than Topic Alias 822
Maximum [MQTT-3.1.2-26]. A value of 0 indicates that the Client does not accept any Topic Aliases on 823
this connection. If Topic Alias Maximum is absent or zero, the Server MUST NOT send any Topic Aliases 824
to the Client [MQTT-3.1.2-27]. 825

 826

3.1.2.11.6 Request Response Information 827

25 (0x19) Byte, Identifier of the Request Response Information. 828

Followed by a Byte with a value of either 0 or 1. It is Protocol Error to include the Request Response 829
Information more than once, or to have a value other than 0 or 1. If the Request Response Information is 830
absent, the value of 0 is used. 831

 832

The Client uses this value to request the Server to return Response Information in the CONNACK. A 833
value of 0 indicates that the Server MUST NOT return Response Information [MQTT-3.1.2-28]. If the 834
value is 1 the Server MAY return Response Information in the CONNACK packet. 835

 836

Non-normative comment 837

The Server can choose not to include Response Information in the CONNACK, even if the Client 838
requested it. 839

 840

Refer to section 4.10 for more information about Request / Response. 841

 842

3.1.2.11.7 Request Problem Information 843

23 (0x17) Byte, Identifier of the Request Problem Information. 844

Followed by a Byte with a value of either 0 or 1. It is a Protocol Error to include Request Problem 845
Information more than once, or to have a value other than 0 or 1. If the Request Problem Information is 846
absent, the value of 1 is used. 847

 848

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 137

The Client uses this value to indicate whether the Reason String or User Properties are sent in the case 849
of failures. 850

 851

If the value of Request Problem Information is 0, the Server MAY return a Reason String or User 852
Properties on a CONNACK or DISCONNECT packet, but MUST NOT send a Reason String or User 853
Properties on any packet other than PUBLISH, CONNACK, or DISCONNECT [MQTT-3.1.2-29]. If the 854
value is 0 and the Client receives a Reason String or User Properties in a packet other than PUBLISH, 855
CONNACK, or DISCONNECT, it uses a DISCONNECT packet with Reason Code 0x82 (Protocol Error) 856
as described in section 4.13 Handling errors. 857

 858

If this value is 1, the Server MAY return a Reason String or User Properties on any packet where it is 859
allowed. 860

 861

3.1.2.11.8 User Property 862

38 (0x26) Byte, Identifier of the User Property. 863

Followed by a UTF-8 String Pair. 864

 865

The User Property is allowed to appear multiple times to represent multiple name, value pairs. The same 866
name is allowed to appear more than once. 867

 868

Non-normative comment 869

User Properties on the CONNECT packet can be used to send connection related properties from 870
the Client to the Server. The meaning of these properties is not defined by this specification. 871

 872

3.1.2.11.9 Authentication Method 873

21 (0x15) Byte, Identifier of the Authentication Method. 874

Followed by a UTF-8 Encoded String containing the name of the authentication method used for 875
extended authentication .It is a Protocol Error to include Authentication Method more than once. 876

If Authentication Method is absent, extended authentication is not performed. Refer to section 4.12. 877

 878

If a Client sets an Authentication Method in the CONNECT, the Client MUST NOT send any packets other 879
than AUTH or DISCONNECT packets until it has received a CONNACK packet [MQTT-3.1.2-30]. 880

 881

3.1.2.11.10 Authentication Data 882

22 (0x16) Byte, Identifier of the Authentication Data. 883

Followed by Binary Data containing authentication data. It is a Protocol Error to include Authentication 884
Data if there is no Authentication Method. It is a Protocol Error to include Authentication Data more than 885
once. 886

 887

The contents of this data are defined by the authentication method. Refer to section 4.12 for more 888
information about extended authentication. 889

 890

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 39 of 137

3.1.2.12 Variable Header non-normative example 891

Figure 3-6 - Variable Header example 892

 Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (4) 0 0 0 0 0 1 0 0

byte 3 ‘M’ 0 1 0 0 1 1 0 1

byte 4 ‘Q’ 0 1 0 1 0 0 0 1

byte 5 ‘T’ 0 1 0 1 0 1 0 0

byte 6 ‘T’ 0 1 0 1 0 1 0 0

Protocol Version

 Description 7 6 5 4 3 2 1 0

byte 7 Version (5) 0 0 0 0 0 1 0 1

Connect Flags

byte 8

User Name Flag (1)

Password Flag (1)

Will Retain (0)

Will QoS (01)

Will Flag (1)

Clean Start(1)

Reserved (0)

1

1

0

0

1

1

1

0

Keep Alive

byte 9 Keep Alive MSB (0) 0 0 0 0 0 0 0 0

byte 10 Keep Alive LSB (10) 0 0 0 0 1 0 1 0

Properties

byte 11 Length (5) 0 0 0 0 0 1 0 1

byte 12 Session Expiry Interval identifier (17) 0 0 0 1 0 0 0 1

byte 13 Session Expiry Interval (10) 0 0 0 0 0 0 0 0

byte 14 0 0 0 0 0 0 0 0

byte 15 0 0 0 0 0 0 0 0

byte 16 0 0 0 0 1 0 1 0

 893

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 137

3.1.3 CONNECT Payload 894

The Payload of the CONNECT packet contains one or more length-prefixed fields, whose presence is 895
determined by the flags in the Variable Header. These fields, if present, MUST appear in the order Client 896
Identifier, Will Properties, Will Topic, Will Payload, User Name, Password [MQTT-3.1.3-1]. 897

 898

3.1.3.1 Client Identifier (ClientID) 899

The Client Identifier (ClientID) identifies the Client to the Server. Each Client connecting to the Server has 900
a unique ClientID. The ClientID MUST be used by Clients and by Servers to identify state that they hold 901
relating to this MQTT Session between the Client and the Server [MQTT-3.1.3-2]. Refer to section 4.1 for 902
more information about Session State. 903

 904

The ClientID MUST be present and is the first field in the CONNECT packet Payload [MQTT-3.1.3-3]. 905

 906

The ClientID MUST be a UTF-8 Encoded String as defined in section 1.5.4 [MQTT-3.1.3-4]. 907

 908

The Server MUST allow ClientID’s which are between 1 and 23 UTF-8 encoded bytes in length, and that 909
contain only the characters 910

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" [MQTT-3.1.3-5]. 911

 912

The Server MAY allow ClientID’s that contain more than 23 encoded bytes. The Server MAY allow 913
ClientID’s that contain characters not included in the list given above. 914

 915

A Server MAY allow a Client to supply a ClientID that has a length of zero bytes, however if it does so the 916
Server MUST treat this as a special case and assign a unique ClientID to that Client [MQTT-3.1.3-6]. It 917
MUST then process the CONNECT packet as if the Client had provided that unique ClientID, and MUST 918
return the Assigned Client Identifier in the CONNACK packet [MQTT-3.1.3-7]. 919

 920

If the Server rejects the ClientID it MAY respond to the CONNECT packet with a CONNACK using 921
Reason Code 0x85 (Client Identifier not valid) as described in section 4.13 Handling errors, and then it 922
MUST close the Network Connection [MQTT-3.1.3-8]. 923

 924

Non-normative comment 925

A Client implementation could provide a convenience method to generate a random ClientID. 926
Clients using this method should take care to avoid creating long-lived orphaned Sessions. 927

 928

3.1.3.2 Will Properties 929

If the Will Flag is set to 1, the Will Properties is the next field in the Payload. The Will Properties field 930
defines the Application Message properties to be sent with the Will Message when it is published, and 931
properties which define when to publish the Will Message. The Will Properties consists of a Property 932
Length and the Properties. 933

 934

3.1.3.2.1 Property Length 935

The length of the Properties in the Will Properties encoded as a Variable Byte Integer. 936

 937

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 137

3.1.3.2.2 Will Delay Interval 938

24 (0x18) Byte, Identifier of the Will Delay Interval. 939

Followed by the Four Byte Integer representing the Will Delay Interval in seconds. It is a Protocol Error to 940
include the Will Delay Interval more than once. If the Will Delay Interval is absent, the default value is 0 941
and there is no delay before the Will Message is published. 942

 943

The Server delays publishing the Client’s Will Message until the Will Delay Interval has passed or the 944
Session ends, whichever happens first. If a new Network Connection to this Session is made before the 945
Will Delay Interval has passed, the Server MUST NOT send the Will Message [MQTT-3.1.3-9]. 946

 947

Non-normative comment 948

One use of this is to avoid publishing Will Messages if there is a temporary network disconnection 949
and the Client succeeds in reconnecting and continuing its Session before the Will Message is 950
published. 951

 952

Non-normative comment 953

If a Network Connection uses a Client Identifier of an existing Network Connection to the Server, 954
the Will Message for the exiting connection is sent unless the new connection specifies Clean 955
Start of 0 and the Will Delay is greater than zero. If the Will Delay is 0 the Will Message is sent at 956
the close of the existing Network Connection, and if Clean Start is 1 the Will Message is sent 957
because the Session ends. 958

 959

3.1.3.2.3 Payload Format Indicator 960

1 (0x01) Byte, Identifier of the Payload Format Indicator. 961

Followed by the value of the Payload Format Indicator, either of: 962

• 0 (0x00) Byte Indicates that the Will Message is unspecified bytes, which is equivalent to not 963
sending a Payload Format Indicator. 964

• 1 (0x01) Byte Indicates that the Will Message is UTF-8 Encoded Character Data. The UTF-8 data 965

in the Payload MUST be well-formed UTF-8 as defined by the Unicode specification 966

[Unicode] and restated in RFC 3629 [RFC3629]. 967
 968

It is a Protocol Error to include the Payload Format Indicator more than once. The Server MAY validate 969
that the Will Message is of the format indicated, and if it is not send a CONNACK with the Reason Code 970
of 0x99 (Payload format invalid) as described in section 4.13. 971

 972

3.1.3.2.4 Message Expiry Interval 973

2 (0x02) Byte, Identifier of the Message Expiry Interval. 974

Followed by the Four Byte Integer representing the Message Expiry Interval. It is a Protocol Error to 975
include the Message Expiry Interval more than once. 976

 977

If present, the Four Byte value is the lifetime of the Will Message in seconds and is sent as the 978
Publication Expiry Interval when the Server publishes the Will Message. 979

 980

If absent, no Message Expiry Interval is sent when the Server publishes the Will Message. 981

 982

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 137

3.1.3.2.5 Content Type 983

3 (0x03) Identifier of the Content Type. 984

Followed by a UTF-8 Encoded String describing the content of the Will Message. It is a Protocol Error to 985
include the Content Type more than once. The value of the Content Type is defined by the sending and 986
receiving application. 987

 988

3.1.3.2.6 Response Topic 989

8 (0x08) Byte, Identifier of the Response Topic. 990

Followed by a UTF-8 Encoded String which is used as the Topic Name for a response message. It is a 991
Protocol Error to include the Response Topic more than once. The presence of a Response Topic 992
identifies the Will Message as a Request. 993

 994

Refer to section 4.10 for more information about Request / Response. 995

 996

3.1.3.2.7 Correlation Data 997

9 (0x09) Byte, Identifier of the Correlation Data. 998

Followed by Binary Data. The Correlation Data is used by the sender of the Request Message to identify 999
which request the Response Message is for when it is received. It is a Protocol Error to include 1000
Correlation Data more than once. If the Correlation Data is not present, the Requester does not require 1001
any correlation data. 1002

 1003

The value of the Correlation Data only has meaning to the sender of the Request Message and receiver 1004
of the Response Message. 1005

 1006

Refer to section 4.10 for more information about Request / Response 1007

 1008

3.1.3.2.8 User Property 1009

38 (0x26) Byte, Identifier of the User Property. 1010

Followed by a UTF-8 String Pair. The User Property is allowed to appear multiple times to represent 1011
multiple name, value pairs. The same name is allowed to appear more than once. 1012

 1013

The Server MUST maintain the order of User Properties when publishing the Will Message [MQTT-3.1.3-1014
10]. 1015

 1016

Non-normative comment 1017

This property is intended to provide a means of transferring application layer name-value tags 1018
whose meaning and interpretation are known only by the application programs responsible for 1019
sending and receiving them. 1020

 1021

3.1.3.3 Will Topic 1022

If the Will Flag is set to 1, the Will Topic is the next field in the Payload. The Will Topic MUST be a UTF-8 1023
Encoded String as defined in section 1.5.4 [MQTT-3.1.3-11]. 1024

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 43 of 137

 1025

3.1.3.4 Will Payload 1026

If the Will Flag is set to 1 the Will Payload is the next field in the Payload. The Will Payload defines the 1027
Application Message Payload that is to be published to the Will Topic as described in section 3.1.2.5. This 1028
field consists of Binary Data. 1029

 1030

3.1.3.5 User Name 1031

If the User Name Flag is set to 1, the User Name is the next field in the Payload. The User Name MUST 1032
be a UTF-8 Encoded String as defined in section 1.5.4 [MQTT-3.1.3-12]. It can be used by the Server for 1033
authentication and authorization. 1034

 1035

3.1.3.6 Password 1036

If the Password Flag is set to 1, the Password is the next field in the Payload. The Password field is 1037
Binary Data. Although this field is called Password, it can be used to carry any credential information. 1038

 1039

3.1.4 CONNECT Actions 1040

Note that a Server MAY support multiple protocols (including other versions of the MQTT protocol) on the 1041
same TCP port or other network endpoint. If the Server determines that the protocol is MQTT v5.0 then it 1042
validates the connection attempt as follows. 1043

 1044

1. If the Server does not receive a CONNECT packet within a reasonable amount of time after the 1045
Network Connection is established, the Server SHOULD close the Network Connection. 1046

2. The Server MUST validate that the CONNECT packet matches the format described in section 1047
3.1 and close the Network Connection if it does not match [MQTT-3.1.4-1]. The Server MAY send 1048
a CONNACK with a Reason Code of 0x80 or greater as described in section 4.13 before closing 1049
the Network Connection. 1050

3. The Server MAY check that the contents of the CONNECT packet meet any further restrictions and 1051
SHOULD perform authentication and authorization checks. If any of these checks fail, it MUST 1052
close the Network Connection [MQTT-3.1.4-2]. Before closing the Network Connection, it MAY 1053
send an appropriate CONNACK response with a Reason Code of 0x80 or greater as described in 1054
section 3.2 and section 4.13. 1055

 1056

If validation is successful, the Server performs the following steps. 1057

 1058

1. If the ClientID represents a Client already connected to the Server, the Server sends a 1059
DISCONNECT packet to the existing Client with Reason Code of 0x8E (Session taken over) as 1060
described in section 4.13 and MUST close the Network Connection of the existing Client [MQTT-1061
3.1.4-3]. If the existing Client has a Will Message, that Will Message is published as described in 1062
section 3.1.2.5. 1063

 1064

Non-normative comment 1065

If the Will Delay Interval of the existing Network Connection is 0 and there is a Will Message, it 1066
will be sent because the Network Connection is closed. If the Session Expiry Interval of the 1067
existing Network Connection is 0, or the new Network Connection has Clean Start set to 1 then if 1068

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 137

the existing Network Connection has a Will Message it will be sent because the original Session 1069
is ended on the takeover. 1070

 1071

2. The Server MUST perform the processing of Clean Start that is described in section 3.1.2.4 1072
[MQTT-3.1.4-4]. 1073

 1074

3. The Server MUST acknowledge the CONNECT packet with a CONNACK packet containing a 1075
0x00 (Success) Reason Code [MQTT-3.1.4-5]. 1076

 1077

Non-normative comment 1078

It is recommended that authentication and authorization checks be performed if the Server is 1079
being used to process any form of business critical data. If these checks succeed, the Server 1080
responds by sending CONNACK with a 0x00 (Success) Reason Code. If they fail, it is suggested 1081
that the Server does not send a CONNACK at all, as this could alert a potential attacker to the 1082
presence of the MQTT Server and encourage such an attacker to launch a denial of service or 1083
password-guessing attack. 1084

 1085

4. Start message delivery and Keep Alive monitoring. 1086

 1087

Clients are allowed to send further MQTT Control Packets immediately after sending a CONNECT 1088
packet; Clients need not wait for a CONNACK packet to arrive from the Server. If the Server rejects the 1089
CONNECT, it MUST NOT process any data sent by the Client after the CONNECT packet except AUTH 1090
packets [MQTT-3.1.4-6]. 1091

 1092

Non-normative comment 1093

Clients typically wait for a CONNACK packet, However, if the Client exploits its freedom to send 1094
MQTT Control Packets before it receives a CONNACK, it might simplify the Client implementation 1095
as it does not have to police the connected state. The Client accepts that any data that it sends 1096
before it receives a CONNACK packet from the Server will not be processed if the Server rejects 1097
the connection. 1098

 1099

Non-normative comment 1100

Clients that send MQTT Control Packets before they receive CONNACK will be unaware of the 1101
Server constraints and whether any existing Session is being used. 1102

 1103

Non-normative comment 1104

The Server can limit reading from the Network Connection or close the Network Connection if the 1105
Client sends too much data before authentication is complete. This is suggested as a way of 1106
avoiding denial of service attacks. 1107

 1108

3.2 CONNACK – Connect acknowledgement 1109

The CONNACK packet is the packet sent by the Server in response to a CONNECT packet received from 1110
a Client. The Server MUST send a CONNACK with a 0x00 (Success) Reason Code before sending any 1111
Packet other than AUTH [MQTT-3.2.0-1]. The Server MUST NOT send more than one CONNACK in a 1112
Network Connection [MQTT-3.2.0-2]. 1113

 1114

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 45 of 137

If the Client does not receive a CONNACK packet from the Server within a reasonable amount of time, the 1115
Client SHOULD close the Network Connection. A "reasonable" amount of time depends on the type of 1116
application and the communications infrastructure. 1117

 1118

3.2.1 CONNACK Fixed Header 1119

The Fixed Header format is illustrated in Figure 3-7. 1120

Figure 3-7 – CONNACK packet Fixed Header 1121

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet Type (2) Reserved

 0 0 1 0 0 0 0 0

byte 2 Remaining Length

 1122

Remaining Length field 1123

This is the length of the Variable Header encoded as a Variable Byte Integer. 1124

 1125

3.2.2 CONNACK Variable Header 1126

The Variable Header of the CONNACK Packet contains the following fields in the order: Connect 1127
Acknowledge Flags, Connect Reason Code, and Properties. The rules for encoding Properties are 1128
described in section 2.2.2. 1129

 1130

3.2.2.1 Connect Acknowledge Flags 1131

Byte 1 is the "Connect Acknowledge Flags". Bits 7-1 are reserved and MUST be set to 0 [MQTT-3.2.2-1]. 1132

 1133

Bit 0 is the Session Present Flag. 1134

 1135

3.2.2.1.1 Session Present 1136

Position: bit 0 of the Connect Acknowledge Flags. 1137

 1138

The Session Present flag informs the Client whether the Server is using Session State from a previous 1139
connection for this ClientID. This allows the Client and Server to have a consistent view of the Session 1140
State. 1141

 1142

If the Server accepts a connection with Clean Start set to 1, the Server MUST set Session Present to 0 in 1143
the CONNACK packet in addition to setting a 0x00 (Success) Reason Code in the CONNACK packet 1144
[MQTT-3.2.2-2]. 1145

 1146

If the Server accepts a connection with Clean Start set to 0 and the Server has Session State for the 1147
ClientID, it MUST set Session Present to 1 in the CONNACK packet, otherwise it MUST set Session 1148
Present to 0 in the CONNACK packet. In both cases it MUST set a 0x00 (Success) Reason Code in the 1149
CONNACK packet [MQTT-3.2.2-3]. 1150

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 46 of 137

 1151

If the value of Session Present received by the Client from the Server is not as expected, the Client 1152
proceeds as follows: 1153

• If the Client does not have Session State and receives Session Present set to 1 it MUST close 1154
the Network Connection [MQTT-3.2.2-4]. If it wishes to restart with a new Session the Client can 1155
reconnect using Clean Start set to 1. 1156

• If the Client does have Session State and receives Session Present set to 0 it MUST discard its 1157
Session State if it continues with the Network Connection [MQTT-3.2.2-5]. 1158

 1159

 1160

If a Server sends a CONNACK packet containing a non-zero Reason Code it MUST set Session Present 1161
to 0 [MQTT-3.2.2-6]. 1162

 1163

3.2.2.2 Connect Reason Code 1164

Byte 2 in the Variable Header is the Connect Reason Code. 1165

 1166

The values the Connect Reason Code are shown below. If a well formed CONNECT packet is received 1167
by the Server, but the Server is unable to complete the Connection the Server MAY send a CONNACK 1168
packet containing the appropriate Connect Reason code from this table. If a Server sends a CONNACK 1169
packet containing a Reason code of 128 or greater it MUST then close the Network Connection [MQTT-1170
3.2.2-7]. 1171

 1172

Table 3-1 - Connect Reason Code values 1173

Value Hex Reason Code name Description

0 0x00 Success The Connection is accepted.

128 0x80 Unspecified error The Server does not wish to reveal the reason for the
failure, or none of the other Reason Codes apply.

129 0x81 Malformed Packet Data within the CONNECT packet could not be
correctly parsed.

130 0x82 Protocol Error Data in the CONNECT packet does not conform to this
specification.

131 0x83 Implementation specific error The CONNECT is valid but is not accepted by this
Server.

132 0x84 Unsupported Protocol Version The Server does not support the version of the MQTT
protocol requested by the Client.

133 0x85 Client Identifier not valid The Client Identifier is a valid string but is not allowed
by the Server.

134 0x86 Bad User Name or Password The Server does not accept the User Name or
Password specified by the Client

135 0x87 Not authorized The Client is not authorized to connect.

136 0x88 Server unavailable The MQTT Server is not available.

137 0x89 Server busy The Server is busy. Try again later.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 137

138 0x8A Banned This Client has been banned by administrative action.
Contact the server administrator.

140 0x8C Bad authentication method The authentication method is not supported or does not
match the authentication method currently in use.

144 0x90 Topic Name invalid The Will Topic Name is not malformed, but is not
accepted by this Server.

149 0x95 Packet too large The CONNECT packet exceeded the maximum
permissible size.

151 0x97 Quota exceeded An implementation or administrative imposed limit has
been exceeded.

153 0x99 Payload format invalid The Will Payload does not match the specified Payload
Format Indicator.

154 0x9A Retain not supported The Server does not support retained messages, and
Will Retain was set to 1.

155 0x9B QoS not supported The Server does not support the QoS set in Will QoS.

156 0x9C Use another server The Client should temporarily use another server.

157 0x9D Server moved The Client should permanently use another server.

159 0x9F Connection rate exceeded The connection rate limit has been exceeded.

 1174

The Server sending the CONNACK packet MUST use one of the Connect Reason Code valuesT-3.2.2-1175
8]. 1176

 1177

Non-normative comment 1178

Reason Code 0x80 (Unspecified error) may be used where the Server knows the reason for the 1179
failure but does not wish to reveal it to the Client, or when none of the other Reason Code values 1180
applies. 1181

 1182

The Server may choose to close the Network Connection without sending a CONNACK to 1183
enhance security in the case where an error is found on the CONNECT. For instance, when on a 1184
public network and the connection has not been authorized it might be unwise to indicate that this 1185
is an MQTT Server. 1186

 1187

3.2.2.3 CONNACK Properties 1188

3.2.2.3.1 Property Length 1189

This is the length of the Properties in the CONNACK packet Variable Header encoded as a Variable Byte 1190
Integer. 1191

 1192

3.2.2.3.2 Session Expiry Interval 1193

17 (0x11) Byte, Identifier of the Session Expiry Interval. 1194

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 137

Followed by the Four Byte Integer representing the Session Expiry Interval in seconds. It is a Protocol 1195
Error to include the Session Expiry Interval more than once. 1196

 1197

If the Session Expiry Interval is absent the value in the CONNECT Packet used. The server uses this 1198
property to inform the Client that it is using a value other than that sent by the Client in the CONNACK. 1199
Refer to section 3.1.2.11.2 for a description of the use of Session Expiry Interval. 1200

 1201

3.2.2.3.3 Receive Maximum 1202

33 (0x21) Byte, Identifier of the Receive Maximum. 1203

Followed by the Two Byte Integer representing the Receive Maximum value. It is a Protocol Error to 1204
include the Receive Maximum value more than once or for it to have the value 0. 1205

 1206

The Server uses this value to limit the number of QoS 1 and QoS 2 publications that it is willing to 1207
process concurrently for the Client. It does not provide a mechanism to limit the QoS 0 publications that 1208
the Client might try to send. 1209

 1210

If the Receive Maximum value is absent, then its value defaults to 65,535. 1211

 1212

Refer to section 4.9 Flow Control for details of how the Receive Maximum is used. 1213

 1214

3.2.2.3.4 Maximum QoS 1215

36 (0x24) Byte, Identifier of the Maximum QoS. 1216

Followed by a Byte with a value of either 0 or 1. It is a Protocol Error to include Maximum QoS more than 1217
once, or to have a value other than 0 or 1. If the Maximum QoS is absent, the Client uses a Maximum 1218
QoS of 2. 1219

 1220

If a Server does not support QoS 1 or QoS 2 PUBLISH packets it MUST send a Maximum QoS in the 1221
CONNACK packet specifying the highest QoS it supports [MQTT-3.2.2-9]. A Server that does not support 1222
QoS 1 or QoS 2 PUBLISH packets MUST still accept SUBSCRIBE packets containing a Requested QoS 1223
of 0, 1 or 2 [MQTT-3.2.2-10]. 1224

 1225

If a Client receives a Maximum QoS from a Server, it MUST NOT send PUBLISH packets at a QoS level 1226
exceeding the Maximum QoS level specified [MQTT-3.2.2-11]. It is a Protocol Error if the Server receives 1227
a PUBLISH packet with a QoS greater than the Maximum QoS it specified. In this case use 1228
DISCONNECT with Reason Code 0x9B (QoS not supported) as described in section 4.13 Handling 1229
errors. 1230

 1231

If a Server receives a CONNECT packet containing a Will QoS that exceeds its capabilities, it MUST 1232
reject the connection. It SHOULD use a CONNACK packet with Reason Code 0x9B (QoS not supported) 1233
as described in section 4.13 Handling errors, and MUST close the Network Connection [MQTT-3.2.2-12]. 1234

 1235

Non-normative comment 1236

A Client does not need to support QoS 1 or QoS 2 PUBLISH packets. If this is the case, the 1237
Client simply restricts the maximum QoS field in any SUBSCRIBE commands it sends to a value 1238
it can support. 1239

 1240

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 49 of 137

3.2.2.3.5 Retain Available 1241

37 (0x25) Byte, Identifier of Retain Available. 1242

Followed by a Byte field. If present, this byte declares whether the Server supports retained messages. A 1243
value of 0 means that retained messages are not supported. A value of 1 means retained messages are 1244
supported. If not present, then retained messages are supported. It is a Protocol Error to include Retain 1245
Available more than once or to use a value other than 0 or 1. 1246

 1247

If a Server receives a CONNECT packet containing a Will Message with the Will Retain set to 1, and it 1248
does not support retained messages, the Server MUST reject the connection request. It SHOULD send 1249
CONNACK with Reason Code 0x9A (Retain not supported) and then it MUST close the Network 1250
Connection [MQTT-3.2.2-13]. 1251

 1252

A Client receiving Retain Available set to 0 from the Server MUST NOT send a PUBLISH packet with the 1253
RETAIN flag set to 1 [MQTT-3.2.2-14]. If the Server receives such a packet, this is a Protocol Error. The 1254
Server SHOULD send a DISCONNECT with Reason Code of 0x9A (Retain not supported) as described 1255
in section 4.13. 1256

 1257

3.2.2.3.6 Maximum Packet Size 1258

39 (0x27) Byte, Identifier of the Maximum Packet Size. 1259

Followed by a Four Byte Integer representing the Maximum Packet Size the Server is willing to accept. If 1260
the Maximum Packet Size is not present, there is no limit on the packet size imposed beyond the 1261
limitations in the protocol as a result of the remaining length encoding and the protocol header sizes. 1262

 1263

It is a Protocol Error to include the Maximum Packet Size more than once, or for the value to be set to 1264
zero. 1265

 1266

The packet size is the total number of bytes in an MQTT Control Packet, as defined in section 2.1.4. The 1267
Server uses the Maximum Packet Size to inform the Client that it will not process packets whose size 1268
exceeds this limit. 1269

 1270

The Client MUST NOT send packets exceeding Maximum Packet Size to the Server [MQTT-3.2.2-15]. If 1271
a Server receives a packet whose size exceeds this limit, this is a Protocol Error, the Server uses 1272
DISCONNECT with Reason Code 0x95 (Packet too large), as described in section 4.13. 1273

 1274

3.2.2.3.7 Assigned Client Identifier 1275

18 (0x12) Byte, Identifier of the Assigned Client Identifier. 1276

Followed by the UTF-8 string which is the Assigned Client Identifier. It is a Protocol Error to include the 1277
Assigned Client Identifier more than once. 1278

 1279
The Client Identifier which was assigned by the Server because a zero length Client Identifier was found 1280
in the CONNECT packet. 1281
 1282

If the Client connects using a zero length Client Identifier, the Server MUST respond with a CONNACK 1283
containing an Assigned Client Identifier. The Assigned Client Identifier MUST be a new Client Identifier 1284
not used by any other Session currently in the Server [MQTT-3.2.2-16]. 1285

 1286

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 137

3.2.2.3.8 Topic Alias Maximum 1287

34 (0x22) Byte, Identifier of the Topic Alias Maximum. 1288

Followed by the Two Byte Integer representing the Topic Alias Maximum value. It is a Protocol Error to 1289
include the Topic Alias Maximum value more than once. If the Topic Alias Maximum property is absent, 1290
the default value is 0. 1291

 1292

This value indicates the highest value that the Server will accept as a Topic Alias sent by the Client. The 1293
Server uses this value to limit the number of Topic Aliases that it is willing to hold on this Connection. The 1294
Client MUST NOT send a Topic Alias in a PUBLISH packet to the Server greater than this value [MQTT-1295
3.2.2-17]. A value of 0 indicates that the Server does not accept any Topic Aliases on this connection. If 1296
Topic Alias Maximum is absent or 0, the Client MUST NOT send any Topic Aliases on to the Server 1297
[MQTT-3.2.2-18]. 1298

 1299

3.2.2.3.9 Reason String 1300

31 (0x1F) Byte Identifier of the Reason String. 1301

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 1302
Reason String is a human readable string designed for diagnostics and SHOULD NOT be parsed by the 1303
Client. 1304

 1305

The Server uses this value to give additional information to the Client. The Server MUST NOT send this 1306
property if it would increase the size of the CONNACK packet beyond the Maximum Packet Size specified 1307
by the Client [MQTT-3.2.2-19]. It is a Protocol Error to include the Reason String more than once. 1308

 1309

Non-normative comment 1310

Proper uses for the reason string in the Client would include using this information in an exception 1311
thrown by the Client code, or writing this string to a log. 1312

 1313

3.2.2.3.10 User Property 1314

38 (0x26) Byte, Identifier of User Property. 1315
Followed by a UTF-8 String Pair. This property can be used to provide additional information to the Client 1316
including diagnostic information. The Server MUST NOT send this property if it would increase the size of 1317
the CONNACK packet beyond the Maximum Packet Size specified by the Client [MQTT-3.2.2-20]. The 1318
User Property is allowed to appear multiple times to represent multiple name, value pairs. The same 1319
name is allowed to appear more than once. 1320

 1321

The content and meaning of this property is not defined by this specification. The receiver of a CONNACK 1322
containing this property MAY ignore it. 1323

 1324

3.2.2.3.11 Wildcard Subscription Available 1325

40 (0x28) Byte, Identifier of Wildcard Subscription Available. 1326

Followed by a Byte field. If present, this byte declares whether the Server supports Wildcard 1327
Subscriptions. A value is 0 means that Wildcard Subscriptions are not supported. A value of 1 means 1328
Wildcard Subscriptions are supported. If not present, then Wildcard Subscriptions are supported. It is a 1329
Protocol Error to include the Wildcard Subscription Available more than once or to send a value other 1330
than 0 or 1. 1331

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 137

 1332

If the Server receives a SUBSCRIBE packet containing a Wildcard Subscription and it does not support 1333
Wildcard Subscriptions, this is a Protocol Error. The Server uses DISCONNECT with Reason Code 0xA2 1334
(Wildcard Subscriptions not supported) as described in section 4.13. 1335

 1336

If a Server supports Wildcard Subscriptions, it can still reject a particular subscribe request containing a 1337
Wildcard Subscription. In this case the Server MAY send a SUBACK Control Packet with a Reason Code 1338
0xA2 (Wildcard Subscriptions not supported). 1339

 1340

3.2.2.3.12 Subscription Identifiers Available 1341

41 (0x29) Byte, Identifier of Subscription Identifier Available. 1342

Followed by a Byte field. If present, this byte declares whether the Server supports Subscription 1343
Identifiers. A value is 0 means that Subscription Identifiers are not supported. A value of 1 means 1344
Subscription Identifiers are supported. If not present, then Subscription Identifiers are supported. It is a 1345
Protocol Error to include the Subscription Identifier Available more than once, or to send a value other 1346
than 0 or 1. 1347

 1348

If the Server receives a SUBSCRIBE packet containing Subscription Identifier and it does not support 1349
Subscription Identifiers, this is a Protocol Error. The Server uses DISCONNECT with Reason Code of 1350
0xA1 (Subscription Identifiers not supported) as described in section 4.13. 1351

 1352

3.2.2.3.13 Shared Subscription Available 1353

42 (0x2A) Byte, Identifier of Shared Subscription Available. 1354

Followed by a Byte field. If present, this byte declares whether the Server supports Shared Subscriptions. 1355
A value is 0 means that Shared Subscriptions are not supported. A value of 1 means Shared 1356
Subscriptions are supported. If not present, then Shared Subscriptions are supported. It is a Protocol 1357
Error to include the Shared Subscription Available more than once or to send a value other than 0 or 1. 1358

 1359

If the Server receives a SUBSCRIBE packet containing Shared Subscriptions and it does not support 1360
Shared Subscriptions, this is a Protocol Error. The Server uses DISCONNECT with Reason Code 0x9E 1361
(Shared Subscriptions not supported) as described in section 4.13. 1362

 1363

3.2.2.3.14 Server Keep Alive 1364

19 (0x13) Byte, Identifier of the Server Keep Alive. 1365

Followed by a Two Byte Integer with the Keep Alive time assigned by the Server. If the Server sends a 1366
Server Keep Alive on the CONNACK packet, the Client MUST use this value instead of the Keep Alive 1367
value the Client sent on CONNECT [MQTT-3.2.2-21]. If the Server does not send the Server Keep Alive, 1368
the Server MUST use the Keep Alive value set by the Client on CONNECT [MQTT-3.2.2-22]. It is a 1369
Protocol Error to include the Server Keep Alive more than once. 1370

 1371

Non-normative comment 1372

The primary use of the Server Keep Alive is for the Server to inform the Client that it will 1373
disconnect the Client for inactivity sooner than the Keep Alive specified by the Client. 1374

 1375

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 52 of 137

3.2.2.3.15 Response Information 1376

26 (0x1A) Byte, Identifier of the Response Information. 1377

Followed by a UTF-8 Encoded String which is used as the basis for creating a Response Topic. The way 1378
in which the Client creates a Response Topic from the Response Information is not defined by this 1379
specification. It is a Protocol Error to include the Response Information more than once. 1380

 1381

If the Client sends a Request Response Information with a value 1, it is OPTIONAL for the Server to send 1382
the Response Information in the CONNACK. 1383

 1384

Non-normative comment 1385

A common use of this is to pass a globally unique portion of the topic tree which is reserved for 1386
this Client for at least the lifetime of its Session. This often cannot just be a random name as both 1387
the requesting Client and the responding Client need to be authorized to use it. It is normal to use 1388
this as the root of a topic tree for a particular Client. For the Server to return this information, it 1389
normally needs to be correctly configured. Using this mechanism allows this configuration to be 1390
done once in the Server rather than in each Client. 1391

 1392

Refer to section 4.10 for more information about Request / Response. 1393

 1394

3.2.2.3.16 Server Reference 1395

28 (0x1C) Byte, Identifier of the Server Reference. 1396

Followed by a UTF-8 Encoded String which can be used by the Client to identify another Server to use. It 1397
is a Protocol Error to include the Server Reference more than once. 1398

 1399

The Server uses a Server Reference in either a CONNACK or DISCONNECT packet with Reason code 1400
of 0x9C (Use another server) or Reason Code 0x9D (Server moved) as described in section 4.13. 1401

 1402

Refer to section 4.11 Server redirection for information about how Server Reference is used. 1403

 1404

3.2.2.3.17 Authentication Method 1405

21 (0x15) Byte, Identifier of the Authentication Method. 1406

Followed by a UTF-8 Encoded String containing the name of the authentication method. It is a Protocol 1407
Error to include the Authentication Method more than once. Refer to section 4.12 for more information 1408
about extended authentication. 1409

 1410

3.2.2.3.18 Authentication Data 1411

22 (0x16) Byte, Identifier of the Authentication Data. 1412

Followed by Binary Data containing authentication data. The contents of this data are defined by the 1413
authentication method and the state of already exchanged authentication data. It is a Protocol Error to 1414
include the Authentication Data more than once. Refer to section 4.12 for more information about 1415
extended authentication. 1416

 1417

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 53 of 137

3.2.3 CONNACK Payload 1418

The CONNACK packet has no Payload. 1419

 1420

3.3 PUBLISH – Publish message 1421

A PUBLISH packet is sent from a Client to a Server or from a Server to a Client to transport an 1422
Application Message. 1423

 1424

3.3.1 PUBLISH Fixed Header 1425

Figure 3-8 – PUBLISH packet Fixed Header 1426

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (3) DUP
flag

QoS level RETAIN

 0 0 1 1 X X X X

byte 2… Remaining Length

 1427

3.3.1.1 DUP 1428

Position: byte 1, bit 3. 1429

If the DUP flag is set to 0, it indicates that this is the first occasion that the Client or Server has attempted 1430
to send this PUBLISH packet. If the DUP flag is set to 1, it indicates that this might be re-delivery of an 1431
earlier attempt to send the packet. 1432

 1433

The DUP flag MUST be set to 1 by the Client or Server when it attempts to re-deliver a PUBLISH packet 1434
[MQTT-3.3.1-1]. The DUP flag MUST be set to 0 for all QoS 0 messages [MQTT-3.3.1-2]. 1435

 1436

The value of the DUP flag from an incoming PUBLISH packet is not propagated when the PUBLISH 1437
packet is sent to subscribers by the Server. The DUP flag in the outgoing PUBLISH packet is set 1438
independently to the incoming PUBLISH packet, its value MUST be determined solely by whether the 1439
outgoing PUBLISH packet is a retransmission [MQTT-3.3.1-3]. 1440

 1441

Non-normative comment 1442

The receiver of an MQTT Control Packet that contains the DUP flag set to 1 cannot assume that 1443
it has seen an earlier copy of this packet. 1444

 1445

Non-normative comment 1446

It is important to note that the DUP flag refers to the MQTT Control Packet itself and not to the 1447
Application Message that it contains. When using QoS 1, it is possible for a Client to receive a 1448
PUBLISH packet with DUP flag set to 0 that contains a repetition of an Application Message that 1449
it received earlier, but with a different Packet Identifier. Section 2.2.1 provides more information 1450
about Packet Identifiers. 1451

 1452

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 137

3.3.1.2 QoS 1453

Position: byte 1, bits 2-1. 1454

This field indicates the level of assurance for delivery of an Application Message. The QoS levels are 1455
shown below. 1456

 1457

Table 3-2 - QoS definitions 1458

QoS value Bit 2 bit 1 Description

0 0 0 At most once delivery

1 0 1 At least once delivery

2 1 0 Exactly once delivery

- 1 1 Reserved – must not be used

 1459

If the Server included a Maximum QoS in its CONNACK response to a Client and it receives a PUBLISH 1460
packet with a QoS greater than this, then it uses DISCONNECT with Reason Code 0x9B (QoS not 1461
supported) as described in section 4.13 Handling errors. 1462

 1463

A PUBLISH Packet MUST NOT have both QoS bits set to 1 [MQTT-3.3.1-4]. If a Server or Client receives 1464
a PUBLISH packet which has both QoS bits set to 1 it is a Malformed Packet. Use DISCONNECT with 1465
Reason Code 0x81 (Malformed Packet) as described in section 4.13. 1466

 1467

3.3.1.3 RETAIN 1468

Position: byte 1, bit 0. 1469

 1470

If the RETAIN flag is set to 1 in a PUBLISH packet sent by a Client to a Server, the Server MUST replace 1471
any existing retained message for this topic and store the Application Message [MQTT-3.3.1-5], so that it 1472
can be delivered to future subscribers whose subscriptions match its Topic Name. If the Payload contains 1473
zero bytes it is processed normally by the Server but any retained message with the same topic name 1474
MUST be removed and any future subscribers for the topic will not receive a retained message [MQTT-1475
3.3.1-6]. A retained message with a Payload containing zero bytes MUST NOT be stored as a retained 1476
message on the Server [MQTT-3.3.1-7]. 1477

 1478

If the RETAIN flag is 0 in a PUBLISH packet sent by a Client to a Server, the Server MUST NOT store the 1479
message as a retained message and MUST NOT remove or replace any existing retained message 1480
[MQTT-3.3.1-8]. 1481

 1482

If the Server included Retain Available in its CONNACK response to a Client with its value set to 0 and it 1483
receives a PUBLISH packet with the RETAIN flag is set to 1, then it uses the DISCONNECT Reason 1484
Code of 0x9A (Retain not supported) as described in section 4.13. 1485

 1486

When a new Non-shared Subscription is made, the last retained message, if any, on each matching topic 1487
name is sent to the Client as directed by the Retain Handling Subscription Option. These messages are 1488
sent with the RETAIN flag set to 1. Which retained messages are sent is controlled by the Retain 1489
Handling Subscription Option. At the time of the Subscription: 1490

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 137

• If Retain Handling is set to 0 the Server MUST send the retained messages matching the Topic 1491
Filter of the subscription to the Client [MQTT-3.3.1-9]. 1492

• If Retain Handling is set to 1 then if the subscription did not already exist, the Server MUST send 1493
all retained message matching the Topic Filter of the subscription to the Client, and if the 1494
subscription did exist the Server MUST NOT send the retained messages. [MQTT-3.3.1-10]. 1495

• If Retain Handling is set to 2, the Server MUST NOT send the retained messages [MQTT-3.3.1-1496
11]. 1497

 1498

Refer to section 3.8.3.1 for a definition of the Subscription Options. 1499

 1500

If the Server receives a PUBLISH packet with the RETAIN flag set to 1, and QoS 0 it SHOULD store the 1501
new QoS 0 message as the new retained message for that topic, but MAY choose to discard it at any 1502
time. If this happens there will be no retained message for that topic. 1503

 1504

If the current retained message for a Topic expires, it is discarded and there will be no retained message 1505
for that topic. 1506

 1507

The setting of the RETAIN flag in an Application Message forwarded by the Server from an established 1508
connection is controlled by the Retain As Published subscription option. Refer to section 3.8.3.1 for a 1509
definition of the Subscription Options. 1510

 1511

• If the value of Retain As Published subscription option is set to 0, the Server MUST set the RETAIN 1512
flag to 0 when forwarding an Application Message regardless of how the RETAIN flag was set in the 1513
received PUBLISH packet [MQTT-3.3.1-12]. 1514

• If the value of Retain As Published subscription option is set to 1, the Server MUST set the RETAIN 1515
flag equal to the RETAIN flag in the received PUBLISH packet [MQTT-3.3.1-13]. 1516

 1517

Non-normative comment 1518

Retained messages are useful where publishers send state messages on an irregular basis. A new 1519
non-shared subscriber will receive the most recent state. 1520

 1521

3.3.1.4 Remaining Length 1522

This is the length of Variable Header plus the length of the Payload, encoded as a Variable Byte Integer. 1523

 1524

3.3.2 PUBLISH Variable Header 1525

The Variable Header of the PUBLISH Packet contains the following fields in the order: Topic Name, 1526
Packet Identifier, and Properties. The rules for encoding Properties are described in section 2.2.2. 1527

 1528

3.3.2.1 Topic Name 1529

The Topic Name identifies the information channel to which Payload data is published. 1530

 1531

The Topic Name MUST be present as the first field in the PUBLISH packet Variable Header. It MUST be 1532
a UTF-8 Encoded String as defined in section 1.5.4 [MQTT-3.3.2-1]. 1533

 1534

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 56 of 137

The Topic Name in the PUBLISH packet MUST NOT contain wildcard characters [MQTT-3.3.2-2]. 1535

 1536

The Topic Name in a PUBLISH packet sent by a Server to a subscribing Client MUST match the 1537
Subscription’s Topic Filter according to the matching process defined in section 4.7 [MQTT-3.3.2-3]. 1538
However, as the Server is permitted to map the Topic Name to another name, it might not be the same as 1539
the Topic Name in the original PUBLISH packet. 1540

 1541

To reduce the size of the PUBLISH packet the sender can use a Topic Alias. The Topic Alias is described 1542
in section 3.3.2.3.4. It is a Protocol Error if the Topic Name is zero length and there is no Topic Alias. 1543

 1544

3.3.2.2 Packet Identifier 1545

The Packet Identifier field is only present in PUBLISH packets where the QoS level is 1 or 2. Section 1546
2.2.1 provides more information about Packet Identifiers. 1547

 1548

3.3.2.3 PUBLISH Properties 1549

3.3.2.3.1 Property Length 1550

The length of the Properties in the PUBLISH packet Variable Header encoded as a Variable Byte Integer. 1551

 1552

3.3.2.3.2 Payload Format Indicator 1553

1 (0x01) Byte, Identifier of the Payload Format Indicator. 1554

Followed by the value of the Payload Forma t Indicator, either of: 1555

• 0 (0x00) Byte Indicates that the Payload is unspecified bytes, which is equivalent to not sending a 1556
Payload Format Indicator. 1557

• 1 (0x01) Byte Indicates that the Payload is UTF-8 Encoded Character Data. The UTF-8 data in 1558

the Payload MUST be well-formed UTF-8 as defined by the Unicode specification [Unicode] 1559

and restated in RFC 3629 [RFC3629]. 1560

 1561

A Server MUST send the Payload Format Indicator unaltered to all subscribers receiving the Application 1562
Message [MQTT-3.3.2-4]. The receiver MAY validate that the Payload is of the format indicated, and if it 1563
is not send a PUBACK, PUBREC, or DISCONNECT with Reason Code of 0x99 (Payload format invalid) 1564
as described in section 4.13. Refer to section 5.4.9 for information about security issues in validating the 1565
payload format. 1566

 1567

3.3.2.3.3 Message Expiry Interval` 1568

2 (0x02) Byte, Identifier of the Message Expiry Interval. 1569

Followed by the Four Byte Integer representing the Message Expiry Interval. 1570

 1571

If present, the Four Byte value is the lifetime of the Application Message in seconds. If the Message 1572
Expiry Interval has passed and the Server has not managed to start onward delivery to a matching 1573
subscriber, then it MUST delete the copy of the message for that subscriber [MQTT-3.3.2-5]. 1574

 1575

If absent, the Application Message does not expire. 1576

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 57 of 137

 1577

The PUBLISH packet sent to a Client by the Server MUST contain a Message Expiry Interval set to the 1578
received value minus the time that the Application Message has been waiting in the Server [MQTT-3.3.2-1579
6]. Refer to section 4.1 for details and limitations of stored state. 1580

 1581

3.3.2.3.4 Topic Alias 1582

35 (0x23) Byte, Identifier of the Topic Alias. 1583

Followed by the Two Byte integer representing the Topic Alias value. It is a Protocol Error to include the 1584
Topic Alias value more than once. 1585

 1586

A Topic Alias is an integer value that is used to identify the Topic instead of using the Topic Name. This 1587
reduces the size of the PUBLISH packet, and is useful when the Topic Names are long and the same 1588
Topic Names are used repetitively within a Network Connection. 1589

 1590

The sender decides whether to use a Topic Alias and chooses the value. It sets a Topic Alias mapping by 1591
including a non-zero length Topic Name and a Topic Alias in the PUBLISH packet. The receiver 1592
processes the PUBLISH as normal but also sets the specified Topic Alias mapping to this Topic Name. 1593

 1594

If a Topic Alias mapping has been set at the receiver, a sender can send a PUBLISH packet that contains 1595
that Topic Alias and a zero length Topic Name. The receiver then treats the incoming PUBLISH as if it 1596
had contained the Topic Name of the Topic Alias. 1597

 1598

A sender can modify the Topic Alias mapping by sending another PUBLISH in the same Network 1599
Connection with the same Topic Alias value and a different non-zero length Topic Name. 1600

 1601

Topic Alias mappings exist only within a Network Connection and last only for the lifetime of that Network 1602
Connection. A receiver MUST NOT carry forward any Topic Alias mappings from one Network 1603
Connection to another [MQTT-3.3.2-7]. 1604

 1605

A Topic Alias of 0 is not permitted. A sender MUST NOT send a PUBLISH packet containing a Topic 1606
Alias which has the value 0 [MQTT-3.3.2-8]. 1607

 1608

A Client MUST NOT send a PUBLISH packet with a Topic Alias greater than the Topic Alias Maximum 1609
value returned by the Server in the CONNACK packet [MQTT-3.3.2-9]. A Client MUST accept all Topic 1610
Alias values greater than 0 and less than or equal to the Topic Alias Maximum value that it sent in the 1611
CONNECT packet [MQTT-3.3.2-10]. 1612

 1613

A Server MUST NOT send a PUBLISH packet with a Topic Alias greater than the Topic Alias Maximum 1614
value sent by the Client in the CONNECT packet [MQTT-3.3.2-11]. A Server MUST accept all Topic Alias 1615
values greater than 0 and less than or equal to the Topic Alias Maximum value that it returned in the 1616
CONNACK packet [MQTT-3.3.2-12]. 1617

 1618

The Topic Alias mappings used by the Client and Server are independent from each other. Thus, when a 1619
Client sends a PUBLISH containing a Topic Alias value of 1 to a Server and the Server sends a PUBLISH 1620
with a Topic Alias value of 1 to that Client they will in general be referring to different Topics. 1621

 1622

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 58 of 137

3.3.2.3.5 Response Topic 1623

8 (0x08) Byte, Identifier of the Response Topic. 1624

Followed by a UTF-8 Encoded String which is used as the Topic Name for a response message. The 1625
Response Topic MUST be a UTF-8 Encoded String as defined in section 1.5.4 [MQTT-3.3.2-13]. The 1626
Response Topic MUST NOT contain wildcard characters [MQTT-3.3.2-14]. It is a Protocol Error to include 1627
the Response Topic more than once. The presence of a Response Topic identifies the Message as a 1628
Request. 1629

 1630

Refer to section 4.10 for more information about Request / Response. 1631

 1632

The Server MUST send the Response Topic unaltered to all subscribers receiving the Application 1633
Message [MQTT-3.3.2-15]. 1634

 1635

Non-normative comment: 1636

The receiver of an Application Message with a Response Topic sends a response by using the 1637
Response Topic as the Topic Name of a PUBLISH. If the Request Message contains a 1638
Correlation Data, the receiver of the Request Message should also include this Correlation Data 1639
as a property in the PUBLISH packet of the Response Message. 1640

 1641

3.3.2.3.6 Correlation Data 1642

9 (0x09) Byte, Identifier of the Correlation Data. 1643

Followed by Binary Data. The Correlation Data is used by the sender of the Request Message to identify 1644
which request the Response Message is for when it is received. It is a Protocol Error to include 1645
Correlation Data more than once. If the Correlation Data is not present, the Requester does not require 1646
any correlation data. 1647

 1648

The Server MUST send the Correlation Data unaltered to all subscribers receiving the Application 1649
Message [MQTT-3.3.2-16]. The value of the Correlation Data only has meaning to the sender of the 1650
Request Message and receiver of the Response Message. 1651

 1652

Non-normative comment 1653

The receiver of an Application Message which contains both a Response Topic and a Correlation 1654
Data sends a response by using the Response Topic as the Topic Name of a PUBLISH. The 1655
Client should also send the Correlation Data unaltered as part of the PUBLISH of the responses. 1656

 1657

Non-normative comment 1658

If the Correlation Data contains information which can cause application failures if modified by the 1659
Client responding to the request, it should be encrypted and/or hashed to allow any alteration to 1660
be detected. 1661

 1662

Refer to section 4.10 for more information about Request / Response 1663

 1664

3.3.2.3.7 User Property 1665

38 (0x26) Byte, Identifier of the User Property. 1666

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 59 of 137

Followed by a UTF-8 String Pair. The User Property is allowed to appear multiple times to represent 1667
multiple name, value pairs. The same name is allowed to appear more than once. 1668

 1669

The Server MUST send all User Properties unaltered in a PUBLISH packet when forwarding the 1670
Application Message to a Client [MQTT-3.3.2-17]. The Server MUST maintain the order of User 1671
Properties when forwarding the Application Message [MQTT-3.3.2-18]. 1672

 1673

Non-normative comment 1674

This property is intended to provide a means of transferring application layer name-value tags 1675
whose meaning and interpretation are known only by the application programs responsible for 1676
sending and receiving them. 1677

 1678

3.3.2.3.8 Subscription Identifier 1679

11 (0x0B), Identifier of the Subscription Identifier. 1680
Followed by a Variable Byte Integer representing the identifier of the subscription. 1681
 1682
The Subscription Identifier can have the value of 1 to 268,435,455. It is a Protocol Error if the 1683
Subscription Identifier has a value of 0. Multiple Subscription Identifiers will be included if the publication 1684
is the result of a match to more than one subscription, in this case their order is not significant. 1685
 1686

3.3.2.3.9 Content Type 1687

3 (0x03) Identifier of the Content Type. 1688
Followed by a UTF-8 Encoded String describing the content of the Application Message. The Content 1689
Type MUST be a UTF-8 Encoded String as defined in section 1.5.4 [MQTT-3.3.2-19]. 1690
It is a Protocol Error to include the Content Type more than once. The value of the Content Type is 1691
defined by the sending and receiving application. 1692
 1693

A Server MUST send the Content Type unaltered to all subscribers receiving the Application Message 1694
[MQTT-3.3.2-20]. 1695

 1696

Non-normative comment 1697

The UTF-8 Encoded String may use a MIME content type string to describe the contents of the 1698
Application message. However, since the sending and receiving applications are responsible for 1699
the definition and interpretation of the string, MQTT performs no validation of the string except to 1700
insure it is a valid UTF-8 Encoded String. 1701
 1702
Non-normative example 1703
Figure 3-9 shows an example of a PUBLISH packet with the Topic Name set to “a/b”, the Packet 1704
Identifier set to 10, and having no properties. 1705

 1706

Figure 3-9 - PUBLISH packet Variable Header non-normative example 1707

 Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 60 of 137

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Packet Identifier

byte 6 Packet Identifier MSB (0) 0 0 0 0 0 0 0 0

byte 7 Packet Identifier LSB (10) 0 0 0 0 1 0 1 0

Property Length

byte 8 No Properties 0 0 0 0 0 0 0 0

 1708

3.3.3 PUBLISH Payload 1709

The Payload contains the Application Message that is being published. The content and format of the 1710
data is application specific. The length of the Payload can be calculated by subtracting the length of the 1711
Variable Header from the Remaining Length field that is in the Fixed Header. It is valid for a PUBLISH 1712
packet to contain a zero length Payload. 1713

 1714

3.3.4 PUBLISH Actions 1715

The receiver of a PUBLISH Packet MUST respond with the packet as determined by the QoS in the 1716
PUBLISH Packet [MQTT-3.3.4-1]. 1717

 1718

Table 3-3 Expected PUBLISH packet response 1719

QoS Level Expected Response

QoS 0 None

QoS 1 PUBACK packet

QoS 2 PUBREC packet

 1720

The Client uses a PUBLISH packet to send an Application Message to the Server, for distribution to 1721
Clients with matching subscriptions. 1722

 1723

The Server uses a PUBLISH packet to send an Application Message to each Client which has a matching 1724
subscription. The PUBLISH packet includes the Subscription Identifier carried in the SUBSCRIBE packet, 1725
if there was one. 1726

 1727

When Clients make subscriptions with Topic Filters that include wildcards, it is possible for a Client’s 1728
subscriptions to overlap so that a published message might match multiple filters. In this case the Server 1729
MUST deliver the message to the Client respecting the maximum QoS of all the matching subscriptions 1730
[MQTT-3.3.4-2]. In addition, the Server MAY deliver further copies of the message, one for each 1731
additional matching subscription and respecting the subscription’s QoS in each case. 1732

 1733

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 61 of 137

If a Client receives an unsolicited Application Message (not resulting from a subscription) which has a 1734
QoS greater than Maximum QoS, it uses a DISCONNECT packet with Reason Code 0x9B (QoS not 1735
supported) as described in section 4.13 Handling errors. 1736

 1737

If the Client specified a Subscription Identifier for any of the overlapping subscriptions the Server MUST 1738
send those Subscription Identifiers in the message which is published as the result of the subscriptions 1739
[MQTT-3.3.4-3]. If the Server sends a single copy of the message it MUST include in the PUBLISH 1740
packet the Subscription Identifiers for all matching subscriptions which have a Subscription Identifiers, 1741
their order is not significant [MQTT-3.3.4-4]. If the Server sends multiple PUBLISH packets it MUST send, 1742
in each of them, the Subscription Identifier of the matching subscription if it has a Subscription Identifier 1743
[MQTT-3.3.4-5]. 1744

 1745

It is possible that the Client made several subscriptions which match a publication and that it used the 1746
same identifier for more than one of them. In this case the PUBLISH packet will carry multiple identical 1747
Subscription Identifiers. 1748

 1749

It is a Protocol Error for a PUBLISH packet to contain any Subscription Identifier other than those 1750
received in SUBSCRIBE packet which caused it to flow. A PUBLISH packet sent from a Client to a Server 1751
MUST NOT contain a Subscription Identifier [MQTT-3.3.4-6]. 1752

 1753

If the subscription was shared, then only the Subscription Identifiers that were present in the SUBSCRIBE 1754
packet from the Client which is receiving the message are returned in the PUBLISH packet. 1755

 1756

The action of the recipient when it receives a PUBLISH packet depends on the QoS level as described in 1757
section 4.3. 1758

 1759

If the PUBLISH packet contains a Topic Alias, the receiver processes it as follows: 1760

1) A Topic Alias value of 0 or greater than the Maximum Topic Alias is a Protocol Error, the receiver 1761
uses DISCONNECT with Reason Code of 0x94 (Topic Alias invalid) as described in section 4.13. 1762
 1763

2) If the receiver has already established a mapping for the Topic Alias, then 1764
a) If the packet has a zero length Topic Name, the receiver processes it using the Topic Name that 1765

corresponds to the Topic Alias 1766
b) If the packet contains a non-zero length Topic Name, the receiver processes the packet using 1767

that Topic Name and updates its mapping for the Topic Alias to the Topic Name from the 1768
incoming packet 1769
 1770

3) If the receiver does not already have a mapping for this Topic Alias 1771
a) If the packet has a zero length Topic Name field it is a Protocol Error and the receiver uses 1772

DISCONNECT with Reason Code of 0x82 (Protocol Error) as described in section 4.13. 1773
b) If the packet contains a Topic Name with a non-zero length, the receiver processes the packet 1774

using that Topic Name and sets its mappings for the Topic Alias to Topic Name from the 1775
incoming packet. 1776

 1777

Non-normative Comment 1778

If the Server distributes Application Messages to Clients at different protocol levels (such as 1779
MQTT V3.1.1) which do not support properties or other features provided by this specification, 1780
some information in the Application Message can be lost, and applications which depend on this 1781
information might not work correctly. 1782

 1783

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 62 of 137

The Client MUST NOT send more than Receive Maximum QoS 1 and QoS 2 PUBLISH packets for which 1784
it has not received PUBACK, PUBCOMP, or PUBREC with a Reason Code of 128 or greater from the 1785
Server [MQTT-3.3.4-7]. If it receives more than Receive Maximum QoS 1 and QoS 2 PUBLISH packets 1786
where it has not sent a PUBACK or PUBCOMP in response, the Server uses a DISCONNECT packet 1787
with Reason Code 0x93 (Receive Maximum exceeded) as described in section 4.13 Handling errors. 1788
Refer to section 4.9 for more information about flow control. 1789

 1790

The Client MUST NOT delay the sending of any packets other than PUBLISH packets due to having sent 1791
Receive Maximum PUBLISH packets without receiving acknowledgements for them [MQTT-3.3.4-8]. The 1792
value of Receive Maximum applies only to the current Network Connection. 1793

 1794

Non-normative comment 1795

The Client might choose to send fewer than Receive Maximum messages to the Server without 1796
receiving acknowledgement, even if it has more than this number of messages available to send. 1797

 1798

Non-normative comment 1799

The Client might choose to suspend the sending of QoS 0 PUBLISH packets when it suspends 1800
the sending of QoS 1 and QoS 2 PUBLISH packets. 1801

 1802

Non-normative comment 1803

If the Client sends QoS 1 or QoS 2 PUBLISH packets before it has received a CONNACK packet, 1804
it risks being disconnected because it has sent more than Receive Maximum publications. 1805

 1806

The Server MUST NOT send more than Receive Maximum QoS 1 and QoS 2 PUBLISH packets for 1807
which it has not received PUBACK, PUBCOMP, or PUBREC with a Reason Code of 128 or greater from 1808
the Client [MQTT-3.3.4-9]. If it receives more than Receive Maximum QoS 1 and QoS 2 PUBLISH 1809
packets where it has not sent a PUBACK or PUBCOMP in response, the Client uses DISCONNECT with 1810
Reason Code 0x93 (Receive Maximum exceeded) as described in section 4.13 Handling errors. Refer to 1811
section 4.9 for more information about flow control. 1812

 1813

The Server MUST NOT delay the sending of any packets other than PUBLISH packets due to having 1814
sent Receive Maximum PUBLISH packets without receiving acknowledgements for them [MQTT-3.3.4-1815
10]. 1816

 1817

Non-normative comment 1818

The Server might choose to send fewer than Receive Maximum messages to the Client without 1819
receiving acknowledgement, even if it has more than this number of messages available to send. 1820

 1821

Non-normative comment 1822

The Server might choose to suspend the sending of QoS 0 PUBLISH packets when it suspends 1823
the sending of QoS 1 and QoS 2 PUBLISH packets. 1824

 1825

3.4 PUBACK – Publish acknowledgement 1826

A PUBACK packet is the response to a PUBLISH packet with QoS 1. 1827

 1828

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 63 of 137

3.4.1 PUBACK Fixed Header 1829

Figure 3-10 - PUBACK packet Fixed Header 1830

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (4) Reserved

 0 1 0 0 0 0 0 0

byte 2 Remaining Length

 1831

Remaining Length field 1832

This is the length of the Variable Header, encoded as a Variable Byte Integer. 1833

 1834

3.4.2 PUBACK Variable Header 1835

The Variable Header of the PUBACK Packet contains the following fields in the order: Packet Identifier 1836
from the PUBLISH packet that is being acknowledged, PUBACK Reason Code, Property Length, and the 1837
Properties. The rules for encoding Properties are described in section 2.2.2. 1838

 1839

Figure 3-11 – PUBACK packet Variable Header 1840

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

byte 3 PUBACK Reason Code

byte 4 Property Length

 1841

3.4.2.1 PUBACK Reason Code 1842

Byte 3 in the Variable Header is the PUBACK Reason Code. If the Remaining Length is 2, then there is 1843
no Reason Code and the value of 0x00 (Success) is used. 1844

 1845

Table 3-4 - PUBACK Reason Codes 1846

Value Hex Reason Code name Description

0 0x00 Success The message is accepted. Publication of the QoS 1
message proceeds.

16 0x10 No matching subscribers The message is accepted but there are no
subscribers. This is sent only by the Server. If the
Server knows that there are no matching subscribers,
it MAY use this Reason Code instead of 0x00
(Success).

128 0x80 Unspecified error The receiver does not accept the publish but either
does not want to reveal the reason, or it does not
match one of the other values.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 64 of 137

131 0x83 Implementation specific error The PUBLISH is valid but the receiver is not willing to
accept it.

135 0x87 Not authorized The PUBLISH is not authorized.

144 0x90 Topic Name invalid The Topic Name is not malformed, but is not
accepted by this Client or Server.

145 0x91 Packet identifier in use The Packet Identifier is already in use. This might
indicate a mismatch in the Session State between the
Client and Server.

151 0x97 Quota exceeded An implementation or administrative imposed limit has
been exceeded.

153 0x99 Payload format invalid The payload format does not match the specified
Payload Format Indicator.

 1847

The Client or Server sending the PUBACK packet MUST use one of the PUBACK Reason Codes [MQTT-1848
3.4.2-1]. The Reason Code and Property Length can be omitted if the Reason Code is 0x00 (Success) 1849
and there are no Properties. In this case the PUBACK has a Remaining Length of 2. 1850

 1851

3.4.2.2 PUBACK Properties 1852

3.4.2.2.1 Property Length 1853

The length of the Properties in the PUBACK packet Variable Header encoded as a Variable Byte Integer. 1854
If the Remaining Length is less than 4 there is no Property Length and the value of 0 is used. 1855

 1856

3.4.2.2.2 Reason String 1857

31 (0x1F) Byte, Identifier of the Reason String. 1858

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 1859
Reason String is a human readable string designed for diagnostics and is not intended to be parsed by 1860
the receiver. 1861

 1862

The sender uses this value to give additional information to the receiver. The sender MUST NOT send 1863
this property if it would increase the size of the PUBACK packet beyond the Maximum Packet Size 1864
specified by the receiver [MQTT-3.4.2-2]. It is a Protocol Error to include the Reason String more than 1865
once. 1866

 1867

3.4.2.2.3 User Property 1868

38 (0x26) Byte, Identifier of the User Property. 1869

Followed by UTF-8 String Pair. This property can be used to provide additional diagnostic or other 1870
information. The sender MUST NOT send this property if it would increase the size of the PUBACK 1871
packet beyond the Maximum Packet Size specified by the receiver [MQTT-3.4.2-3]. The User Property is 1872
allowed to appear multiple times to represent multiple name, value pairs. The same name is allowed to 1873
appear more than once. 1874

 1875

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 65 of 137

3.4.3 PUBACK Payload 1876

The PUBACK packet has no Payload. 1877

 1878

3.4.4 PUBACK Actions 1879

This is described in section 4.3.2. 1880

 1881

3.5 PUBREC – Publish received (QoS 2 delivery part 1) 1882

A PUBREC packet is the response to a PUBLISH packet with QoS 2. It is the second packet of the QoS 2 1883
protocol exchange. 1884

 1885

3.5.1 PUBREC Fixed Header 1886

Figure 3-12 - PUBREC packet Fixed Header 1887

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (5) Reserved

 0 1 0 1 0 0 0 0

byte 2 Remaining Length

 1888

Remaining Length field 1889

This is the length of the Variable Header, encoded as a Variable Byte Integer. 1890

 1891

3.5.2 PUBREC Variable Header 1892

The Variable Header of the PUBREC Packet consists of the following fields in the order: the Packet 1893
Identifier from the PUBLISH packet that is being acknowledged, PUBREC Reason Code, and Properties. 1894
The rules for encoding Properties are described in section 2.2.2. 1895

 1896

 Figure 3-13 - PUBREC packet Variable Header 1897

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

byte 3 PUBREC Reason Code

byte 4 Property Length

 1898

3.5.2.1 PUBREC Reason Code 1899

Byte 3 in the Variable Header is the PUBREC Reason Code. If the Remaining Length is 2, then the 1900
Publish Reason Code has the value 0x00 (Success). 1901

 1902

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 66 of 137

Table 3-5 – PUBREC Reason Codes 1903

Value Hex Reason Code name Description

0 0x00 Success The message is accepted. Publication of the QoS 2
message proceeds.

16 0x10 No matching subscribers. The message is accepted but there are no subscribers.
This is sent only by the Server. If the Server knows that
there are no matching subscribers, it MAY use this Reason
Code instead of 0x00 (Success).

128 0x80 Unspecified error The receiver does not accept the publish but either does
not want to reveal the reason, or it does not match one of
the other values.

131 0x83 Implementation specific error The PUBLISH is valid but the receiver is not willing to
accept it.

135 0x87 Not authorized The PUBLISH is not authorized.

144 0x90 Topic Name invalid The Topic Name is not malformed, but is not accepted by
this Client or Server.

145 0x91 Packet Identifier in use The Packet Identifier is already in use. This might indicate
a mismatch in the Session State between the Client and
Server.

151 0x97 Quota exceeded An implementation or administrative imposed limit has
been exceeded.

153 0x99 Payload format invalid The payload format does not match the one specified in the
Payload Format Indicator.

 1904

The Client or Server sending the PUBREC packet MUST use one of the PUBREC Reason Code values. 1905
[MQTT-3.5.2-1]. The Reason Code and Property Length can be omitted if the Reason Code is 0x00 1906
(Success) and there are no Properties. In this case the PUBREC has a Remaining Length of 2. 1907

 1908

3.5.2.2 PUBREC Properties 1909

3.5.2.2.1 Property Length 1910

The length of the Properties in the PUBREC packet Variable Header encoded as a Variable Byte Integer. 1911
If the Remaining Length is less than 4 there is no Property Length and the value of 0 is used. 1912

 1913

3.5.2.2.2 Reason String 1914

31 (0x1F) Byte, Identifier of the Reason String. 1915

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 1916
Reason String is human readable, designed for diagnostics and SHOULD NOT be parsed by the 1917
receiver. 1918

 1919

The sender uses this value to give additional information to the receiver. The sender MUST NOT send 1920
this property if it would increase the size of the PUBREC packet beyond the Maximum Packet Size 1921

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 67 of 137

specified by the receiver [MQTT-3.5.2-2]. It is a Protocol Error to include the Reason String more than 1922
once. 1923

 1924

3.5.2.2.3 User Property 1925

38 (0x26) Byte, Identifier of the User Property. 1926

Followed by UTF-8 String Pair. This property can be used to provide additional diagnostic or other 1927
information. The sender MUST NOT send this property if it would increase the size of the PUBREC 1928
packet beyond the Maximum Packet Size specified by the receiver [MQTT-3.5.2-3]. The User Property is 1929
allowed to appear multiple times to represent multiple name, value pairs. The same name is allowed to 1930
appear more than once. 1931

 1932

3.5.3 PUBREC Payload 1933

The PUBREC packet has no Payload. 1934

3.5.4 PUBREC Actions 1935

This is described in section 4.3.3. 1936

 1937

3.6 PUBREL – Publish release (QoS 2 delivery part 2) 1938

A PUBREL packet is the response to a PUBREC packet. It is the third packet of the QoS 2 protocol 1939
exchange. 1940

 1941

3.6.1 PUBREL Fixed Header 1942

Figure 3-14 – PUBREL packet Fixed Header 1943

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (6) Reserved

 0 1 1 0 0 0 1 0

byte 2 Remaining Length

 1944

Bits 3,2,1 and 0 of the Fixed Header in the PUBREL packet are reserved and MUST be set to 0,0,1 and 0 1945
respectively. The Server MUST treat any other value as malformed and close the Network Connection 1946
[MQTT-3.6.1-1]. 1947

 1948

Remaining Length field 1949

This is the length of the Variable Header, encoded as a Variable Byte Integer. 1950

 1951

3.6.2 PUBREL Variable Header 1952

The Variable Header of the PUBREL Packet contains the following fields in the order: the Packet 1953
Identifier from the PUBREC packet that is being acknowledged, PUBREL Reason Code, and Properties. 1954
The rules for encoding Properties are described in section 2.2.2. 1955

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 68 of 137

 1956

 Figure 3-15 – PUBREL packet Variable Header 1957

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

byte 3 PUBREL Reason Code

byte 4 Property Length

 1958

3.6.2.1 PUBREL Reason Code 1959

Byte 3 in the Variable Header is the PUBREL Reason Code. If the Remaining Length is 2, the value of 1960
0x00 (Success) is used. 1961

 1962

Table 3-6 - PUBREL Reason Codes 1963

Value Hex Reason Code name Description

0 0x00 Success Message released.

146 0x92 Packet Identifier not found The Packet Identifier is not known. This is not an error during
recovery, but at other times indicates a mismatch between the
Session State on the Client and Server.

 1964

The Client or Server sending the PUBREL packet MUST use one of the PUBREL Reason Code values 1965
[MQTT-3.6.2-1]. The Reason Code and Property Length can be omitted if the Reason Code is 0x00 1966
(Success) and there are no Properties. In this case the PUBREL has a Remaining Length of 2. 1967

 1968

3.6.2.2 PUBREL Properties 1969

3.6.2.2.1 Property Length 1970

The length of the Properties in the PUBREL packet Variable Header encoded as a Variable Byte Integer. 1971
If the Remaining Length is less than 4 there is no Property Length and the value of 0 is used. 1972

 1973

3.6.2.2.2 Reason String 1974

31 (0x1F) Byte, Identifier of the Reason String. 1975

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 1976
Reason String is human readable, designed for diagnostics and SHOULD NOT be parsed by the 1977
receiver. 1978

 1979

The sender uses this value to give additional information to the receiver. The sender MUST NOT send 1980
this Property if it would increase the size of the PUBREL packet beyond the Maximum Packet Size 1981
specified by the receiver [MQTT-3.6.2-2]. It is a Protocol Error to include the Reason String more than 1982
once. 1983

 1984

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 69 of 137

3.6.2.2.3 User Property 1985

38 (0x26) Byte, Identifier of the User Property. 1986

Followed by UTF-8 String Pair. This property can be used to provide additional diagnostic or other 1987
information for the PUBREL. The sender MUST NOT send this property if it would increase the size of the 1988
PUBREL packet beyond the Maximum Packet Size specified by the receiver [MQTT-3.6.2-3]. The User 1989
Property is allowed to appear multiple times to represent multiple name, value pairs. The same name is 1990
allowed to appear more than once. 1991

 1992

3.6.3 PUBREL Payload 1993

The PUBREL packet has no Payload. 1994

 1995

3.6.4 PUBREL Actions 1996

This is described in section 4.3.3. 1997

 1998

3.7 PUBCOMP – Publish complete (QoS 2 delivery part 3) 1999

The PUBCOMP packet is the response to a PUBREL packet. It is the fourth and final packet of the QoS 2 2000
protocol exchange. 2001

 2002

3.7.1 PUBCOMP Fixed Header 2003

Figure 3-16 – PUBCOMP packet Fixed Header 2004

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control packet type (7) Reserved

 0 1 1 1 0 0 0 0

byte 2 Remaining Length

 2005

Remaining Length field 2006

This is the length of the Variable Header, encoded as a Variable Byte Integer. 2007

 2008

3.7.2 PUBCOMP Variable Header 2009

The Variable Header of the PUBCOMP Packet contains the following fields in the order: Packet Identifier 2010
from the PUBREL packet that is being acknowledged, PUBCOMP Reason Code, and Properties. The 2011
rules for encoding Properties are described in section 2.2.2. 2012

 2013

Figure 3-17 - PUBCOMP packet Variable Header 2014

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 70 of 137

byte 3 PUBCOMP Reason Code

byte 4 Property Length

 2015

3.7.2.1 PUBCOMP Reason Code 2016

Byte 3 in the Variable Header is the PUBCOMP Reason Code. If the Remaining Length is 2, then the 2017
value 0x00 (Success) is used. 2018

 2019

Table 3-7 – PUBCOMP Reason Codes 2020

Value Hex Reason Code name Description

0 0x00 Success Packet Identifier released. Publication of QoS 2 message is
complete.

146 0x92 Packet Identifier not found The Packet Identifier is not known. This is not an error during
recovery, but at other times indicates a mismatch between the
Session State on the Client and Server.

 2021

The Client or Server sending the PUBCOMP packet MUST use one of the PUBCOMP Reason Code 2022
values [MQTT-3.7.2-1]. The Reason Code and Property Length can be omitted if the Reason Code is 2023
0x00 (Success) and there are no Properties. In this case the PUBCOMP has a Remaining Length of 2. 2024

 2025

3.7.2.2 PUBCOMP Properties 2026

3.7.2.2.1 Property Length 2027

The length of the Properties in the PUBCOMP packet Variable Header encoded as a Variable Byte 2028
Integer. If the Remaining Length is less than 4 there is no Property Length and the value of 0 is used. 2029

 2030

3.7.2.2.2 Reason String 2031

31 (0x1F) Byte, Identifier of the Reason String. 2032

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 2033
Reason String is a human readable string designed for diagnostics and SHOULD NOT be parsed by the 2034
receiver. 2035

 2036

The sender uses this value to give additional information to the receiver. The sender MUST NOT send 2037
this Property if it would increase the size of the PUBCOMP packet beyond the Maximum Packet Size 2038
specified by the receiver [MQTT-3.7.2-2]. It is a Protocol Error to include the Reason String more than 2039
once. 2040

 2041

3.7.2.2.3 User Property 2042

38 (0x26) Byte, Identifier of the User Property. 2043

Followed by UTF-8 String Pair. This property can be used to provide additional diagnostic or other 2044
information. The sender MUST NOT send this property if it would increase the size of the PUBCOMP 2045
packet beyond the Maximum Packet Size specified by the receiver [MQTT-3.7.2-3]. The User Property is 2046

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 71 of 137

allowed to appear multiple times to represent multiple name, value pairs. The same name is allowed to 2047
appear more than once. 2048

 2049

3.7.3 PUBCOMP Payload 2050

The PUBCOMP packet has no Payload. 2051

 2052

3.7.4 PUBCOMP Actions 2053

This is described in section 4.3.3. 2054

 2055

3.8 SUBSCRIBE - Subscribe request 2056

The SUBSCRIBE packet is sent from the Client to the Server to create one or more Subscriptions. Each 2057
Subscription registers a Client’s interest in one or more Topics. The Server sends PUBLISH packets to 2058
the Client to forward Application Messages that were published to Topics that match these Subscriptions. 2059
The SUBSCRIBE packet also specifies (for each Subscription) the maximum QoS with which the Server 2060
can send Application Messages to the Client. 2061

 2062

3.8.1 SUBSCRIBE Fixed Header 2063

Figure 3-18 SUBSCRIBE packet Fixed Header 2064

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (8) Reserved

 1 0 0 0 0 0 1 0

byte 2 Remaining Length

 2065

Bits 3,2,1 and 0 of the Fixed Header of the SUBSCRIBE packet are reserved and MUST be set to 0,0,1 2066
and 0 respectively. The Server MUST treat any other value as malformed and close the Network 2067
Connection [MQTT-3.8.1-1]. 2068

 2069

Remaining Length field 2070

This is the length of Variable Header plus the length of the Payload, encoded as a Variable Byte Integer. 2071

 2072

3.8.2 SUBSCRIBE Variable Header 2073

The Variable Header of the SUBSCRIBE Packet contains the following fields in the order: Packet 2074
Identifier, and Properties. Section 2.2.1 provides more information about Packet Identifiers. The rules for 2075
encoding Properties are described in section 2.2.2. 2076

 2077

Non-normative example 2078

Figure 3-19 shows an example of a SUBSCRIBE variable header with a Packet Identifier of 10 2079
and no properties. 2080

 2081

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 72 of 137

Figure 3-19 – SUBSCRIBE Variable Header example 2082

 Description 7 6 5 4 3 2 1 0

Packet Identifier

byte 1 Packet Identifier MSB (0) 0 0 0 0 0 0 0 0

byte 2 Packet Identifier LSB (10) 0 0 0 0 1 0 1 0

byte 3 Property Length (0) 0 0 0 0 0 0 0 0

 2083

3.8.2.1 SUBSCRIBE Properties 2084

3.8.2.1.1 Property Length 2085

The length of Properties in the SUBSCRIBE packet Variable Header encoded as a Variable Byte Integer. 2086

 2087

3.8.2.1.2 Subscription Identifier 2088

11 (0x0B) Byte, Identifier of the Subscription Identifier. 2089

Followed by a Variable Byte Integer representing the identifier of the subscription. The Subscription 2090
Identifier can have the value of 1 to 268,435,455. It is a Protocol Error if the Subscription Identifier has a 2091
value of 0. It is a Protocol Error to include the Subscription Identifier more than once. 2092

 2093

The Subscription Identifier is associated with any subscription created or modified as the result of this 2094
SUBSCRIBE packet. If there is a Subscription Identifier, it is stored with the subscription. If this property is 2095
not specified, then the absence of a Subscription Identifier is stored with the subscription. 2096

 2097

Refer to section 3.8.3.1 for more information about the handling of Subscription Identifiers. 2098

 2099

3.8.2.1.3 User Property 2100

38 (0x26) Byte, Identifier of the User Property. 2101

Followed by a UTF-8 String Pair. 2102

 2103

The User Property is allowed to appear multiple times to represent multiple name, value pairs. The same 2104
name is allowed to appear more than once. 2105

 2106

Non-normative comment 2107

User Properties on the SUBSCRIBE packet can be used to send subscription related properties 2108
from the Client to the Server. The meaning of these properties is not defined by this specification. 2109

 2110

3.8.3 SUBSCRIBE Payload 2111

The Payload of a SUBSCRIBE packet contains a list of Topic Filters indicating the Topics to which the 2112
Client wants to subscribe. The Topic Filters MUST be a UTF-8 Encoded String [MQTT-3.8.3-1]. Each 2113
Topic Filter is followed by a Subscription Options byte. 2114

 2115

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 73 of 137

The Payload MUST contain at least one Topic Filter and Subscription Options pair [MQTT-3.8.3-2]. A 2116
SUBSCRIBE packet with no Payload is a Protocol Error. Refer to section 4.13 for information about 2117
handling errors. 2118

 2119

3.8.3.1 Subscription Options 2120

Bits 0 and 1 of the Subscription Options represent Maximum QoS field. This gives the maximum QoS 2121
level at which the Server can send Application Messages to the Client. It is a Protocol Error if the 2122
Maximum QoS field has the value 3. 2123

 2124

Bit 2 of the Subscription Options represents the No Local option. If the value is 1, Application Messages 2125
MUST NOT be forwarded to a connection with a ClientID equal to the ClientID of the publishing 2126
connection [MQTT-3.8.3-3]. It is a Protocol Error to set the No Local bit to 1 on a Shared Subscription 2127
[MQTT-3.8.3-4]. 2128

 2129

Bit 3 of the Subscription Options represents the Retain As Published option. If 1, Application Messages 2130
forwarded using this subscription keep the RETAIN flag they were published with. If 0, Application 2131
Messages forwarded using this subscription have the RETAIN flag set to 0. Retained messages sent 2132
when the subscription is established have the RETAIN flag set to 1. 2133

 2134

Bits 4 and 5 of the Subscription Options represent the Retain Handling option. This option specifies 2135
whether retained messages are sent when the subscription is established. This does not affect the 2136
sending of retained messages at any point after the subscribe. If there are no retained messages 2137
matching the Topic Filter, all of these values act the same. The values are: 2138

0 = Send retained messages at the time of the subscribe 2139

1 = Send retained messages at subscribe only if the subscription does not currently exist 2140

2 = Do not send retained messages at the time of the subscribe 2141

It is a Protocol Error to send a Retain Handling value of 3. 2142

 2143

Bits 6 and 7 of the Subscription Options byte are reserved for future use. The Server MUST treat a 2144
SUBSCRIBE packet as malformed if any of Reserved bits in the Payload are non-zero [MQTT-3.8.3-5]. 2145

 2146

Non-normative comment 2147

The No Local and Retain As Published subscription options can be used to implement bridging 2148
where the Client is sending the message on to another Server. 2149

 2150

Non-normative comment 2151

Not sending retained messages for an existing subscription is useful when a reconnect is done 2152
and the Client is not certain whether the subscriptions were completed in the previous connection 2153
to the Session. 2154

 2155

Non-normative comment 2156

Not sending stored retained messages because of a new subscription is useful where a Client 2157
wishes to receive change notifications and does not need to know the initial state. 2158

 2159

Non-normative comment 2160

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 74 of 137

For a Server that indicates it does not support retained messages, all valid values of Retain As 2161
Published and Retain Handling give the same result which is to not send any retained messages 2162
at subscribe and to set the RETAIN flag to 0 for all messages. 2163

 2164

Figure 3-20– SUBSCRIBE packet Payload format 2165

Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB

byte 2 Length LSB

bytes 3..N Topic Filter

Subscription Options

 Reserved Retain Handling RAP NL QoS

byte N+1 0 0 X X X X X X

RAP means Retain as Published. 2166

NL means No Local. 2167

 2168

Non-normative example 2169

Figure 3.21 show the SUBSCRIBE Payload example with two Topic Filters. The first is “a/b” with 2170
QoS 1, and the second is “c/d” with QoS 2. 2171

 2172

Figure 3-21 - Payload byte format non-normative example 2173

 Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Subscription Options

byte 6 Subscription Options (1) 0 0 0 0 0 0 0 1

Topic Filter

byte 7 Length MSB (0) 0 0 0 0 0 0 0 0

byte 8 Length LSB (3) 0 0 0 0 0 0 1 1

byte 9 ‘c’ (0x63) 0 1 1 0 0 0 1 1

byte 10 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 11 ‘d’ (0x64) 0 1 1 0 0 1 0 0

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 75 of 137

Subscription Options

byte 12 Subscription Options (2) 0 0 0 0 0 0 1 0

 2174

3.8.4 SUBSCRIBE Actions 2175

When the Server receives a SUBSCRIBE packet from a Client, the Server MUST respond with a 2176
SUBACK packet [MQTT-3.8.4-1]. The SUBACK packet MUST have the same Packet Identifier as the 2177
SUBSCRIBE packet that it is acknowledging [MQTT-3.8.4-2]. 2178

 2179

The Server is permitted to start sending PUBLISH packets matching the Subscription before the Server 2180
sends the SUBACK packet. 2181

 2182

If a Server receives a SUBSCRIBE packet containing a Topic Filter that is identical to a Non-shared 2183
Subscription’s Topic Filter for the current Session, then it MUST replace that existing Subscription with a 2184
new Subscription [MQTT-3.8.4-3]. The Topic Filter in the new Subscription will be identical to that in the 2185
previous Subscription, although its Subscription Options could be different. If the Retain Handling option 2186
is 0, any existing retained messages matching the Topic Filter MUST be re-sent, but Applicaton 2187
Messages MUST NOT be lost due to replacing the Subscription [MQTT-3.8.4-4]. 2188

 2189

If a Server receives a Non-shared Topic Filter that is not identical to any Topic Filter for the current 2190
Session, a new Non-shared Subscription is created. If the Retain Handling option is not 2, all matching 2191
retained messages are sent to the Client. 2192

 2193

If a Server receives a Topic Filter that is identical to the Topic Filter for a Shared Subscription that already 2194
exists on the Server, the Session is added as a subscriber to that Shared Subscription. No retained 2195
messages are sent. 2196

 2197

If a Server receives a Shared Subscription Topic Filter that is not identical to any existing Shared 2198
Subscription’s Topic Filter, a new Shared Subscription is created. The Session is added as a subscriber 2199
to that Shared Subscription. No retained messages are sent. 2200

 2201

Refer to section 4.8 for more details on Shared Subscriptions. 2202

 2203

If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it MUST handle that packet 2204
as if it had received a sequence of multiple SUBSCRIBE packets, except that it combines their responses 2205
into a single SUBACK response [MQTT-3.8.4-5]. 2206

 2207

The SUBACK packet sent by the Server to the Client MUST contain a Reason Code for each Topic 2208
Filter/Subscription Option pair [MQTT-3.8.4-6]. This Reason Code MUST either show the maximum QoS 2209
that was granted for that Subscription or indicate that the subscription failed [MQTT-3.8.4-7]. The Server 2210
might grant a lower Maximum QoS than the subscriber requested. The QoS of Application Messages sent 2211
in response to a Subscription MUST be the minimum of the QoS of the originally published message and 2212
the Maximum QoS granted by the Server [MQTT-3.8.4-8]. The server is permitted to send duplicate 2213
copies of a message to a subscriber in the case where the original message was published with QoS 1 2214
and the maximum QoS granted was QoS 0. 2215

 2216

Non-normative comment 2217

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 76 of 137

If a subscribing Client has been granted maximum QoS 1 for a particular Topic Filter, then a QoS 2218
0 Application Message matching the filter is delivered to the Client at QoS 0. This means that at 2219
most one copy of the message is received by the Client. On the other hand, a QoS 2 Message 2220
published to the same topic is downgraded by the Server to QoS 1 for delivery to the Client, so 2221
that Client might receive duplicate copies of the Message. 2222

 2223

Non-normative comment 2224

If the subscribing Client has been granted maximum QoS 0, then an Application Message 2225
originally published as QoS 2 might get lost on the hop to the Client, but the Server should never 2226
send a duplicate of that Message. A QoS 1 Message published to the same topic might either get 2227
lost or duplicated on its transmission to that Client. 2228

 2229

Non-normative comment 2230

Subscribing to a Topic Filter at QoS 2 is equivalent to saying "I would like to receive Messages 2231
matching this filter at the QoS with which they were published". This means a publisher is 2232
responsible for determining the maximum QoS a Message can be delivered at, but a subscriber is 2233
able to require that the Server downgrades the QoS to one more suitable for its usage. 2234

 2235

The Subscription Identifiers are part of the Session State in the Server and are returned to the Client 2236
receiving a matching PUBLISH packet. They are removed from the Server’s Session State when the 2237
Server receives an UNSUBSCRIBE packet, when the Server receives a SUBSCRIBE packet from the 2238
Client for the same Topic Filter but with a different Subscription Identifier or with no Subscription Identifier, 2239
or when the Server sends Session Present 0 in a CONNACK packet. 2240

 2241

The Subscription Identifiers do not form part of the Client’s Session State in the Client. In a useful 2242
implementation, a Client will associate the Subscription Identifiers with other Client side state, this state is 2243
typically removed when the Client unsubscribes, when the Client subscribes for the same Topic Filter with 2244
a different identifier or no identifier, or when the Client receives Session Present 0 in a CONNACK 2245
packet. 2246

 2247

The Server need not use the same set of Subscription Identifiers in the retransmitted PUBLISH packet. 2248
The Client can remake a Subscription by sending a SUBSCRIBE packet containing a Topic Filter that is 2249
identical to the Topic Filter of an existing Subscription in the current Session. If the Client remade a 2250
subscription after the initial transmission of a PUBLISH packet and used a different Subscription Identifier, 2251
then the Server is allowed to use the identifiers from the first transmission in any retransmission. 2252
Alternatively, the Server is allowed to use the new identifiers during a retransmission. The Server is not 2253
allowed to revert to the old identifier after it has sent a PUBLISH packet containing the new one. 2254

 2255

Non-normative comment 2256

Usage scenarios, for illustration of Subscription Identifiers. 2257

• The Client implementation indicates via its programming interface that a publication matched 2258
more than one subscription. The Client implementation generates a new identifier each time 2259
a subscription is made. If the returned publication carries more than one Subscription 2260
Identifier, then the publication matched more than one subscription. 2261
 2262

• The Client implementation allows the subscriber to direct messages to a callback associated 2263
with the subscription. The Client implementation generates an identifier which uniquely maps 2264
the identifier to the callback. When a publication is received it uses the Subscription Identifier 2265
to determine which callback is driven. 2266
 2267

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 77 of 137

• The Client implementation returns the topic string used to make the subscription to the 2268
application when it delivers the published message. To achieve this the Client generates an 2269
identifier which uniquely identifies the Topic Filter. When a publication is received the Client 2270
implementation uses the identifiers to look up the original Topic Filters and return them to the 2271
Client application. 2272
 2273

• A gateway forwards publications received from a Server to Clients that have made 2274
subscriptions to the gateway. The gateway implementation maintains a map of each unique 2275
Topic Filter it receives to the set of ClientID, Subscription Identifier pairs that it also received. 2276
It generates a unique identifier for each Topic Filter that it forwards to the Server. When a 2277
publication is received, the gateway uses the Subscription Identifiers it received from the 2278
Server to look up the Client Identifier, Subscription Identifier pairs associated with them. It 2279
adds these to the PUBLISH packets it sends to the Clients. If the upstream Server sent 2280
multiple PUBLISH packets because the message matched multiple subscriptions, then this 2281
behavior is mirrored to the Clients. 2282

 2283

3.9 SUBACK – Subscribe acknowledgement 2284

A SUBACK packet is sent by the Server to the Client to confirm receipt and processing of a SUBSCRIBE 2285
packet. 2286

 2287

A SUBACK packet contains a list of Reason Codes, that specify the maximum QoS level that was 2288
granted or the error which was found for each Subscription that was requested by the SUBSCRIBE. 2289

 2290

3.9.1 SUBACK Fixed Header 2291

Figure 3-22 - SUBACK Packet Fixed Header 2292

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (9) Reserved

 1 0 0 1 0 0 0 0

byte 2 Remaining Length

 2293

Remaining Length field 2294

This is the length of Variable Header plus the length of the Payload, encoded as a Variable Byte Integer. 2295

 2296

3.9.2 SUBACK Variable Header 2297

The Variable Header of the SUBACK Packet contains the following fields in the order: the Packet 2298
Identifier from the SUBSCRIBE Packet that is being acknowledged, and Properties. 2299

 2300

3.9.2.1 SUBACK Properties 2301

3.9.2.1.1 Property Length 2302

The length of Properties in the SUBACK packet Variable Header encoded as a Variable Byte Integer 2303

 2304

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 78 of 137

3.9.2.1.2 Reason String 2305

31 (0x1F) Byte, Identifier of the Reason String. 2306

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 2307
Reason String is a human readable string designed for diagnostics and SHOULD NOT be parsed by the 2308
Client. 2309

 2310

The Server uses this value to give additional information to the Client. The Server MUST NOT send this 2311
Property if it would increase the size of the SUBACK packet beyond the Maximum Packet Size specified 2312
by the Client [MQTT-3.9.2-1]. It is a Protocol Error to include the Reason String more than once. 2313

 2314

3.9.2.1.3 User Property 2315

38 (0x26) Byte, Identifier of the User Property. 2316

Followed by UTF-8 String Pair. This property can be used to provide additional diagnostic or other 2317
information. The Server MUST NOT send this property if it would increase the size of the SUBACK packet 2318
beyond the Maximum Packet Size specified by Client [MQTT-3.9.2-2]. The User Property is allowed to 2319
appear multiple times to represent multiple name, value pairs. The same name is allowed to appear more 2320
than once. 2321

 2322

Figure 3-23 SUBACK packet Variable Header 2323

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 2324

3.9.3 SUBACK Payload 2325

The Payload contains a list of Reason Codes. Each Reason Code corresponds to a Topic Filter in the 2326
SUBSCRIBE packet being acknowledged. The order of Reason Codes in the SUBACK packet MUST 2327
match the order of Topic Filters in the SUBSCRIBE packet [MQTT-3.9.3-1]. 2328

 2329

Table 3-8 - Subscribe Reason Codes 2330

Value Hex Reason Code name Description

0 0x00 Granted QoS 0 The subscription is accepted and the maximum QoS sent will be
QoS 0. This might be a lower QoS than was requested.

1 0x01 Granted QoS 1 The subscription is accepted and the maximum QoS sent will be
QoS 1. This might be a lower QoS than was requested.

2 0x02 Granted QoS 2 The subscription is accepted and any received QoS will be sent to
this subscription.

128 0x80 Unspecified error The subscription is not accepted and the Server either does not
wish to reveal the reason or none of the other Reason Codes
apply.

131 0x83 Implementation specific
error

The SUBSCRIBE is valid but the Server does not accept it.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 79 of 137

135 0x87 Not authorized The Client is not authorized to make this subscription.

143 0x8F Topic Filter invalid The Topic Filter is correctly formed but is not allowed for this Client.

145 0x91 Packet Identifier in use The specified Packet Identifier is already in use.

151 0x97 Quota exceeded An implementation or administrative imposed limit has been
exceeded.

158 0x9E Shared Subscriptions not
supported

The Server does not support Shared Subscriptions for this Client.

161 0xA1 Subscription Identifiers not
supported

The Server does not support Subscription Identifiers; the
subscription is not accepted.

162 0xA2 Wildcard Subscriptions not
supported

The Server does not support Wildcard Subscriptions; the
subscription is not accepted.

 2331

The Server sending a SUBACK packet MUST use one of the Subscribe Reason Codes for each Topic 2332
Filter received [MQTT-3.9.3-2]. 2333

 2334

Non-normative comment 2335

There is always one Reason Code for each Topic Filter in the corresponding SUBSCRIBE 2336
packet. If the Reason Code is not specific to a Topic Filters (such as 0x91 (Packet Identifier in 2337
use)) it is set for each Topic Filter. 2338

 2339

3.10 UNSUBSCRIBE – Unsubscribe request 2340

An UNSUBSCRIBE packet is sent by the Client to the Server, to unsubscribe from topics. 2341

 2342

3.10.1 UNSUBSCRIBE Fixed Header 2343

Figure 3.28 – UNSUBSCRIBE packet Fixed Header 2344

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (10) Reserved

 1 0 1 0 0 0 1 0

byte 2 Remaining Length

 2345

Bits 3,2,1 and 0 of the Fixed Header of the UNSUBSCRIBE packet are reserved and MUST be set to 2346
0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and close the Network 2347
Connection [MQTT-3.10.1-1]. 2348

 2349

Remaining Length field 2350

This is the length of Variable Header (2 bytes) plus the length of the Payload, encoded as a Variable Byte 2351
Integer. 2352

 2353

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 80 of 137

3.10.2 UNSUBSCRIBE Variable Header 2354

The Variable Header of the UNSUBSCRIBE Packet contains the following fields in the order: Packet 2355
Identifier, and Properties. Section 2.2.1 provides more information about Packet Identifiers. The rules for 2356
encoding Properties are described in section 2.2.2. 2357

 2358

3.10.2.1 UNSUBSCRIBE Properties 2359

3.10.2.1.1 Property Length 2360

The length of Properties in the UNSUBSCRIBE packet Variable Header encoded as a Variable Byte 2361
Integer. 2362

 2363

3.10.2.1.2 User Property 2364

38 (0x26) Byte, Identifier of the User Property. 2365

Followed by a UTF-8 String Pair. 2366

 2367

The User Property is allowed to appear multiple times to represent multiple name, value pairs. The same 2368
name is allowed to appear more than once. 2369

 2370

Non-normative comment 2371

User Properties on the UNSUBSCRIBE packet can be used to send subscription related 2372
properties from the Client to the Server. The meaning of these properties is not defined by this 2373
specification. 2374

 2375

3.10.3 UNSUBSCRIBE Payload 2376

The Payload for the UNSUBSCRIBE packet contains the list of Topic Filters that the Client wishes to 2377
unsubscribe from. The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 Encoded Strings 2378
[MQTT-3.10.3-1] as defined in section 1.5.4, packed contiguously. 2379

 2380

The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic Filter [MQTT-3.10.3-2]. An 2381
UNSUBSCRIBE packet with no Payload is a Protocol Error. Refer to section 4.13 for information about 2382
handling errors. 2383

 2384

Non-normative example 2385

Figure 3.30 shows the Payload for an UNSUBSCRIBE packet with two Topic Filters “a/b” and “c/d”. 2386

 2387

Figure 3.30 - Payload byte format non-normative example 2388

 Description 7 6 5 4 3 2 1 0

Topic Filter

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ‘a’ (0x61) 0 1 1 0 0 0 0 1

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 81 of 137

byte 4 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ‘b’ (0x62) 0 1 1 0 0 0 1 0

Topic Filter

byte 6 Length MSB (0) 0 0 0 0 0 0 0 0

byte 7 Length LSB (3) 0 0 0 0 0 0 1 1

byte 8 ‘c’ (0x63) 0 1 1 0 0 0 1 1

byte 9 ‘/’ (0x2F) 0 0 1 0 1 1 1 1

byte 10 ‘d’ (0x64) 0 1 1 0 0 1 0 0

 2389

3.10.4 UNSUBSCRIBE Actions 2390

The Topic Filters (whether they contain wildcards or not) supplied in an UNSUBSCRIBE packet MUST be 2391
compared character-by-character with the current set of Topic Filters held by the Server for the Client. If 2392
any filter matches exactly then its owning Subscription MUST be deleted [MQTT-3.10.4-1], otherwise no 2393
additional processing occurs. 2394

 2395

When a Server receives UNSUBSCRIBE : 2396

• It MUST stop adding any new messages which match the Topic Filters, for delivery to the Client 2397
[MQTT-3.10.4-2]. 2398

• It MUST complete the delivery of any QoS 1 or QoS 2 messages which match the Topic Filters 2399
and it has started to send to the Client [MQTT-3.10.4-3]. 2400

• It MAY continue to deliver any existing messages buffered for delivery to the Client. 2401

 2402

The Server MUST respond to an UNSUBSCRIBE request by sending an UNSUBACK packet [MQTT-2403
3.10.4-4]. The UNSUBACK packet MUST have the same Packet Identifier as the UNSUBSCRIBE packet. 2404
Even where no Topic Subscriptions are deleted, the Server MUST respond with an UNSUBACK [MQTT-2405
3.10.4-5]. 2406

 2407

If a Server receives an UNSUBSCRIBE packet that contains multiple Topic Filters, it MUST process that 2408
packet as if it had received a sequence of multiple UNSUBSCRIBE packets, except that it sends just one 2409
UNSUBACK response [MQTT-3.10.4-6]. 2410

 2411

If a Topic Filter represents a Shared Subscription, this Session is detached from the Shared Subscription. 2412
If this Session was the only Session that the Shared Subscription was associated with, the Shared 2413
Subscription is deleted. Refer to section 4.8.2 for a description of Shared Subscription handling. 2414

 2415

3.11 UNSUBACK – Unsubscribe acknowledgement 2416

The UNSUBACK packet is sent by the Server to the Client to confirm receipt of an UNSUBSCRIBE 2417
packet. 2418

 2419

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 82 of 137

3.11.1 UNSUBACK Fixed Header 2420

Figure 3.31 – UNSUBACK packet Fixed Header 2421

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (11) Reserved

 1 0 1 1 0 0 0 0

byte 2 Remaining Length

 2422

Remaining Length field 2423

This is the length of the Variable Header plus the length of the Payload, encoded as a Variable Byte 2424
Integer. 2425

 2426

3.11.2 UNSUBACK Variable Header 2427

The Variable Header of the UNSUBACK Packet the following fields in the order: the Packet Identifier from 2428
the UNSUBSCRIBE Packet that is being acknowledged, and Properties. The rules for encoding 2429
Properties are described in section 2.2.2. 2430

 2431

Figure 3.32 – UNSUBACK packet Variable Header 2432

Bit 7 6 5 4 3 2 1 0

byte 1 Packet Identifier MSB

byte 2 Packet Identifier LSB

 2433

3.11.2.1 UNSUBACK Properties 2434

3.11.2.1.1 Property Length 2435

The length of the Properties in the UNSUBACK packet Variable Header encoded as a Variable Byte 2436
Integer. 2437

 2438

3.11.2.1.2 Reason String 2439

31 (0x1F) Byte, Identifier of the Reason String. 2440

Followed by the UTF-8 Encoded String representing the reason associated with this response. This 2441
Reason String is a human readable string designed for diagnostics and SHOULD NOT be parsed by the 2442
Client. 2443

 2444

The Server uses this value to give additional information to the Client. The Server MUST NOT send this 2445
Property if it would increase the size of the UNSUBACK packet beyond the Maximum Packet Size 2446
specified by the Client [MQTT-3.11.2-1]. It is a Protocol Error to include the Reason String more than 2447
once. 2448

 2449

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 83 of 137

3.11.2.1.3 User Property 2450

38 (0x26) Byte, Identifier of the User Property. 2451

Followed by UTF-8 String Pair. This property can be used to provide additional diagnostic or other 2452
information. The Server MUST NOT send this property if it would increase the size of the UNSUBACK 2453
packet beyond the Maximum Packet Size specified by the Client [MQTT-3.11.2-2]. The User Property is 2454
allowed to appear multiple times to represent multiple name, value pairs. The same name is allowed to 2455
appear more than once. 2456

 2457

3.11.3 UNSUBACK Payload 2458

The Payload contains a list of Reason Codes. Each Reason Code corresponds to a Topic Filter in the 2459
UNSUBSCRIBE packet being acknowledged. The order of Reason Codes in the UNSUBACK packet 2460
MUST match the order of Topic Filters in the UNSUBSCRIBE packet [MQTT-3.11.3-1]. 2461

 2462

The values for the one byte unsigned Unsubscribe Reason Codes are shown below. The Server sending 2463
an UNSUBACK packet MUST use one of the Unsubscribe Reason Code values for each Topic Filter 2464
received [MQTT-3.11.3-2]. 2465

 2466

Table 3-9 - Unsubscribe Reason Codes 2467

Value Hex Reason Code name Description

0 0x00 Success The subscription is deleted.

17 0x11 No subscription existed No matching Topic Filter is being used by the Client.

128 0x80 Unspecified error The unsubscribe could not be completed and the Server
either does not wish to reveal the reason or none of the
other Reason Codes apply.

131 0x83 Implementation specific error The UNSUBSCRIBE is valid but the Server does not
accept it.

135 0x87 Not authorized The Client is not authorized to unsubscribe.

143 0x8F Topic Filter invalid The Topic Filter is correctly formed but is not allowed for
this Client.

145 0x91 Packet Identifier in use The specified Packet Identifier is already in use.

 2468

Non-normative comment 2469

There is always one Reason Code for each Topic Filter in the corresponding UNSUBSCRIBE 2470
packet. If the Reason Code is not specific to a Topic Filters (such as 0x91 (Packet Identifier in 2471
use)) it is set for each Topic Filter. 2472

 2473

3.12 PINGREQ – PING request 2474

The PINGREQ packet is sent from a Client to the Server. It can be used to: 2475

• Indicate to the Server that the Client is alive in the absence of any other MQTT Control Packets being 2476
sent from the Client to the Server. 2477

• Request that the Server responds to confirm that it is alive. 2478

• Exercise the network to indicate that the Network Connection is active. 2479

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 84 of 137

 2480

This packet is used in Keep Alive processing. Refer to section 3.1.2.10 for more details. 2481

 2482

3.12.1 PINGREQ Fixed Header 2483

Figure 3.33 – PINGREQ packet Fixed Header 2484

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (12) Reserved

 1 1 0 0 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

 2485

3.12.2 PINGREQ Variable Header 2486

The PINGREQ packet has no Variable Header. 2487

 2488

3.12.3 PINGREQ Payload 2489

The PINGREQ packet has no Payload. 2490

 2491

3.12.4 PINGREQ Actions 2492

The Server MUST send a PINGRESP packet in response to a PINGREQ packet [MQTT-3.12.4-1]. 2493

 2494

3.13 PINGRESP – PING response 2495

A PINGRESP Packet is sent by the Server to the Client in response to a PINGREQ packet. It indicates 2496
that the Server is alive. 2497

 2498

This packet is used in Keep Alive processing. Refer to section 3.1.2.10 for more details. 2499

 2500

3.13.1 PINGRESP Fixed Header 2501

Figure 3.34 – PINGRESP packet Fixed Header 2502

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (13) Reserved

 1 1 0 1 0 0 0 0

byte 2 Remaining Length (0)

 0 0 0 0 0 0 0 0

 2503

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 85 of 137

3.13.2 PINGRESP Variable Header 2504

The PINGRESP packet has no Variable Header. 2505

 2506

3.13.3 PINGRESP Payload 2507

The PINGRESP packet has no Payload. 2508

 2509

3.13.4 PINGRESP Actions 2510

The Client takes no action on receiving this packet 2511

 2512

3.14 DISCONNECT – Disconnect notification 2513

The DISCONNECT packet is the final MQTT Control Packet sent from the Client or the Server. It 2514
indicates the reason why the Network Connection is being closed. The Client or Server MAY send a 2515
DISCONNECT packet before closing the Network Connection. If the Network Connection is closed 2516
without the Client first sending a DISCONNECT packet with Reason Code 0x00 (Normal disconnection) 2517
and the Connection has a Will Message, the Will Message is published. Refer to section 3.1.2.5 for 2518
further details. 2519

 2520

A Server MUST NOT send a DISCONNECT until after it has sent a CONNACK with Reason Code of less 2521
than 0x80 [MQTT-3.14.0-1]. 2522

 2523

3.14.1 DISCONNECT Fixed Header 2524

Figure 3.35 – DISCONNECT packet Fixed Header 2525

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (14) Reserved

 1 1 1 0 0 0 0 0

byte 2 Remaining Length

The Client or Server MUST validate that reserved bits are set to 0. If they are not zero it sends a 2526
DISCONNECT packet with a Reason code of 0x81 (Malformed Packet) as described in section 4.13 2527
[MQTT-3.14.1-1]. 2528

 2529

Remaining Length field 2530

This is the length of the Variable Header encoded as a Variable Byte Integer. 2531

 2532

3.14.2 DISCONNECT Variable Header 2533

The Variable Header of the DISCONNECT Packet contains the following fields in the order: Disconnect 2534
Reason Code, and Properties. The rules for encoding Properties are described in section 2.2.2. 2535

 2536

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 86 of 137

3.14.2.1 Disconnect Reason Code 2537

Byte 1 in the Variable Header is the Disconnect Reason Code. If the Remaining Length is less than 1 the 2538
value of 0x00 (Normal disconnection) is used. 2539

 2540

The values for the one byte unsigned Disconnect Reason Code field are shown below. 2541

 2542

Table 3-10 – Disconnect Reason Code values 2543

Value Hex Reason Code name Sent by Description

0 0x00 Normal disconnection Client or
Server

Close the connection normally. Do not send
the Will Message.

4 0x04 Disconnect with Will
Message

Client The Client wishes to disconnect but requires
that the Server also publishes its Will Message.

128 0x80 Unspecified error Client or
Server

The Connection is closed but the sender either
does not wish to reveal the reason, or none of
the other Reason Codes apply.

129 0x81 Malformed Packet Client or
Server

The received packet does not conform to this
specification.

130 0x82 Protocol Error Client or
Server

An unexpected or out of order packet was
received.

131 0x83 Implementation specific
error

Client or
Server

The packet received is valid but cannot be
processed by this implementation.

135 0x87 Not authorized Server The request is not authorized.

137 0x89 Server busy Server The Server is busy and cannot continue
processing requests from this Client.

139 0x8B Server shutting down Server The Server is shutting down.

141 0x8D Keep Alive timeout Server The Connection is closed because no packet
has been received for 1.5 times the Keepalive
time.

142 0x8E Session taken over Server Another Connection using the same ClientID
has connected causing this Connection to be
closed.

143 0x8F Topic Filter invalid Server The Topic Filter is correctly formed, but is not
accepted by this Sever.

144 0x90 Topic Name invalid Client or
Server

The Topic Name is correctly formed, but is not
accepted by this Client or Server.

147 0x93 Receive Maximum
exceeded

Client or
Server

The Client or Server has received more than
Receive Maximum publication for which it has
not sent PUBACK or PUBCOMP.

148 0x94 Topic Alias invalid Client or
Server

The Client or Server has received a PUBLISH
packet containing a Topic Alias which is
greater than the Maximum Topic Alias it sent in
the CONNECT or CONNACK packet.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 87 of 137

149 0x95 Packet too large Client or
Server

The packet size is greater than Maximum
Packet Size for this Client or Server.

150 0x96 Message rate too high Client or
Server

The received data rate is too high.

151 0x97 Quota exceeded Client or
Server

An implementation or administrative imposed
limit has been exceeded.

152 0x98 Administrative action Client or
Server

The Connection is closed due to an
administrative action.

153 0x99 Payload format invalid Client or
Server

The payload format does not match the one
specified by the Payload Format Indicator.

154 0x9A Retain not supported Server The Server has does not support retained
messages.

155 0x9B QoS not supported Server The Client specified a QoS greater than the
QoS specified in a Maximum QoS in the
CONNACK.

156 0x9C Use another server Server The Client should temporarily change its
Server.

157 0x9D Server moved Server The Server is moved and the Client should
permanently change its server location.

158 0x9E Shared Subscriptions not
supported

Server The Server does not support Shared
Subscriptions.

159 0x9F Connection rate exceeded Server This connection is closed because the
connection rate is too high.

160 0xA0 Maximum connect time Server The maximum connection time authorized for
this connection has been exceeded.

161 0xA1 Subscription Identifiers not
supported

Server The Server does not support Subscription
Identifiers; the subscription is not accepted.

162 0xA2 Wildcard Subscriptions not
supported

Server The Server does not support Wildcard
Subscriptions; the subscription is not accepted.

 2544

The Client or Server sending the DISCONNECT packet MUST use one of the DISCONNECT Reason 2545
Code values [MQTT-3.14.2-1]. The Reason Code and Property Length can be omitted if the Reason 2546
Code is 0x00 (Normal disconnecton) and there are no Properties. In this case the DISCONNECT has a 2547
Remaining Length of 0. 2548

 2549

Non-normative comment 2550

The DISCONNECT packet is used to indicate the reason for a disconnect for cases where there 2551
is no acknowledge packet (such as a QoS 0 publish) or when the Client or Server is unable to 2552
continue processing the Connection. 2553

 2554

Non-normative comment 2555

The information can be used by the Client to decide whether to retry the connection, and how 2556
long it should wait before retrying the connection. 2557

 2558

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 88 of 137

3.14.2.2 DISCONNECT Properties 2559

3.14.2.2.1 Property Length 2560

The length of Properties in the DISCONNECT packet Variable Header encoded as a Variable Byte 2561
Integer. If the Remaining Length is less than 2, a value of 0 is used. 2562

 2563

3.14.2.2.2 Session Expiry Interval 2564

17 (0x11) Byte, Identifier of the Session Expiry Interval. 2565

Followed by the Four Byte Integer representing the Session Expiry Interval in seconds. It is a Protocol 2566
Error to include the Session Expiry Interval more than once. 2567

 2568

If the Session Expiry Interval is absent, the Session Expiry Interval in the CONNECT packet is used. 2569

 2570

The Session Expiry Interval MUST NOT be sent on a DISCONNECT by the Server [MQTT-3.14.2-2]. 2571

 2572

If the Session Expiry Interval in the CONNECT packet was zero, then it is a Protocol Error to set a non-2573
zero Session Expiry Interval in the DISCONNECT packet sent by the Client. If such a non-zero Session 2574
Expiry Interval is received by the Server, it does not treat it as a valid DISCONNECT packet. The Server 2575
uses DISCONNECT with Reason Code 0x82 (Protocol Error) as described in section 4.13. 2576

 2577

3.14.2.2.3 Reason String 2578

31 (0x1F) Byte, Identifier of the Reason String. 2579

Followed by the UTF-8 Encoded String representing the reason for the disconnect. This Reason String is 2580
human readable, designed for diagnostics and SHOULD NOT be parsed by the receiver. 2581

 2582

The sender MUST NOT send this Property if it would increase the size of the DISCONNECT packet 2583
beyond the Maximum Packet Size specified by the receiver [MQTT-3.14.2-3]. It is a Protocol Error to 2584
include the Reason String more than once. 2585

 2586

3.14.2.2.4 User Property 2587

38 (0x26) Byte, Identifier of the User Property. 2588

Followed by UTF-8 String Pair. This property may be used to provide additional diagnostic or other 2589
information. The sender MUST NOT send this property if it would increase the size of the DISCONNECT 2590
packet beyond the Maximum Packet Size specified by the receiver [MQTT-3.14.2-4]. The User Property is 2591
allowed to appear multiple times to represent multiple name, value pairs. The same name is allowed to 2592
appear more than once. 2593

 2594

3.14.2.2.5 Server Reference 2595

28 (0x1C) Byte, Identifier of the Server Reference. 2596

Followed by a UTF-8 Encoded String which can be used by the Client to identify another Server to use. It 2597
is a Protocol Error to include the Server Reference more than once. 2598

 2599

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 89 of 137

The Server sends DISCONNECT including a Server Reference and Reason Code 0x9C (Use another 2600
server) or 0x9D (Server moved) as described in section 4.13. 2601

 2602

Refer to section 4.11 Server Redirection for information about how Server Reference is used. 2603

 2604

Figure 3-24 DISCONNECT packet Variable Header non-normative example 2605

 Description 7 6 5 4 3 2 1 0

Disconnect Reason Code

byte 1 0 0 0 0 0 0 0 0

Properties

byte 2 Length (5) 0 0 0 0 0 1 1 1

byte 3 Session Expiry Interval identifier (17) 0 0 0 1 0 0 0 1

byte 4 Session Expiry Interval (0) 0 0 0 0 0 0 0 0

byte 5 0 0 0 0 0 0 0 0

byte 6 0 0 0 0 0 0 0 0

byte 7 0 0 0 0 0 0 0 0

 2606

3.14.3 DISCONNECT Payload 2607

The DISCONNECT packet has no Payload. 2608

 2609

3.14.4 DISCONNECT Actions 2610

After sending a DISCONNECT packet the sender: 2611

• MUST NOT send any more MQTT Control Packets on that Network Connection [MQTT-3.14.4-1]. 2612

• MUST close the Network Connection [MQTT-3.14.4-2]. 2613

 2614

On receipt of DISCONNECT with a Reason Code of 0x00 (Success) the Server: 2615

• MUST discard any Will Message associated with the current Connection without publishing it 2616
[MQTT-3.14.4-3], as described in section 3.1.2.5. 2617

 2618

On receipt of DISCONNECT, the receiver: 2619

• SHOULD close the Network Connection. 2620

 2621

3.15 AUTH – Authentication exchange 2622

An AUTH packet is sent from Client to Server or Server to Client as part of an extended authentication 2623
exchange, such as challenge / response authentication. It is a Protocol Error for the Client or Server to 2624
send an AUTH packet if the CONNECT packet did not contain the same Authentication Method. 2625

 2626

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 90 of 137

3.15.1 AUTH Fixed Header 2627

Figure 3.35 – AUTH packet Fixed Header 2628

Bit 7 6 5 4 3 2 1 0

byte 1 MQTT Control Packet type (15) Reserved

 1 1 1 1 0 0 0 0

byte 2 Remaining Length

 2629

Bits 3,2,1 and 0 of the Fixed Header of the AUTH packet are reserved and MUST all be set to 0. The 2630
Client or Server MUST treat any other value as malformed and close the Network Connection [MQTT-2631
3.15.1-1]. 2632

 2633

Remaining Length field 2634

This is the length of the Variable Header encoded as a Variable Byte Integer. 2635

 2636

3.15.2 AUTH Variable Header 2637

The Variable Header of the AUTH Packet contains the following fields in the order: Authenticate Reason 2638
Code, and Properties. The rules for encoding Properties are described in section 2.2.2. 2639

 2640

3.15.2.1 Authenticate Reason Code 2641

Byte 0 in the Variable Header is the Authenticate Reason Code. The values for the one byte unsigned 2642
Authenticate Reason Code field are shown below. The sender of the AUTH Packet MUST use one of the 2643
Authenticate Reason Codes [MQTT-3.15.2-1]. 2644

 2645

Table 3-11 Authenticate Reason Codes 2646

Value Hex Reason Code name Sent by Description

0 0x00 Success Server Authentication is successful

24 0x18 Continue authentication Client or
Server

Continue the authentication with another step

25 0x19 Re-authenticate Client Initiate a re-authentication

The Reason Code and Property Length can be omitted if the Reason Code is 0x00 (Success) and there 2647
are no Properties. In this case the AUTH has a Remaining Length of 0. 2648

 2649

3.15.2.2 AUTH Properties 2650

3.15.2.2.1 Property Length 2651

The length of Properties in the AUTH packet Variable Header encoded as a Variable Byte Integer. 2652

 2653

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 91 of 137

3.15.2.2.2 Authentication Method 2654

21 (0x15) Byte, Identifier of the Authentication Method. 2655

Followed by a UTF-8 Encoded String containing the name of the authentication method. It is a Protocol 2656
Error to omit the Authentication Method or to include it more than once. Refer to section 4.12 for more 2657
information about extended authentication. 2658

 2659

3.15.2.2.3 Authentication Data 2660

22 (0x16) Byte, Identifier of the Authentication Data. 2661

Followed by Binary Data containing authentication data. It is a Protocol Error to include Authentication 2662
Data more than once. The contents of this data are defined by the authentication method. Refer to 2663
section 4.12 for more information about extended authentication. 2664

 2665

3.15.2.2.4 Reason String 2666

31 (0x1F) Byte, Identifier of the Reason String. 2667

Followed by the UTF-8 Encoded String representing the reason for the disconnect. This Reason String is 2668
human readable, designed for diagnostics and SHOULD NOT be parsed by the receiver. 2669

 2670

The sender MUST NOT send this property if it would increase the size of the AUTH packet beyond the 2671
Maximum Packet Size specified by the receiver [MQTT-3.15.2-2]. It is a Protocol Error to include the 2672
Reason String more than once. 2673

 2674

3.15.2.2.5 User Property 2675

38 (0x26) Byte, Identifier of the User Property. 2676

Followed by UTF-8 String Pair. This property may be used to provide additional diagnostic or other 2677
information. The sender MUST NOT send this property if it would increase the size of the AUTH packet 2678
beyond the Maximum Packet Size specified by the receiver [MQTT-3.15.2-3]. The User Property is 2679
allowed to appear multiple times to represent multiple name, value pairs. The same name is allowed to 2680
appear more than once. 2681

 2682

3.15.3 AUTH Payload 2683

The AUTH packet has no Payload. 2684

 2685

3.15.4 AUTH Actions 2686

Refer to section 4.12 for more information about extended authentication. 2687

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 92 of 137

4 Operational behavior 2688

4.1 Session State 2689

In order to implement QoS 1 and QoS 2 protocol flows the Client and Server need to associate state with 2690
the Client Identifier, this is referred to as the Session State. The Server also stores the subscriptions as 2691
part of the Session State. 2692

 2693

The session can continue across a sequence of Network Connections. It lasts as long as the latest 2694
Network Connection plus the Session Expiry Interval. 2695

 2696

The Session State in the Client consists of: 2697

• QoS 1 and QoS 2 messages which have been sent to the Server, but have not been completely 2698
acknowledged. 2699

• QoS 2 messages which have been received from the Server, but have not been completely 2700
acknowledged. 2701

 2702

The Session State in the Server consists of: 2703

• The existence of a Session, even if the rest of the Session State is empty. 2704

• The Clients subscriptions, including any Subscription Identifiers. 2705

• QoS 1 and QoS 2 messages which have been sent to the Client, but have not been completely 2706
acknowledged. 2707

• QoS 1 and QoS 2 messages pending transmission to the Client and OPTIONALLY QoS 0 messages 2708
pending transmission to the Client. 2709

• QoS 2 messages which have been received from the Client, but have not been completely 2710
acknowledged.The Will Message and the Will Delay Interval 2711

• If the Session is currently not connected, the time at which the Session will end and Session State will 2712
be discarded. 2713

 2714

Retained messages do not form part of the Session State in the Server, they are not deleted as a result of 2715
a Session ending. 2716

 2717

4.1.1 Storing Session State 2718

The Client and Server MUST NOT discard the Session State while the Network Connection is open 2719
[MQTT-4.1.0-1]. The Server MUST discard the Session State when the Network Connection is closed and 2720
the Session Expiry Interval has passed [MQTT-4.1.0-2]. 2721

 2722

Non-normative comment 2723

The storage capabilities of Client and Server implementations will of course have limits in terms 2724
of capacity and may be subject to administrative policies. Stored Session State can be discarded 2725
as a result of an administrator action, including an automated response to defined conditions. 2726
This has the effect of terminating the Session. These actions might be prompted by resource 2727
constraints or for other operational reasons. It is possible that hardware or software failures may 2728
result in loss or corruption of Session State stored by the Client or Server. It is prudent to 2729
evaluate the storage capabilities of the Client and Server to ensure that they are sufficient. 2730

 2731

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 93 of 137

4.1.2 Session State non-normative examples 2732

For example, an electricity meter reading solution might use QoS 1 messages to protect the readings 2733
against loss over the network. The solution developer might have determined that the power supply is 2734
sufficiently reliable that, in this case, the data in the Client and Server can be stored in volatile memory 2735
without too much risk of its loss. 2736

 2737

Conversely a parking meter payment application provider might decide that the payment messages 2738
should never be lost due to a network or Client failure. Thus, they require that all data be written to non-2739
volatile memory before it is transmitted across the network. 2740

 2741

4.2 Network Connections 2742

The MQTT protocol requires an underlying transport that provides an ordered, lossless, stream of bytes 2743
from the Client to Server and Server to Client. This specification does not require the support of any 2744
specific transport protocol. A Client or Server MAY support any of the transport protocols listed here, or 2745
any other transport protocol that meets the requirements of this section. 2746

 2747

A Client or Server MUST support the use of one or more underlying transport protocols that provide an 2748
ordered, lossless, stream of bytes from the Client to Server and Server to Client [MQTT-4.2-1]. 2749

 2750

Non-normative comment 2751

TCP/IP as defined in [RFC0793] can be used for MQTT v5.0. The following transport protocols 2752
are also suitable: 2753

• TLS [RFC5246] 2754

• WebSocket [RFC6455] 2755

 2756

Non-normative comment 2757

TCP ports 8883 and 1883 are registered with IANA for MQTT TLS and non-TLS communication 2758
respectively. 2759

 2760

Non-normative comment 2761

Connectionless network transports such as User Datagram Protocol (UDP) are not suitable on 2762
their own because they might lose or reorder data. 2763

 2764

4.3 Quality of Service levels and protocol flows 2765

MQTT delivers Application Messages according to the Quality of Service (QoS) levels defined in the 2766
following sections. The delivery protocol is symmetric, in the description below the Client and Server can 2767
each take the role of either sender or receiver. The delivery protocol is concerned solely with the delivery 2768
of an application message from a single sender to a single receiver. When the Server is delivering an 2769
Application Message to more than one Client, each Client is treated independently. The QoS level used 2770
to deliver an Application Message outbound to the Client could differ from that of the inbound Application 2771
Message. 2772

 2773

https://en.wikipedia.org/wiki/User_Datagram_Protocol

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 94 of 137

4.3.1 QoS 0: At most once delivery 2774

The message is delivered according to the capabilities of the underlying network. No response is sent by 2775
the receiver and no retry is performed by the sender. The message arrives at the receiver either once or 2776
not at all. 2777

 2778

In the QoS 0 delivery protocol, the sender 2779

• MUST send a PUBLISH packet with QoS 0 and DUP flag set to 0 [MQTT-4.3.1-1]. 2780

 2781

In the QoS 0 delivery protocol, the receiver 2782

• Accepts ownership of the message when it receives the PUBLISH packet. 2783

 2784

Figure 4.1 – QoS 0 protocol flow diagram, non-normative example 2785

Sender Action Control Packet Receiver Action

PUBLISH QoS 0, DUP=0

 ---------->

 Deliver Application Message to
appropriate onward recipient(s)

 2786

4.3.2 QoS 1: At least once delivery 2787

This Quality of Service level ensures that the message arrives at the receiver at least once. A QoS 1 2788
PUBLISH packet has a Packet Identifier in its Variable Header and is acknowledged by a PUBACK packet. 2789
Section 2.2.1 provides more information about Packet Identifiers. 2790

 2791

In the QoS 1 delivery protocol, the sender 2792

• MUST assign an unused Packet Identifier each time it has a new Application Message to publish 2793
[MQTT-4.3.2-1]. 2794

• MUST send a PUBLISH packet containing this Packet Identifier with QoS 1 and DUP flag set to 2795
0 [MQTT-4.3.2-2]. 2796

• MUST treat the PUBLISH packet as “unacknowledged” until it has received the corresponding 2797
PUBACK packet from the receiver. Refer to section 4.4 for a discussion of unacknowledged 2798
messages [MQTT-4.3.2-3]. 2799

 2800

The Packet Identifier becomes available for reuse once the sender has received the PUBACK packet. 2801

 2802

Note that a sender is permitted to send further PUBLISH packets with different Packet Identifiers while it is 2803
waiting to receive acknowledgements. 2804

 2805

In the QoS 1 delivery protocol, the receiver 2806

• MUST respond with a PUBACK packet containing the Packet Identifier from the incoming 2807
PUBLISH packet, having accepted ownership of the Application Message [MQTT-4.3.2-4]. 2808

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 95 of 137

• After it has sent a PUBACK packet the receiver MUST treat any incoming PUBLISH packet that 2809
contains the same Packet Identifier as being a new Application Message, irrespective of the 2810
setting of its DUP flag [MQTT-4.3.2-5]. 2811

 2812

Figure 4.2 – QoS 1 protocol flow diagram, non-normative example 2813

Sender Action MQTT Control Packet Receiver action

Store message

Send PUBLISH QoS 1,
DUP=0, <Packet Identifier>

---------->

 Initiate onward delivery of the
Application Message1

 <---------- Send PUBACK <Packet
Identifier>

Discard message

 2814

1 The receiver does not need to complete delivery of the Application Message before sending the 2815
PUBACK. When its original sender receives the PUBACK packet, ownership of the Application 2816
Message is transferred to the receiver. 2817

 2818

4.3.3 QoS 2: Exactly once delivery 2819

This is the highest Quality of Service level, for use when neither loss nor duplication of messages are 2820
acceptable. There is an increased overhead associated with QoS 2. 2821

 2822

A QoS 2 message has a Packet Identifier in its Variable Header. Section 2.2.1 provides more information 2823
about Packet Identifiers. The receiver of a QoS 2 PUBLISH packet acknowledges receipt with a two-step 2824
acknowledgement process. 2825

 2826

In the QoS 2 delivery protocol, the sender: 2827

• MUST assign an unused Packet Identifier when it has a new Application Message to publish 2828
[MQTT-4.3.3-1]. 2829

• MUST send a PUBLISH packet containing this Packet Identifier with QoS 2 and DUP flag set to 0 2830
[MQTT-4.3.3-2]. 2831

• MUST treat the PUBLISH packet as “unacknowledged” until it has received the corresponding 2832
PUBREC packet from the receiver [MQTT-4.3.3-3]. Refer to section 4.4 for a discussion of 2833
unacknowledged messages. 2834

• MUST send a PUBREL packet when it receives a PUBREC packet from the receiver with a 2835
Reason Code value less than 0x80. This PUBREL packet MUST contain the same Packet 2836
Identifier as the original PUBLISH packet [MQTT-4.3.3-4]. 2837

• MUST treat the PUBREL packet as “unacknowledged” until it has received the corresponding 2838
PUBCOMP packet from the receiver [MQTT-4.3.3-5]. 2839

• MUST NOT re-send the PUBLISH once it has sent the corresponding PUBREL packet [MQTT-2840
4.3.3-6]. 2841

• MUST NOT apply Message expiry if a PUBLISH packet has been sent [MQTT-4.3.3-7]. 2842

 2843

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 96 of 137

The Packet Identifier becomes available for reuse once the sender has received the PUBCOMP packet or 2844
a PUBREC with a Reason Code of 0x80 or greater. 2845

 2846

Note that a sender is permitted to send further PUBLISH packets with different Packet Identifiers while it is 2847
waiting to receive acknowledgements, subject to flow control as described in section 4.9. 2848

 2849

In the QoS 2 delivery protocol, the receiver: 2850

• MUST respond with a PUBREC containing the Packet Identifier from the incoming PUBLISH 2851
packet, having accepted ownership of the Application Message [MQTT-4.3.3-8]. 2852

• If it has sent a PUBREC with a Reason Code of 0x80 or greater, the receiver MUST treat any 2853
subsequent PUBLISH packet that contains that Packet Identifier as being a new Application 2854
Message [MQTT-4.3.3-9]. 2855

• Until it has received the corresponding PUBREL packet, the receiver MUST acknowledge any 2856
subsequent PUBLISH packet with the same Packet Identifier by sending a PUBREC. It MUST 2857
NOT cause duplicate messages to be delivered to any onward recipients in this case [MQTT-2858
4.3.3-10]. 2859

• MUST respond to a PUBREL packet by sending a PUBCOMP packet containing the same 2860
Packet Identifier as the PUBREL [MQTT-4.3.3-11]. 2861

• After it has sent a PUBCOMP, the receiver MUST treat any subsequent PUBLISH packet that 2862
contains that Packet Identifier as being a new Application Message [MQTT-4.3.3-12]. 2863

• MUST continue the QoS 2 acknowledgement sequence even if it has applied message expiry 2864
[MQTT-4.3.3-13]. 2865

 2866

4.4 Message delivery retry 2867

When a Client reconnects with Clean Start set to 0 and a session is present, both the Client and Server 2868
MUST resend any unacknowledged PUBLISH packets (where QoS > 0) and PUBREL packets using their 2869
original Packet Identifiers. This is the only circumstance where a Client or Server is REQUIRED to resend 2870
messages. Clients and Servers MUST NOT resend messages at any other time [MQTT-4.4.0-1]. 2871

 2872

If PUBACK or PUBREC is received containing a Reason Code of 0x80 or greater the corresponding 2873
PUBLISH packet is treated as acknowledged, and MUST NOT be retransmitted [MQTT-4.4.0-2]. 2874

 2875

Figure 4.3 – QoS 2 protocol flow diagram, non-normative example 2876

Sender Action MQTT Control Packet Receiver Action

Store message

PUBLISH QoS 2, DUP=0
 <Packet Identifier>

 ---------->

 Store <Packet Identifier> then
Initiate onward delivery of the
Application Message1

 PUBREC <Packet
Identifier><Reason Code>

 <----------

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 97 of 137

Discard message, Store
PUBREC received <Packet
Identifier>

PUBREL <Packet Identifier>

 ---------->

 Discard <Packet Identifier>

 Send PUBCOMP <Packet
Identifier>

 <----------

Discard stored state

 2877

1 The receiver does not need to complete delivery of the Application Message before sending the 2878
PUBREC or PUBCOMP. When its original sender receives the PUBREC packet, ownership of the 2879
Application Message is transferred to the receiver. However, the receiver needs to perform all 2880
checks for conditions which might result in a forwarding failure (e.g. quota exceeded, 2881
authorization, etc.) before accepting ownership. The receiver indicates success or failure using 2882
the appropriate Reason Code in the PUBREC. 2883

 2884

4.5 Message receipt 2885

When a Server takes ownership of an incoming Application Message it MUST add it to the Session State 2886
for those Clients that have matching Subscriptions [MQTT-4.5.0-1]. Matching rules are defined in section 2887
4.7. 2888

 2889

Under normal circumstances Clients receive messages in response to Subscriptions they have created. A 2890
Client could also receive messages that do not match any of its explicit Subscriptions. This can happen if 2891
the Server automatically assigned a subscription to the Client. A Client could also receive messages 2892
while an UNSUBSCRIBE operation is in progress. The Client MUST acknowledge any Publish packet it 2893
receives according to the applicable QoS rules regardless of whether it elects to process the Application 2894
Message that it contains [MQTT-4.5.0-2]. 2895

 2896

4.6 Message ordering 2897

The following these rules apply to the Client when implementing the protocol flows defined in section 4.3. 2898

• When the Client re-sends any PUBLISH packets, it MUST re-send them in the order in which the 2899
original PUBLISH packets were sent (this applies to QoS 1 and QoS 2 messages) [MQTT-4.6.0-2900
1] 2901

• The Client MUST send PUBACK packets in the order in which the corresponding PUBLISH 2902
packets were received (QoS 1 messages) [MQTT-4.6.0-2] 2903

• The Client MUST send PUBREC packets in the order in which the corresponding PUBLISH 2904
packets were received (QoS 2 messages) [MQTT-4.6.0-3] 2905

• The Client MUST send PUBREL packets in the order in which the corresponding PUBREC 2906
packets were received (QoS 2 messages) [MQTT-4.6.0-4] 2907

 2908

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 98 of 137

An Ordered Topic is a Topic where the Client can be certain that the Application Messages in that Topic 2909
from the same Client and at the same QoS are received are in the order they were published. When a 2910
Server processes a message that has been published to an Ordered Topic, it MUST send PUBLISH 2911
packets to consumers (for the same Topic and QoS) in the order that they were received from any given 2912
Client [MQTT-4.6.0-5]. This is addition to the rules listed above. 2913

 2914

By default, a Server MUST treat every Topic as an Ordered Topic when it is forwarding messages on 2915
Non-shared Subscriptions. [MQTT-4.6.0-6]. A Server MAY provide an administrative or other mechanism 2916
to allow one or more Topics to not be treated as an Ordered Topic. 2917

 2918

Non-normative comment 2919

The rules listed above ensure that when a stream of messages is published and subscribed to an 2920
Ordered Topic with QoS 1, the final copy of each message received by the subscribers will be in 2921
the order that they were published. If the message is re-sent the duplicate message can be 2922
received after one of the earlier messages is received. For example, a publisher might send 2923
messages in the order 1,2,3,4 but the subscriber might receive them in the order 1,2,3,2,3,4 if 2924
there is a network disconnection after message 3 has been sent. 2925

 2926

If both Client and Server set Receive Maximum to 1, they make sure that no more than one 2927
message is “in-flight” at any one time. In this case no QoS 1 message will be received after any 2928
later one even on re-connection. For example a subscriber might receive them in the order 2929
1,2,3,3,4 but not 1,2,3,2,3,4. Refer to section 4.9 Flow Control for details of how the Receive 2930
Maximum is used. 2931

 2932

4.7 Topic Names and Topic Filters 2933

4.7.1 Topic wildcards 2934

The topic level separator is used to introduce structure into the Topic Name. If present, it divides the 2935
Topic Name into multiple “topic levels”. 2936

A subscription’s Topic Filter can contain special wildcard characters, which allow a Client to subscribe to 2937
multiple topics at once. 2938

The wildcard characters can be used in Topic Filters, but MUST NOT be used within a Topic Name 2939
[MQTT-4.7.0-1]. 2940

 2941

4.7.1.1 Topic level separator 2942

The forward slash (‘/’ U+002F) is used to separate each level within a topic tree and provide a hierarchical 2943
structure to the Topic Names. The use of the topic level separator is significant when either of the two 2944
wildcard characters is encountered in Topic Filters specified by subscribing Clients. Topic level separators 2945
can appear anywhere in a Topic Filter or Topic Name. Adjacent Topic level separators indicate a zero-2946
length topic level. 2947

 2948

4.7.1.2 Multi-level wildcard 2949

The number sign (‘#’ U+0023) is a wildcard character that matches any number of levels within a topic. 2950
The multi-level wildcard represents the parent and any number of child levels. The multi-level wildcard 2951
character MUST be specified either on its own or following a topic level separator. In either case it MUST 2952
be the last character specified in the Topic Filter [MQTT-4.7.1-1]. 2953

 2954

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 99 of 137

Non-normative comment 2955

For example, if a Client subscribes to “sport/tennis/player1/#”, it would receive messages 2956
published using these Topic Names: 2957

• “sport/tennis/player1” 2958

• “sport/tennis/player1/ranking 2959

• “sport/tennis/player1/score/wimbledon” 2960

 2961

Non-normative comment 2962

• “sport/#” also matches the singular “sport”, since # includes the parent level. 2963

• “#” is valid and will receive every Application Message 2964

• “sport/tennis/#” is valid 2965

• “sport/tennis#” is not valid 2966

• “sport/tennis/#/ranking” is not valid 2967

 2968

4.7.1.3 Single-level wildcard 2969

The plus sign (‘+’ U+002B) is a wildcard character that matches only one topic level. 2970

 2971

The single-level wildcard can be used at any level in the Topic Filter, including first and last levels. Where 2972
it is used, it MUST occupy an entire level of the filter [MQTT-4.7.1-2]. It can be used at more than one 2973
level in the Topic Filter and can be used in conjunction with the multi-level wildcard. 2974

 2975

Non-normative comment 2976

For example, “sport/tennis/+” matches “sport/tennis/player1” and “sport/tennis/player2”, but not 2977
“sport/tennis/player1/ranking”. Also, because the single-level wildcard matches only a single level, 2978
“sport/+” does not match “sport” but it does match “sport/”. 2979

• “+” is valid 2980

• “+/tennis/#” is valid 2981

• “sport+” is not valid 2982

• “sport/+/player1” is valid 2983

• “/finance” matches “+/+” and “/+”, but not “+” 2984

 2985

4.7.2 Topics beginning with $ 2986

The Server MUST NOT match Topic Filters starting with a wildcard character (# or +) with Topic Names 2987
beginning with a $ character [MQTT-4.7.2-1]. The Server SHOULD prevent Clients from using such Topic 2988
Names to exchange messages with other Clients. Server implementations MAY use Topic Names that 2989
start with a leading $ character for other purposes. 2990

 2991

Non-normative comment 2992

• $SYS/ has been widely adopted as a prefix to topics that contain Server-specific information 2993
or control APIs 2994

• Applications cannot use a topic with a leading $ character for their own purposes 2995

 2996

Non-normative comment 2997

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 100 of 137

• A subscription to “#” will not receive any messages published to a topic beginning with a $ 2998

• A subscription to “+/monitor/Clients” will not receive any messages published to 2999
“$SYS/monitor/Clients” 3000

• A subscription to “$SYS/#” will receive messages published to topics beginning with “$SYS/” 3001

• A subscription to “$SYS/monitor/+” will receive messages published to 3002
“$SYS/monitor/Clients” 3003

• For a Client to receive messages from topics that begin with $SYS/ and from topics that don’t 3004
begin with a $, it has to subscribe to both “#” and “$SYS/#” 3005

 3006

4.7.3 Topic semantic and usage 3007

The following rules apply to Topic Names and Topic Filters: 3008

• All Topic Names and Topic Filters MUST be at least one character long [MQTT-4.7.3-1] 3009

• Topic Names and Topic Filters are case sensitive 3010

• Topic Names and Topic Filters can include the space character 3011

• A leading or trailing ‘/’ creates a distinct Topic Name or Topic Filter 3012

• A Topic Name or Topic Filter consisting only of the ‘/’ character is valid 3013

• Topic Names and Topic Filters MUST NOT include the null character (Unicode U+0000) [Unicode] 3014
[MQTT-4.7.3-2] 3015

• Topic Names and Topic Filters are UTF-8 Encoded Strings; they MUST NOT encode to more than 3016
65,535 bytes [MQTT-4.7.3-3]. Refer to section 1.5.4. 3017

 3018

There is no limit to the number of levels in a Topic Name or Topic Filter, other than that imposed by the 3019
overall length of a UTF-8 Encoded String. 3020

 3021

When it performs subscription matching the Server MUST NOT perform any normalization of Topic 3022
Names or Topic Filters, or any modification or substitution of unrecognized characters [MQTT-4.7.3-4]. 3023
Each non-wildcarded level in the Topic Filter has to match the corresponding level in the Topic Name 3024
character for character for the match to succeed. 3025

 3026

Non-normative comment 3027

The UTF-8 encoding rules mean that the comparison of Topic Filter and Topic Name could be 3028
performed either by comparing the encoded UTF-8 bytes, or by comparing decoded Unicode 3029
characters 3030

 3031

Non-normative comment 3032

• “ACCOUNTS” and “Accounts” are two different Topic Names 3033

• “Accounts payable” is a valid Topic Name 3034

• “/finance” is different from “finance” 3035

 3036

An Application Message is sent to each Client Subscription whose Topic Filter matches the Topic Name 3037
attached to an Application Message. The topic resource MAY be either predefined in the Server by an 3038
administrator or it MAY be dynamically created by the Server when it receives the first subscription or an 3039
Application Message with that Topic Name. The Server MAY also use a security component to authorize 3040
particular actions on the topic resource for a given Client. 3041

 3042

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 101 of 137

4.8 Subscriptions 3043

MQTT provides two kinds of Subscription, Shared and Non-shared. 3044

 3045

Non-normative comment 3046

In earlier versions of MQTT all Subscriptions are Non-shared. 3047

 3048

4.8.1 Non-shared Subscriptions 3049

A Non-shared Subscription is associated only with the MQTT Session that created it. Each Subscription 3050
includes a Topic Filter, indicating the topic(s) for which messages are to be delivered on that Session, 3051
and Subscription Options. The Server is responsible for collecting messages that match the filter and 3052
transmitting them on the Session's MQTT connection if and when that connection is active. 3053

 3054

A Session cannot have more than one Non-shared Subscription with the same Topic Filter, so the Topic 3055
Filter can be used as a key to identify the subscription within that Session. 3056

 3057

If there are multiple Clients, each with its own Non-shared Subscription to the same Topic, each Client 3058
gets its own copy of the Application Messages that are published on that Topic. This means that the 3059
Non-shared Subscriptions cannot be used to load-balance Application Messages across multiple 3060
consuming Clients as in such cases every message is delivered to every subscribing Client. 3061

 3062

4.8.2 Shared Subscriptions 3063

A Shared Subscription can be associated with multiple subscribing MQTT Sessions. Like a Non-shared 3064
Subscription, it has a Topic Filter and Subscription Options; however, a publication that matches its Topic 3065
Filter is only sent to one of its subscribing Sessions. Shared Subscriptions are useful where several 3066
consuming Clients share the processing of the publications in parallel. 3067

 3068

A Shared Subscription is identified using a special style of Topic Filter. The format of this filter is: 3069

 3070

$share/{ShareName}/{filter} 3071

• $share is a literal string that marks the Topic Filter as being a Shared Subscription Topic Filter. 3072

• {ShareName} is a character string that does not include "/", "+" or "#" 3073

• {filter} The remainder of the string has the same syntax and semantics as a Topic Filter in a non-3074
shared subscription. Refer to section 4.7. 3075

• 3076

A Shared Subscription's Topic Filter MUST start with $share/ and MUST contain a ShareName that is at 3077
least one character long [MQTT-4.8.2-1]. The ShareName MUST NOT contain the characters "/", "+" or 3078
"#", but MUST be followed by a "/" character. This "/" character MUST be followed by a Topic Filter 3079
[MQTT-4.8.2-2] as described in section 4.7. 3080

 3081

Non-normative comment 3082

Shared Subscriptions are defined at the scope of the MQTT Server, rather than of a Session. A 3083
ShareName is included in the Shared Subscription's Topic Filter so that there can be more than 3084
one Shared Subscription on a Server that has the same {filter} component. Typically, applications 3085
use the ShareName to represent the group of subscribing Sessions that are sharing the 3086
subscription. 3087

 3088

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 102 of 137

Examples: 3089

• Shared subscriptions "$share/consumer1/sport/tennis/+" and 3090
"$share/consumer2/sport/tennis/+" are distinct shared subscriptions and so can be 3091
associated with different groups of Sessions. Both of them match the same topics as a non-3092
shared subscription to sport/tennis/+ . 3093
 3094
If a message were to be published that matches sport/tennis/+ then a copy would be sent to 3095
exactly one of the Sessions subscribed to $share/consumer1/sport/tennis/+ , a separate copy 3096
of the message would be sent to exactly one of the Sessions subscribed to 3097
$share/consumer2/sport/tennis/+ and further copies would be sent to any Clients with non-3098
shared subscriptions to sport/tennis/+ 3099
 3100

• Shared subscription "$share/consumer1//finance" matches the same topics as a non-shared 3101
subscription to /finance. 3102
 3103
Note that "$share/consumer1//finance" and "$share/consumer1/sport/tennis/+" are distinct 3104
shared subscriptions, even though they have the same ShareName. While they might be 3105
related in some way, no specific relationship between them is implied by them having the 3106
same ShareName. 3107

 3108

A Shared Subscription is created by using a Shared Subscription Topic Filter in a SUBSCRIBE request. 3109
So long as only one Session subscribes to a particular Shared Subscription, the shared subscription 3110
behaves like a non-shared subscription, except that: 3111

 3112

• The $share and {ShareName} portions of the Topic Filter are not taken into account when matching 3113
against publications. 3114
 3115

• No Retained Messages are sent to the Session when it first subscribes. It will be sent other matching 3116
messages as they are published. 3117
 3118

Once a Shared Subscription exists, it is possible for other Sessions to subscribe with the same Shared 3119
Subscription Topic Filter. The new Session is associated with the Shared Subscription as an additional 3120
subscriber. Retained messages are not sent to this new subscriber. Each subsequent Application 3121
Message that matches the Shared Subscription is now sent to one and only one of the Sessions that are 3122
subscribed to the Shared Subscription. 3123

 3124

A Session can explicitly detach itself from a Shared Subscription by sending an UNSUBSCRIBE Packet 3125
that contains the full Shared Subscription Topic Filter. Sessions are also detached from the Shared 3126
Subscription when they terminate. 3127

 3128

A Shared Subscription lasts for as long as it is associated with at least one Session (i.e. a Session that 3129
has issued a successful SUBSCRIBE request to its Topic Filter and that has not completed a 3130
corresponding UNSUBSCRIBE). A Shared Subscription survives when the Session that originally created 3131
it unsubscribes, unless there are no other Sessions left when this happens. A Shared Subscription ends, 3132
and any undelivered messages associated with it are deleted, when there are no longer any Sessions 3133
subscribed to it. 3134

 3135

Notes on Shared Subscriptions 3136

• If there's more than one Session subscribed to the Shared Subscription, the Server implementation is 3137
free to choose, on a message by message basis, which Session to use and what criteria it uses to 3138
make this selection. 3139
 3140

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 103 of 137

• Different subscribing Clients are permitted to ask for different Requested QoS levels in their 3141
SUBSCRIBE packets. The Server decides which Maximum QoS to grant to each Client, and it is 3142
permitted to grant different Maximum QoS levels to different subscribers. When sending an 3143
Application Message to a Client, the Server MUST respect the granted QoS for the Client's 3144
subscription [MQTT-4.8.2-3], in the same that it does when sending a message to a -Subscriber. 3145
 3146

• If the Server is in the process of sending a QoS 2 message to its chosen subscribing Client and the 3147
connection to the Client breaks before delivery is complete, the Server MUST complete the delivery 3148
of the message to that Client when it reconnects [MQTT-4.8.2-4] as described in section 4.3.3. If the 3149
Client's Session terminates before the Client reconnects, the Server MUST NOT send the Application 3150
Message to any other subscribed Client [MQTT-4.8.2-5]. 3151
 3152

• If the Server is in the process of sending a QoS 1 message to its chosen subscribing Client and the 3153
connection to that Client breaks before the Server has received an acknowledgement from the Client, 3154
the Server MAY wait for the Client to reconnect and retransmit the message to that Client. If the 3155
Client'sSession terminates before the Client reconnects, the Server SHOULD send the Application 3156
Message to another Client that is subscribed to the same Shared Subscription. It MAY attempt to 3157
send the message to another Client as soon as it loses its connection to the first Client. 3158
 3159

• If a Client responds with a PUBACK or PUBREC containing a Reason Code of 0x80 or greater to a 3160
PUBLISH packet from the Server, the Server MUST discard the Application Message and not attempt 3161
to send it to any other Subscriber [MQTT-4.8.2-6]. 3162
 3163

• A Client is permitted to submit a second SUBSCRIBE request to a Shared Subscription on a Session 3164
that's already subscribed to that Shared Subscription. For example, it might do this to change the 3165
Requested QoS for its subscription or because it was uncertain that the previous subscribe 3166
completed before the previous connection was closed. This does not increase the number of times 3167
that the Session is associated with the Shared Subscription, so the Session will leave the Shared 3168
Subscription on its first UNSUBSCRIBE. 3169
 3170

• Each Shared Subscription is independent from any other. It is possible to have two Shared 3171
Subscriptions with overlapping filters. In such cases a message that matches both Shared 3172
Subscriptions will be processed separately by both of them. If a Client has a Shared Subscription and 3173
a Non-shared Subscription and a message matches both of them, the Client will receive a copy of the 3174
message by virtue of it having the Non-shared Subscription. A second copy of the message will be 3175
delivered to one of the subscribers to the Shared Subscription, and this could result in a second copy 3176
being sent to this Client. 3177

 3178

4.9 Flow Control 3179

Clients and Servers control the number of unacknowledged PUBLISH packets they receive by using a 3180
Receive Maximum value as described in section 3.1.2.11.4 and section 3.2.2.3.2. The Receive Maximum 3181
establishes a send quota which is used to limit the number of PUBLISH QOS > 0 packets which can be 3182
sent without receiving an PUBACK (for QoS 1) or PUBCOMP (for QoS 2). The PUBACK and PUBCOMP 3183
replenish the quota in the manner described below. 3184

 3185

The Client or Server MUST set its initial send quota to a non-zero value not exceeding the Receive 3186
Maximum [MQTT-4.9.0-1]. 3187

 3188

Each time the Client or Server sends a PUBLISH packet at QoS > 0, it decrements the send quota. If the 3189
send quota reaches zero, the Client or Server MUST NOT send any more PUBLISH packets with QoS > 3190
0 [MQTT-4.9.0-2]. It MAY continue to send PUBLISH packets with QoS 0, or it MAY choose to suspend 3191
sending these as well. The Client and Server MUST continue to process and respond to all other MQTT 3192
Control Packets even if the quota is zero [MQTT-4.9.0-3]. 3193

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 104 of 137

 3194

The send quota is incremented by 1: 3195

• Each time a PUBACK or PUBCOMP packet is received, regardless of whether the PUBACK or 3196
PUBCOMP carried an error code. 3197

• Each time a PUBREC packet is received with a Return Code of 0x80 or greater. 3198

 3199

The send quota is not incremented if it is already equal to the initial send quota. The attempt to increment 3200
above the initial send quota might be caused by the re-transmission of a PUBREL packet after a new 3201
Network Connection is established. 3202

 3203

Refer to section 3.3.4 for a description of how Clients and Servers react if they are sent more PUBLISH 3204
packets than the Receive Maximum allows. 3205

 3206

The send quota and Receive Maximum value are not preserved across Network Connections, and are re-3207
initialized with each new Network Connection as described above. They are not part of the session state. 3208

 3209

4.10 Request / Response 3210

Some applications or standards might wish to run a Request/Response interaction over MQTT. This 3211
version of MQTT includes three properties that can be used for this purpose: 3212

• Response Topic, described in section 3.3.2.3.5 3213

• Correlation Data, described in section 3.3.2.3.6 3214

• Request Response Information, described in section 3.1.2.11.7 3215

• Response Information, described in section 3.2.2.3.14 3216

The following non-normative sections describe how these properties can be used. 3217

 3218

A Client sends a Request Message by publishing an Application Message which has a Response Topic 3219
set as described in section 3.3.2.3.5. The Request can include a Correlation Data property as described 3220
in section 3.3.2.3.6. 3221

 3222

4.10.1 Basic Request Response (non-normative) 3223

 Request/Response interaction proceeds as follows: 3224

1. An MQTT Client (the Requester) publishes a Request Message to a topic. A Request Message 3225
is an Application Message with a Response Topic. 3226

2. Another MQTT Client (the Responder) has subscribed to a Topic Filter which matches the Topic 3227
Name used when the Request Message was published. As a result, it receives the Request 3228
Message. There could be multiple Responders subscribed to this Topic Name or there could be 3229
none. 3230

3. The Responder takes the appropriate action based on the Request Message, and then publishes 3231
a Response Message to the Topic Name in the Response Topic property that was carried in the 3232
Request Message. 3233

4. In typical usage the Requester has subscribed to the Response Topic and thereby receives the 3234
Response Message. However, some other Client might be subscribed to the Response Topic in 3235
which case the Response Message will also be received and processed by that Client. As with 3236
the Request Message, the topic on which the Response Message is sent could be subscribed to 3237
by multiple Clients, or by none. 3238

 3239

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 105 of 137

If the Request Message contains a Correlation Data property, the Responder copies this property into the 3240
Response Message and this is used by the receiver of the Response Message to associate the 3241
Response Message with the original request. The Response Message does not include a Response 3242
Topic property. 3243

 3244

The MQTT Server forwards the Response Topic and Correlation Data Property in the Request Message 3245
and the Correlation Data in the Response Message. The Server treats the Request Message and the 3246
Response Message like any other Application Message. 3247

 3248

The Requester normally subscribes to the Response Topic before publishing a Request Message. If there 3249
are no subscribers to the Response Topic when the Response Message is sent, the Response Message 3250
will not be delivered to any Client. 3251

 3252

The Request Message and Response Message can be of any QoS, and the Responder can be using a 3253
Session with a non-zero Session Expiry Interval. It is common to send Request Messages at QoS 0 and 3254
only when the Responder is expected to be connected. However, this is not necessary. 3255

 3256

The Responder can use a Shared Subscription to allow for a pool of responding Clients. Note however 3257
that when using Shared Subscriptions that the order of message delivery is not guaranteed between 3258
multiple Clients. 3259

 3260

It is the responsibility of the Requester to make sure it has the necessary authority to publish to the 3261
request topic, and to subscribe to the Topic Name that it sets in the Response Topic property. It is the 3262
responsibility of the Responder to make sure it has the authority to subscribe to the request topic and 3263
publish to the Response Topic. While topic authorization is outside of this specification, it is 3264
recommended that Servers implement such authorization. 3265

 3266

4.10.2 Determining a Response Topic value (non-normative) 3267

Requesters can determine a Topic Name to use as their Response Topic in any manner they choose 3268
including via local configuration. To avoid clashes between different Requesters, it is desirable that the 3269
Response Topic used by a Requester Client be unique to that Client. As the Requester and Responder 3270
commonly need to be authorized to these topics, it can be an authorization challenge to use a random 3271
Topic Name. 3272

 3273

To help with this problem, this specification defines a property in the CONNACK packet called Response 3274
Information. The Server can use this property to guide the Client in its choice for the Response Topic to 3275
use. This mechanism is optional for both the Client and the Server. At connect time, the Client requests 3276
that the Server send a Response Information by setting the Request Response Information property in 3277
the CONNECT packet. This causes the Server to insert a Response Information property (a UTF-8 3278
Encoded String) sent in the CONNACK packet. 3279

 3280

This specification does not define the contents of the Response Information but it could be used to pass a 3281
globally unique portion of the topic tree which is reserved for that Client for at least the lifetime of its 3282
Session. Using this mechanism allows this configuration to be done once in the Server rather than in 3283
each Client. 3284

 3285

Refer to section 3.1.2.11.7 for the definition of the Response Information. 3286

 3287

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 106 of 137

4.11 Server redirection 3288

A Server can request that the Client uses another Server by sending CONNACK or DISCONNECT with 3289
Reason Codes 0x9C (Use another server), or 0x9D (Server moved) as described in section 4.13. When 3290
sending one of these Reason Codes, the Server MAY also include a Server Reference property to 3291
indicate the location of the Server or Servers the Client SHOULD use. 3292

 3293

The Reason Code 0x9C (Use another server) specifies that the Client SHOULD temporarily switch to 3294
using another Server. The other Server is either already known to the Client, or is specified using a 3295
Server Reference. 3296

 3297

The Reason Code 0x9D (Server moved) specifies that the Client SHOULD permanently switch to using 3298
another Server. The other Server is either already known to the Client, or is specified using a Server 3299
Reference. 3300

 3301

The Server Reference is a UTF-8 Encoded String. The value of this string is a space separated list of 3302
references. The format of references is not specified here. 3303

 3304

Non-normative comment 3305

It is recommended that each reference consists of a name optionally followed by a colon and a 3306
port number. If the name contains a colon the name string can be enclosed within square 3307
brackets (“[“ and ‘]”). A name enclosed by square brackets cannot contain the right square 3308
bracket (“]”) character. This is used to represent an IPv6 literal address which uses colon 3309
separators. This is a simplified version of an URI authority as described in [RFC3986]. 3310

 3311

Non-normative comment 3312

The name within a Server Reference commonly represents a host name, DNS name [RFC1035], 3313
SRV name [RFC2782] , or literal IP address. The value following the colon separator is commonly 3314
a port number in decimal. This is not needed where the port information comes from the name 3315
resolution (such as with SRV) or is defaulted. 3316

 3317

Non-normative comment 3318

If multiple references are given, the expectation is that that Client will choose one of them. 3319

 3320

Non-normative comment 3321

Examples of the Server Reference are: 3322

 myserver.xyz.org 3323
 myserver.xyz.org:8883 3324
 10.10.151.22:8883 [fe80::9610:3eff:fe1c]:1883 3325

 3326

The Server is allowed to not ever send a Server Reference, and the Client is allowed to ignore a Server 3327
Reference. This feature can be used to allow for load balancing, Server relocation, and Client 3328
provisioning to a Server. 3329

 3330

4.12 Enhanced authentication 3331

The MQTT CONNECT packet supports basic authentication of a Network Connection using the User 3332
Name and Password fields. While these fields are named for a simple password authentication, they can 3333
be used to carry other forms of authentication such as passing a token as the Password. 3334

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 107 of 137

 3335

Enhanced authentication extends this basic authentication to include challenge / response style 3336
authentication. It might involve the exchange of AUTH packets between the Client and the Server after 3337
the CONNECT and before the CONNACK packets. 3338

 3339

To begin an enhanced authentication, the Client includes an Authentication Method in the CONNECT 3340
packet. This specifies the authentication method to use. If the Server does not support the Authentication 3341
Method supplied by the Client, it MAY send a CONNACK with a Reason Code of 0x8C (Bad 3342
authentication method) or 0x87 (Not Authorized) as described in section 4.13 and MUST close the 3343
Network Connection [MQTT-4.12.0-1]. 3344

 3345

The Authentication Method is an agreement between the Client and Server about the meaning of the data 3346
sent in the Authentication Data and any of the other fields in CONNECT, and the exchanges and 3347
processing needed by the Client and Server to complete the authentication. 3348

 3349

Non-normative comment 3350

The Authentication Method is commonly a SASL mechanism, and using such a registered name 3351
aids interchange. However, the Authentication Method is not constrained to using registered 3352
SASL mechanisms. 3353

 3354

If the Authentication Method selected by the Client specifies that the Client sends data first, the Client 3355
SHOULD include an Authentication Data property in the CONNECT packet. This property can be used to 3356
provide data as specified by the Authentication Method. The contents of the Authentication Data are 3357
defined by the authentication method. 3358

 3359

If the Server requires additional information to complete the authentication, it can send an AUTH packet 3360
to the Client. This packet MUST contain a Reason Code of 0x18 (Continue authentication) [MQTT-4.12.0-3361
2]. If the authentication method requires the Server to send authentication data to the Client, it is sent in 3362
the Authentication Data. 3363

 3364

The Client responds to an AUTH packet from the Server by sending a further AUTH packet. This packet 3365
MUST contain a Reason Code of 0x18 (Continue authentication) [MQTT-4.12.0-3]. If the authentication 3366
method requires the Client to send authentication data for the Server, it is sent in the Authentication Data. 3367

 3368

The Client and Server exchange AUTH packets as needed until the Server accepts the authentication by 3369
sending a CONNACK with a Reason Code of 0. If the acceptance of the authentication requires data to 3370
be sent to the Client, it is sent in the Authentication Data. 3371

 3372

The Client can close the connection at any point in this process. It MAY send a DISCONNECT packet 3373
before doing so. The Server can reject the authentication at any point in this process. It MAY send a 3374
CONNACK with a Reason Code of 0x80 or above as described in section 4.13, and MUST close the 3375
Network Connection [MQTT-4.12.0-4]. 3376

 3377

If the initial CONNECT packet included an Authentication Method property then all AUTH packets, and 3378
any successful CONNACK packet MUST include an Authentication Method Property with the same value 3379
as in the CONNECT packet [MQTT-4.12.0-5]. 3380

 3381

The implementation of enhanced authentication is OPTIONAL for both Clients and Servers. If the Client 3382
does not include an Authentication Method in the CONNECT, the Server MUST NOT send an AUTH 3383

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 108 of 137

packet, and it MUST NOT send an Authentication Method in the CONNACK packet [MQTT-4.12.0-6]. If 3384
the Client does not include an Authentication Method in the CONNECT, the Client MUST NOT send an 3385
AUTH packet to the Server [MQTT-4.12.0-7]. 3386

 3387

If the Client does not include an Authentication Method in the CONNECT packet, the Server SHOULD 3388
authenticate using some or all of the information in the CONNECT packet, TLS session, and Network 3389
Connection. 3390

 3391

Non-normative example showing a SCRAM challenge 3392

• Client to Server: CONNECT Authentication Method="SCRAM-SHA-1" Authentication 3393
Data=client-first-data 3394

• Server to Client: AUTH rc=0x18 Authentication Method="SCRAM-SHA-1" Authentication 3395
Data=server-first-data 3396

• Client to Server AUTH rc=0x18 Authentication Method="SCRAM-SHA-1" Authentication 3397
Data=client-final-data 3398

• Server to Client CONNACK rc=0 Authentication Method="SCRAM-SHA-1" Authentication 3399
Data=server-final-data 3400

 3401

Non-normative example showing a Kerberos challenge 3402

• Client to Server CONNECT Authentication Method="GS2-KRB5" 3403

• Server to Client AUTH rc=0x18 Authentication Method="GS2-KRB5" 3404

• Client to Server AUTH rc=0x18 Authentication Method="GS2-KRB5" Authentication 3405
Data=initial context token 3406

• Server to Client AUTH rc=0x18 Authentication Method="GS2-KRB5" Authentication 3407
Data=reply context token 3408

• Client to Server AUTH rc=0x18 Authentication Method="GS2-KRB5" 3409

• Server to Client CONNACK rc=0 Authentication Method="GS2-KRB5" Authentication 3410
Data=outcome of authentication 3411

 3412

4.12.1 Re-authentication 3413

If the Client supplied an Authentication Method in the CONNECT packet it can initiate a re-authentication 3414
at any time after receiving a CONNACK. It does this by sending an AUTH packet with a Reason Code of 3415
0x19 (Re-authentication). The Client MUST set the Authentication Method to the same value as the 3416
Authentication Method originally used to authenticate the Network Connection [MQTT-4.12.1-1]. If the 3417
authentication method requires Client data first, this AUTH packet contains the first piece of 3418
authentication data as the Authentication Data. 3419

 3420

The Server responds to this re-authentication request by sending an AUTH packet to the Client with a 3421
Reason Code of 0x00 (Success) to indicate that the re-authentication is complete, or a Reason Code of 3422
0x18 (Continue authentication) to indicate that more authentication data is needed. The Client can 3423
respond with additional authentication data by sending an AUTH packet with a Reason Code of 0x18 3424
(Continue authentication). This flow continues as with the original authentication until the re-3425
authentication is complete or the re-authentication fails. 3426

 3427

If the re-authentication fails, the Client or Server SHOULD send DISCONNECT with an appropriate 3428
Reason Code as described in section 4.13, and MUST close the Network Connection [MQTT-4.12.1-2]. 3429

 3430

During this re-authentication sequence, the flow of other packets between the Client and Server can 3431
continue using the previous authentication. 3432

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 109 of 137

 3433

Non-normative comment 3434

The Server might limit the scope of the changes the Client can attempt in a re-authentication by 3435
rejecting the re-authentication. For instance, if the Server does not allow the User Name to be 3436
changed it can fail any re-authentication attempt which changes the User Name. 3437

 3438

4.13 Handling errors 3439

4.13.1 Malformed Packet and Protocol Errors 3440

Definitions of Malformed Packet and Protocol Errors are contained in section 1.2 Terminology, some but 3441
not all, of these error cases are noted throughout the specification. The rigor with which a Client or Server 3442
checks an MQTT Control Packet it has received will be a compromise between: 3443

• The size of the Client or Server implementation. 3444

• The capabilities that the implementation supports. 3445

• The degree to which the receiver trusts the sender to send correct MQTT Control Packets. 3446

• The degree to which the receiver trusts the network to deliver MQTT Control Packets correctly. 3447

• The consequences of continuing to process a packet that is incorrect. 3448

 3449

If the sender is compliant with this specification it will not send Malformed Packets or cause Protocol 3450
Errors. However, if a Client sends MQTT Control Packets before it receives CONNACK, it might cause a 3451
Protocol Error because it made an incorrect assumption about the Server capabilities. Refer to section 3452
3.1.4 CONNECT Actions. 3453

 3454

The Reason Codes used for Malformed Packet and Protocol Errors are: 3455

• 0x81 Malformed Packet 3456

• 0x82 Protocol Error 3457

• 0x93 Receive Maximum exceeded 3458

• 0x95 Packet too large 3459

• 0x9A Retain not supported 3460

• 0x9B QoS not supported 3461

• 0x9E Shared Subscriptions not supported 3462

• 0xA1 Subscription Identifiers not supported 3463

• 0xA2 Wildcard Subscriptions not supported 3464

 3465

When a Client detects a Malformed Packet or Protocol Error, and a Reason Code is given in the 3466
specification, it SHOULD close the Network Connection. In the case of an error in a AUTH packet it MAY 3467
send a DISCONNECT packet containing the reason code, before closing the Network Connection. In the 3468
case of an error in any other packet it SHOULD send a DISCONNECT packet containing the reason code 3469
before closing the Network Connection. Use Reason Code 0x81 (Malformed Packet) or 0x82 (Protocol 3470
Error) unless a more specific Reason Code has been defined in section 3.14.2.1 Disconnect Reason 3471
Code. 3472

 3473

When a Server detects a Malformed Packet or Protocol Error, and a Reason Code is given in the 3474
specification, it MUST close the Network Connection [MQTT-4.13.1-1]. In the case of an error in a 3475
CONNECT packet it MAY send a CONNACK packet containing the Reason Code, before closing the 3476
Network Connection. In the case of an error in any other packet it SHOULD send a DISCONNECT packet 3477
containing the Reason Code before closing the Network Connection. Use Reason Code 0x81 (Malformed 3478
Packet) or 0x82 (Protocol Error) unless a more specific Reason Code has been defined in section 3.2.2.2 3479

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 110 of 137

- Connect Reason Code or in section 3.14.2.1 – Disconnect Reason Code. There are no consequences 3480
for other Sessions. 3481

 3482

If either the Server or Client omits to check some feature of an MQTT Control Packet, it might fail to 3483
detect an error, consequently it might allow data to be damaged. 3484

 3485

4.13.2 Other errors 3486

Errors other than Malformed Packet and Protocol Errors cannot be anticipated by the sender because the 3487
receiver might have constraints which it has not communicated to the sender. A receiving Client or Server 3488
might encounter a transient error, such as a shortage of memory, that prevents successful processing of 3489
an individual MQTT Control Packet. 3490

 3491

Acknowledgment packets PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK, UNSUBACK with a 3492
Reason Code of 0x80 or greater indicate that the received packet, identified by a Packet Identifier, was in 3493
error. There are no consequences for other Sessions or other Packets flowing on the same Session. 3494

 3495

The CONNACK and DISCONNECT packets allow a Reason Code of 0x80 or greater to indicate that the 3496
Network Connection will be closed. If a Reason Code of 0x80 or greater is specified, then the Network 3497
Connection MUST be closed whether or not the CONNACK or DISCONNECT is sent [MQTT-4.13.2-1]. 3498
Sending of one of these Reason Codes does not have consequence for any other Session. 3499

 3500

If the Control Packet contains multiple errors the receiver of the Packet can validate the Packet in any 3501
order and take the appropriate action for any of the errors found. 3502

 3503

Refer to section 5.4.9 for information about handling Disallowed Unicode code points. 3504

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 111 of 137

5 Security (non-normative) 3505

5.1 Introduction 3506

MQTT is a transport protocol specification for message transmission, allowing implementers a choice of 3507
network, privacy, authentication and authorization technologies. Since the exact security technologies 3508
chosen will be context specific, it is the implementer's responsibility to include the appropriate features as 3509
part of their design. 3510

 3511

MQTT Implementations will likely need to keep pace with an evolving security landscape. 3512

 3513

This Chapter provides general implementation guidance so as not to restrict choices available and is 3514
therefore non-normative. This should not detract from its importance. 3515

 3516

It is strongly recommended that Server implementations that offer TLS [RFC5246] should use TCP port 3517
8883 (IANA service name: secure-mqtt). 3518

 3519

There are a number of threats that solution providers should consider. For example: 3520

• Devices could be compromised 3521

• Data at rest in Clients and Servers might be accessible 3522

• Protocol behaviors could have side effects (e.g. “timing attacks”) 3523

• Denial of Service (DoS) attacks 3524

• Communications could be intercepted, altered, re-routed or disclosed 3525

• Injection of spoofed MQTT Control Packets 3526

 3527

MQTT solutions are often deployed in hostile communication environments. In such cases, 3528
implementations will often need to provide mechanisms for: 3529

• Authentication of users and devices 3530

• Authorization of access to Server resources 3531

• Integrity of MQTT Control Packets and application data contained therein 3532

• Privacy of MQTT Control Packets and application data contained therein 3533

 3534

In addition to technical security issues there could also be geographic (e.g. U.S.-EU Privacy Shield 3535

Framework [USEUPRIVSH]), industry specific (e.g. PCI DSS [PCIDSS]) and regulatory considerations 3536

(e.g. Sarbanes-Oxley [SARBANES]). 3537

 3538

5.2 MQTT solutions: security and certification 3539

An implementation might want to provide conformance with specific industry security standards such as 3540
NIST Cyber Security Framework [NISTCSF], PCI-DSS [PCIDSS]), FIPS-140-2 [FIPS1402] and NSA Suite 3541
B [NSAB]. 3542

 3543

Guidance on using MQTT within the NIST Cyber Security Framework [NISTCSF] can be found in the 3544
MQTT supplemental publication, MQTT and the NIST Framework for Improving Critical Infrastructure 3545

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 112 of 137

Cybersecurity [MQTTNIST]. The use of industry proven, independently verified and certified technologies 3546
will help meet compliance requirements. 3547

 3548

5.3 Lightweight crytography and constrained devices 3549

Advanced Encryption Standard [AES] is the most widely adopted encryption algorithm. There is hardware 3550
support for AES in many processors, but not commonly for embedded processors. The encryption 3551
algorithm ChaCha20 [CHACHA20] encrypts and decrypts much faster in software, but is not as widely 3552
available as AES. 3553

 3554

ISO 29192 [ISO29192] makes recommendations for cryptographic primitives specifically tuned to perform 3555
on constrained “low end” devices. 3556

 3557

5.4 Implementation notes 3558

There are many security concerns to consider when implementing or using MQTT. The following section 3559
should not be considered a “check list”. 3560

 3561

An implementation might want to achieve some, or all, of the following: 3562

 3563

5.4.1 Authentication of Clients by the Server 3564

The CONNECT packet contains User Name and Password fields. Implementations can choose how to 3565
make use of the content of these fields. They may provide their own authentication mechanism, use an 3566
external authentication system such as LDAP [RFC4511] or OAuth [RFC6749] tokens, or leverage 3567
operating system authentication mechanisms. 3568

 3569

MQTT v5.0 provides an enhanced authentication mechanism as described in section 4.12. Using this 3570
requires support for it in both the Client and Server. 3571

 3572

Implementations passing authentication data in clear text, obfuscating such data elements or requiring no 3573
authentication data should be aware this can give rise to Man-in-the-Middle and replay attacks. Section 3574
5.4.5 introduces approaches to ensure data privacy. 3575

 3576

A Virtual Private Network (VPN) between the Clients and Servers can provide confidence that data is only 3577
being received from authorized Clients. 3578

 3579

Where TLS [RFC5246] is used, TLS Certificates sent from the Client can be used by the Server to 3580
authenticate the Client. 3581

 3582

An implementation might allow for authentication where the credentials are sent in an Application 3583
Message from the Client to the Server. 3584

 3585

5.4.2 Authorization of Clients by the Server 3586

If a Client has been successfully authenticated, a Server implementation should check that it is authorized 3587
before accepting its connection. 3588

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 113 of 137

 3589

Authorization may be based on information provided by the Client such as User Name, the hostname/IP 3590
address of the Client, or the outcome of authentication mechanisms. 3591

 3592

In particular, the implementation should check that the Client is authorized to use the Client Identifier as 3593
this gives access to the MQTT Session State (described in section 4.1). This authorization check is to 3594
protect against the case where one Client, accidentally or maliciously, provides a Client Identifier that is 3595
already being used by some other Client. 3596

 3597

An implementation should provide access controls that take place after CONNECT to restrict the Clients 3598
ability to publish to particular Topics or to subscribe using particular Topic Filters. An implementation 3599
should consider limiting access to Topic Filters that have broad scope, such as the # Topic Filter. 3600

 3601

5.4.3 Authentication of the Server by the Client 3602

The MQTT protocol is not trust symmetrical. When using basic authentication, there is no mechanism for 3603
the Client to authenticate the Server. Some forms of extended authentication do allow for mutual 3604
authentication. 3605

 3606

Where TLS [RFC5246] is used, TLS Certificates sent from the Server can be used by the Client to 3607
authenticate the Server. Implementations providing MQTT service for multiple hostnames from a single IP 3608
address should be aware of the Server Name Indication extension to TLS defined in section 3 of 3609
[RFC6066].This allows a Client to tell the Server the hostname of the Server it is trying to connect to. 3610

 3611

An implementation might allow for authentication where the credentials are sent in an Application 3612
Message from the Server to the Client. MQTT v5.0 provides an enhanced authentication mechanism as 3613
described in section 4.12., which can be used to Authenticate the Server to the Client. Using this requires 3614
support for it in both the Client and Server. 3615

 3616

A VPN between Clients and Servers can provide confidence that Clients are connecting to the intended 3617
Server. 3618

 3619

5.4.4 Integrity of Application Messages and MQTT Control Packets 3620

Applications can independently include hash values in their Application Messages. This can provide 3621
integrity of the contents of Publish packets across the network and at rest. 3622

 3623

TLS [RFC5246] provides hash algorithms to verify the integrity of data sent over the network. 3624

 3625

The use of VPNs to connect Clients and Servers can provide integrity of data across the section of the 3626
network covered by a VPN. 3627

 3628

5.4.5 Privacy of Application Messages and MQTT Control Packets 3629

TLS [RFC5246] can provide encryption of data sent over the network. There are valid TLS cipher suites 3630
that include a NULL encryption algorithm that does not encrypt data. To ensure privacy Clients and 3631
Servers should avoid these cipher suites. 3632

 3633

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 114 of 137

An application might independently encrypt the contents of its Application Messages. This could provide 3634
privacy of the Application Message both over the network and at rest. This would not provide privacy for 3635
other Properties of the Application Message such as Topic Name. 3636

 3637

Client and Server implementations can provide encrypted storage for data at rest such as Application 3638
Messages stored as part of a Session. 3639

 3640

The use of VPNs to connect Clients and Servers can provide privacy of data across the section of the 3641
network covered by a VPN. 3642

 3643

5.4.6 Non-repudiation of message transmission 3644

Application designers might need to consider appropriate strategies to achieve end to end non-3645
repudiation. 3646

 3647

5.4.7 Detecting compromise of Clients and Servers 3648

Client and Server implementations using TLS [RFC5246] should provide capabilities to ensure that any 3649
TLS certificates provided when initiating a TLS connection are associated with the hostname of the Client 3650
connecting or Server being connected to. 3651

 3652

Client and Server implementations using TLS can choose to provide capabilities to check Certificate 3653
Revocation Lists (CRLs [RFC5280]) and Online Certificate Status Protocol (OSCP) [RFC6960] to prevent 3654
revoked certificates from being used. 3655

 3656

Physical deployments might combine tamper-proof hardware with the transmission of specific data in 3657
Application Messages. For example, a meter might have an embedded GPS to ensure it is not used in an 3658
unauthorized location. [IEEE8021AR] is a standard for implementing mechanisms to authenticate a 3659
device’s identity using a cryptographically bound identifier. 3660

 3661

5.4.8 Detecting abnormal behaviors 3662

Server implementations might monitor Client behavior to detect potential security incidents. For example: 3663

• Repeated connection attempts 3664

• Repeated authentication attempts 3665

• Abnormal termination of connections 3666

• Topic scanning (attempts to send or subscribe to many topics) 3667

• Sending undeliverable messages (no subscribers to the topics) 3668

• Clients that connect but do not send data 3669

 3670

Server implementations might close the Network Connection of Clients that breach its security rules. 3671

 3672

Server implementations detecting unwelcome behavior might implement a dynamic block list based on 3673
identifiers such as IP address or Client Identifier. 3674

 3675

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 115 of 137

Deployments might use network-level controls (where available) to implement rate limiting or blocking 3676
based on IP address or other information. 3677

 3678

5.4.9 Handling of Disallowed Unicode code points 3679

Section 1.5.4 describes the Disallowed Unicode code points, which should not be included in a UTF-8 3680
Encoded String. A Client or Server implementation can choose whether to validate that these code points 3681
are not used in UTF-8 Encoded Strings such as the Topic Name or Properties. 3682

 3683

If the Server does not validate the code points in a UTF-8 Encoded String but a subscribing Client does, 3684
then a second Client might be able to cause the subscribing Client to close the Network Connection by 3685
publishing on a Topic Name or using Properties that contain a Disallowed Unicode code point. This 3686
section recommends some steps that can be taken to prevent this problem. 3687

 3688

A similar problem can occur when the Client validates that the payload matches the Payload Format 3689
Indicator and the Server does not. The considerations and remedies for this are similar to those for 3690
handling Disallowed Unicode code points. 3691

 3692

5.4.9.1 Considerations for the use of Disallowed Unicode code points 3693

An implementation would normally choose to validate UTF-8 Encoded strings, checking that the 3694
Disallowed Unicode code points are not used. This avoids implementation difficulties such as the use of 3695
libraries that are sensitive to these code points, it also protects applications from having to process them. 3696

 3697

Validating that these code points are not used removes some security exposures. There are possible 3698
security exploits which use control characters in log files to mask entries in the logs or confuse the tools 3699
which process log files. The Unicode Noncharacters are commonly used as special markers and allowing 3700
them into UTF-8 Encoded Strings could permit such exploits. 3701

 3702

5.4.9.2 Interactions between Publishers and Subscribers 3703

The publisher of an Application Message normally expects that the Servers will forward the message to 3704
subscribers, and that these subscribers are capable of processing the messages. 3705

These are some conditions under which a publishing Client can cause the subscribing Client to close the 3706
Network Connection. Consider a situation where: 3707

• A Client publishes an Application Message using a Topic Name containing one of the Disallowed 3708
Unicode code points. 3709

• The publishing Client library allows the Disallowed Unicode code point to be used in a Topic 3710
Name rather than rejecting it. 3711

• The publishing Client is authorized to send the publication. 3712

• A subscribing Client is authorized to use a Topic Filter which matches the Topic Name. Note that 3713
the Disallowed Unicode code point might occur in a part of the Topic Name matching a wildcard 3714
character in the Topic Filter. 3715

• The Server forwards the message to the matching subscriber rather than disconnecting the 3716
publisher. 3717

• In this case the subscribing Client might: 3718
o Close the Network Connection because it does not allow the use of Disallowed Unicode 3719

code points, possibly sending a DISCONNECT before doing so. For QoS 1 and QoS 2 3720
messages this might cause the Server to send the message again, causing the Client to 3721
close the Network Connection again. 3722

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 116 of 137

o Reject the Application Message by sending a Reason Code greater than or equal to 0x80 3723
in a PUBACK (QoS 1) or PUBREC (QoS 2). 3724

o Accept the Application Message but fail to process it because it contains one of the 3725
Disallowed Unicode code points. 3726

o Successfully process the Application Message. 3727

 3728

The potential for the Client to close the Network Connection might go unnoticed until a publisher uses one 3729
of the Disallowed Unicode code points. 3730

 3731

5.4.9.3 Remedies 3732

If there is a possibility that a Disallowed Unicode code point could be included in a Topic Name or other 3733
Properties delivered to a Client, the solution owner can adopt one of the following suggestions: 3734

1) Change the Server implementation to one that rejects UTF-8 Encoded Strings containing a 3735
Disallowed Unicode code point either by sending a Reason Code greater than or equal to 0x80 or 3736
closing the Network Connection. 3737

2) Change the Client library used by the subscribers to one that tolerates the use of Disallowed 3738
Code points. The client can either process or discard messages with UTF-8 Encoded Strings that 3739
contain Disallowed Unicode code points so long as it continues the protocol. 3740

 3741

5.4.10 Other security considerations 3742

If Client or Server TLS certificates are lost or it is considered that they might be compromised they should 3743
be revoked (utilizing CRLs [RFC5280] and/or OSCP [RFC6960]). 3744

 3745

Client or Server authentication credentials, such as User Name and Password, that are lost or considered 3746
compromised should be revoked and/or reissued. 3747

 3748

In the case of long lasting connections: 3749

• Client and Server implementations using TLS [RFC5246] should allow for session renegotiation to 3750
establish new cryptographic parameters (replace session keys, change cipher suites, change 3751
authentication credentials). 3752

• Servers may close the Network Connection of Clients and require them to re-authenticate with new 3753
credentials. 3754

• Servers may require their Client to reauthenticate periodically using the mechanism described in 3755
section 4.12.1. 3756

 3757

Constrained devices and Clients on constrained networks can make use of TLS [RFC5246] session 3758
resumption, in order to reduce the costs of reconnecting TLS [RFC5246] sessions. 3759

 3760

Clients connected to a Server have a transitive trust relationship with other Clients connected to the same 3761
Server and who have authority to publish data on the same topics. 3762

 3763

5.4.11 Use of SOCKS 3764

Implementations of Clients should be aware that some environments will require the use of SOCKSv5 3765
[RFC1928] proxies to make outbound Network Connections. Some MQTT implementations could make 3766
use of alternative secured tunnels (e.g. SSH) through the use of SOCKS. Where implementations choose 3767

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 117 of 137

to use SOCKS, they should support both anonymous and User Name, Password authenticating SOCKS 3768
proxies. In the latter case, implementations should be aware that SOCKS authentication might occur in 3769
plain-text and so should avoid using the same credentials for connection to a MQTT Server. 3770

 3771

5.4.12 Security profiles 3772

Implementers and solution designers might wish to consider security as a set of profiles which can be 3773
applied to the MQTT protocol. An example of a layered security hierarchy is presented below. 3774

 3775

5.4.12.1 Clear communication profile 3776

When using the clear communication profile, the MQTT protocol runs over an open network with no 3777
additional secure communication mechanisms in place. 3778

 3779

5.4.12.2 Secured network communication profile 3780

When using the secured network communication profile, the MQTT protocol runs over a physical or virtual 3781
network which has security controls e.g., VPNs or physically secure network. 3782

 3783

5.4.12.3 Secured transport profile 3784

When using the secured transport profile, the MQTT protocol runs over a physical or virtual network and 3785
using TLS [RFC5246] which provides authentication, integrity and privacy. 3786

 3787

TLS [RFC5246] Client authentication can be used in addition to – or in place of – MQTT Client 3788
authentication as provided by the User Name and Password fields. 3789

 3790

5.4.12.4 Industry specific security profiles 3791

It is anticipated that the MQTT protocol will be designed into industry specific application profiles, each 3792
defining a threat model and the specific security mechanisms to be used to address these threats. 3793
Recommendations for specific security mechanisms will often be taken from existing works including: 3794

 3795

[NISTCSF] NIST Cyber Security Framework 3796
[NIST7628] NISTIR 7628 Guidelines for Smart Grid Cyber Security 3797
[FIPS1402] Security Requirements for Cryptographic Modules (FIPS PUB 140-2) 3798
[PCIDSS] PCI-DSS Payment Card Industry Data Security Standard 3799
[NSAB] NSA Suite B Cryptography 3800

 3801

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 118 of 137

6 Using WebSocket as a network transport 3802

If MQTT is transported over a WebSocket [RFC6455] connection, the following conditions apply: 3803

• MQTT Control Packets MUST be sent in WebSocket binary data frames. If any other type of data 3804
frame is received the recipient MUST close the Network Connection [MQTT-6.0.0-1]. 3805

• A single WebSocket data frame can contain multiple or partial MQTT Control Packets. The receiver 3806
MUST NOT assume that MQTT Control Packets are aligned on WebSocket frame boundaries 3807
[MQTT-6.0.0-2]. 3808

• The Client MUST include “mqtt” in the list of WebSocket Sub Protocols it offers [MQTT-6.0.0-3]. 3809

• The WebSocket Subprotocol name selected and returned by the Server MUST be “mqtt” [MQTT-3810
6.0.0-4]. 3811

• The WebSocket URI used to connect the Client and Server has no impact on the MQTT protocol. 3812

 3813

6.1 IANA considerations 3814

This specification requests IANA to modify the registration of the WebSocket MQTT sub-protocol under 3815
the “WebSocket Subprotocol Name” registry with the following data: 3816

 3817

Figure 6.6-1 - IANA WebSocket Identifier 3818

Subprotocol Identifier mqtt

Subprotocol Common
Name

mqtt

Subprotocol Definition http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

 3819

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 119 of 137

7 Conformance 3820

The MQTT specification defines conformance for MQTT Client implementations and MQTT Server 3821
implementations. An MQTT implementation can conform as both an MQTT Client and an MQTT Server. 3822

 3823

7.1 Conformance clauses 3824

7.1.1 MQTT Server conformance clause 3825

Refer to Server in the Terminology section for a definition of Server. 3826

 3827

An MQTT Server conforms to this specification only if it satisfies all the statements below: 3828

1. The format of all MQTT Control Packets that the Server sends matches the format described in 3829
Chapter 2 and Chapter 3. 3830

2. It follows the Topic matching rules described in section 4.7 and the Subscription rules in section 4.8. 3831
3. It satisfies the MUST level requirements in the following chapters that are identified except for those 3832

that only apply to the Client: 3833

• Chapter 1 - Introduction 3834

• Chapter 2 - MQTT Control Packet format 3835

• Chapter 3 - MQTT Control Packets 3836

• Chapter 4 - Operational behavior 3837

• Chapter 6 - Using WebSocket as a network transport 3838
4. It does not require the use of any extensions defined outside of the specification in order to 3839

interoperate with any other conformant implementation. 3840

 3841

7.1.2 MQTT Client conformance clause 3842

Refer to Client in the Terminology section for a definition of Client. 3843

 3844

An MQTT Client conforms to this specification only if it satisfies all the statements below: 3845

1. The format of all MQTT Control Packets that the Client sends matches the format described in 3846
Chapter 2 and Chapter 3. 3847

2. It satisfies the MUST level requirements in the following chapters that are identified except for those 3848
that only apply to the Server: 3849

• Chapter 1 - Introduction 3850

• Chapter 2 - MQTT Control Packet format 3851

• Chapter 3 - MQTT Control Packets 3852

• Chapter 4 - Operational behavior 3853

• Chapter 6 - Using WebSocket as a network transport 3854
3. It does not require the use of any extensions defined outside of the specification in order to 3855

interoperate with any other conformant implementation. 3856

 3857

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 120 of 137

Appendix A. Acknowledgments 3858

The TC owes special thanks to Dr. Andy Stanford-Clark and Arlen Nipper as the original inventors of the 3859
MQTT protocol and for their continued support with the standardization process. 3860

 3861
The TC wishes to thank Brian Raymor (formerly of Microsoft) for his work as co-chairman of the MQTT 3862
TC during much of the development of the version 5.0 standard. 3863

 3864
The following individuals were members of the OASIS Technical Committee during the creation of this 3865
standard and their contributions are gratefully acknowledged: 3866
 3867

Participants: 3868

• Senthil Nathan Balasubramaniam (Infiswift) 3869

• Dr. Andrew Banks, editor (IBM) 3870

• Ken Borgendale, editor (IBM) 3871

• Ed Briggs, editor (Microsoft) 3872

• Raphael Cohn (Individual) 3873

• Richard Coppen, chairman (IBM) 3874

• William Cox (Individual) 3875

• Ian Craggs , secretary (IBM) 3876

• Konstantin Dotchkoff (Microsoft) 3877

• Derek Fu (IBM) 3878

• Rahul Gupta, editor (IBM) 3879

• Stefan Hagen (Individual) 3880

• David Horton (Solace Systems) 3881

• Alex Kritikos (Software AG, Inc.) 3882

• Jonathan Levell (IBM) 3883

• Shawn McAllister (Solace Systems) 3884

• William McLane (TIBCO Software Inc.) 3885

• Peter Niblett (IBM) 3886

• Dominik Obermaier (dc-square GmbH) 3887

• Nicholas O'Leary (IBM) 3888

• Brian Raymor (Microsoft) 3889

• Andrew Schofield (IBM) 3890

• Tobias Sommer (Cumulocity) 3891

• Joe Speed (IBM) 3892

• Dr Andy Stanford-Clark (IBM) 3893

• Allan Stockdill-Mander (IBM) 3894

• Stehan Vaillant (Cumulocity) 3895

 3896

For a list of those who contributed to earlier versions of MQTT refer to Appendix A in the MQTT v3.1.1 3897
specification [MQTTV311]. 3898

 3899

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 121 of 137

Appendix B. Mandatory normative statement (non-3900

normative) 3901

This Appendix is non-normative and is provided as a convenient summary of the numbered conformance 3902
statements found in the main body of this document. Refer to Chapter 7 for a definitive list of 3903
conformance requirements. 3904

 3905

Normative
Statement
Number

Normative Statement

[MQTT-1.5.4-1] The character data in a UTF-8 Encoded String MUST be well-formed UTF-8 as defined
by the Unicode specification [Unicode] and restated in RFC 3629 [RFC3629]. In
particular, the character data MUST NOT include encodings of code points between
U+D800 and U+DFFF.

[MQTT-1.5.4-2] A UTF-8 Encoded String MUST NOT include an encoding of the null character U+0000.

[MQTT-1.5.4-3] A UTF-8 encoded sequence 0xEF 0xBB 0xBF is always interpreted as U+FEFF ("ZERO
WIDTH NO-BREAK SPACE") wherever it appears in a string and MUST NOT be skipped
over or stripped off by a packet receiver.

[MQTT-1.5.5-1] The encoded value MUST use the minimum number of bytes necessary to represent the
value.

[MQTT-1.5.7-1] Both strings MUST comply with the requirements for UTF-8 Encoded Strings.

[MQTT-2.1.3-1] Where a flag bit is marked as “Reserved” it is reserved for future use and MUST be set to
the value listed.

[MQTT-2.2.1-2] A PUBLISH packet MUST NOT contain a Packet Identifier if its QoS value is set to 0.

[MQTT-2.2.1-3] Each time a Client sends a new SUBSCRIBE, UNSUBSCRIBE,or PUBLISH (where
QoS > 0) MQTT Control Packet it MUST assign it a non-zero Packet Identifier that is
currently unused.

[MQTT-2.2.1-4] Each time a Server sends a new PUBLISH (with QoS > 0) MQTT Control Packet it MUST
assign it a non zero Packet Identifier that is currently unused.

[MQTT-2.2.1-5] A PUBACK, PUBREC, PUBREL, or PUBCOMP packet MUST contain the same Packet
Identifier as the PUBLISH packet that was originally sent.

[MQTT-2.2.1-6] A SUBACK and UNSUBACK MUST contain the Packet Identifier that was used in the
corresponding SUBSCRIBE and UNSUBSCRIBE packet respectively.

[MQTT-2.2.2-1] If there are no properties, this MUST be indicated by including a Property Length of zero.

[MQTT-3.1.0-1] After a Network Connection is established by a Client to a Server, the first packet sent
from the Client to the Server MUST be a CONNECT packet.

[MQTT-3.1.0-2] The Server MUST process a second CONNECT packet sent from a Client as a Protocol
Error and close the Network Connection.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 122 of 137

[MQTT-3.1.2-1] The protocol name MUST be the UTF-8 String "MQTT". If the Server does not want to
accept the CONNECT, and wishes to reveal that it is an MQTT Server it MAY send a
CONNACK packet with Reason Code of 0x84 (Unsupported Protocol Version), and then
it MUST close the Network Connection.

[MQTT-3.1.2-2] If the Protocol Version is not 5 and the Server does not want to accept the CONNECT
packet, the Server MAY send a CONNACK packet with Reason Code 0x84 (Unsupported
Protocol Version) and then MUST close the Network Connection

[MQTT-3.1.2-3] The Server MUST validate that the reserved flag in the CONNECT packet is set to 0.

[MQTT-3.1.2-4] If a CONNECT packet is received with Clean Start is set to 1, the Client and Server
MUST discard any existing Session and start a new Session.

[MQTT-3.1.2-5] If a CONNECT packet is received with Clean Start set to 0 and there is a Session
associated with the Client Identifier, the Server MUST resume communications with the
Client based on state from the existing Session.

[MQTT-3.1.2-6] If a CONNECT packet is received with Clean Start set to 0 and there is no Session
associated with the Client Identifier, the Server MUST create a new Session.

[MQTT-3.1.2-7] If the Will Flag is set to 1 this indicates that, a Will Message MUST be stored on the
Server and associated with the Session.

[MQTT-3.1.2-8] The Will Message MUST be published after the Network Connection is subsequently
closed and either the Will Delay Interval has elapsed or the Session ends, unless the Will
Message has been deleted by the Server on receipt of a DISCONNECT packet with
Reason Code 0x00 (Normal disconnection) or a new Network Connection for the ClientID
is opened before the Will Delay Interval has elapsed.

[MQTT-3.1.2-9] If the Will Flag is set to 1, the Will QoS and Will Retain fields in the Connect Flags will be
used by the Server, and the Will Properties, Will Topic and Will Message fields MUST be
present in the Payload.

[MQTT-3.1.2-10] The Will Message MUST be removed from the stored Session State in the Server once it
has been published or the Server has received a DISCONNECT packet with a Reason
Code of 0x00 (Normal disconnection) from the Client.

[MQTT-3.1.2-11] If the Will Flag is set to 0, then the Will QoS MUST be set to 0 (0x00).

[MQTT-3.1.2-12] If the Will Flag is set to 1, the value of Will QoS can be 0 (0x00), 1 (0x01), or 2 (0x02).

[MQTT-3.1.2-13] If the Will Flag is set to 0, then Will Retain MUST be set to 0.

[MQTT-3.1.2-14] If the Will Flag is set to 1 and Will Retain is set to 0, the Server MUST publish the Will
Message as a non-retained message.

[MQTT-3.1.2-15] If the Will Flag is set to 1 and Will Retain is set to 1, the Server MUST publish the Will
Message as a retained message.

[MQTT-3.1.2-16] If the User Name Flag is set to 0, a User Name MUST NOT be present in the Payload.

[MQTT-3.1.2-17] If the User Name Flag is set to 1, a User Name MUST be present in the Payload.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 123 of 137

[MQTT-3.1.2-18] If the Password Flag is set to 0, a Password MUST NOT be present in the Payload.

[MQTT-3.1.2-19] If the Password Flag is set to 1, a Password MUST be present in the Payload.

[MQTT-3.1.2-20] If Keep Alive is non-zero and in the absence of sending any other MQTT Control
Packets, the Client MUST send a PINGREQ packet.

[MQTT-3.1.2-21] If the Server returns a Server Keep Alive on the CONNACK packet, the Client MUST use
that value instead of the value it sent as the Keep Alive.

[MQTT-3.1.2-22] If the Keep Alive value is non-zero and the Server does not receive an MQTT Control
Packet from the Client within one and a half times the Keep Alive time period, it MUST
close the Network Connection to the Client as if the network had failed.

[MQTT-3.1.2-23] The Client and Server MUST store the Session State after the Network Connection is
closed if the Session Expiry Interval is greater than 0.

[MQTT-3.1.2-24] The Server MUST NOT send packets exceeding Maximum Packet Size to the Client.

[MQTT-3.1.2-25] Where a Packet is too large to send, the Server MUST discard it without sending it and
then behave as if it had completed sending that Application Message.

[MQTT-3.1.2-26] The Server MUST NOT send a Topic Alias in a PUBLISH packet to the Client greater
than Topic Alias Maximum.

[MQTT-3.1.2-27] If Topic Alias Maximum is absent or zero, the Server MUST NOT send any Topic Aliases
to the.

[MQTT-3.1.2-28] A value of 0 indicates that the Server MUST NOT return Response Information.

[MQTT-3.1.2-29] If the value of Request Problem Information is 0, the Server MAY return a Reason String
or User Properties on a CONNACK or DISCONNECT packet, but MUST NOT send a
Reason String or User Properties on any packet other than PUBLISH, CONNACK, or
DISCONNECT.

[MQTT-3.1.2-30] If a Client sets an Authentication Method in the CONNECT, the Client MUST NOT send
any packets other than AUTH or DISCONNECT packets until it has received a
CONNACK packet.

[MQTT-3.1.3-1] The Payload of the CONNECT packet contains one or more length-prefixed fields, whose
presence is determined by the flags in the Variable Header. These fields, if present,
MUST appear in the order Client Identifier, Will Topic, Will Message, User Name,
Password.

[MQTT-3.1.3-2] The ClientID MUST be used by Clients and by Servers to identify state that they hold
relating to this MQTT Session between the Client and the Server.

[MQTT-3.1.3-3] The ClientID MUST be present and is the first field in the CONNECT packet Payload.

[MQTT-3.1.3-4] The ClientID MUST be a UTF-8 Encoded String.

[MQTT-3.1.3-5] The Server MUST allow ClientID’s which are between 1 and 23 UTF-8 encoded bytes in
length, and that contain only the characters
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 124 of 137

[MQTT-3.1.3-6] A Server MAY allow a Client to supply a ClientID that has a length of zero bytes, however
if it does so the Server MUST treat this as a special case and assign a unique ClientID to
that Client.

[MQTT-3.1.3-7] It MUST then process the CONNECT packet as if the Client had provided that unique
ClientID, and MUST return the Assigned Client Identifier in the CONNACK packet.

[MQTT-3.1.3-8] If the Server rejects the ClientID it MAY respond to the CONNECT packet with a
CONNACK using Reason Code 0x85 (Client Identifier not valid) as described in section
4.13 Handling errors, and then it MUST close the Network Connection.

[MQTT-3.1.3-9] If a new Network Connection to this Session is made before the Will Delay Interval has
passed, the Server MUST NOT send the Will Message.

[MQTT-3.1.3-10] The Server MUST maintain the order of User Properties when forwarding the Application
Message.

[MQTT-3.1.3-11] The Will Topic MUST be a UTF-8 Encoded String.

[MQTT-3.1.3-12] If the User Name Flag is set to 1, the User Name is the next field in the Payload. The
User Name MUST be a UTF-8 Encoded String.

[MQTT-3.1.4-1] The Server MUST validate that the CONNECT packet matches the format described in
section 3.1 and close the Network Connection if it does not match.

[MQTT-3.1.4-2] The Server MAY check that the contents of the CONNECT packet meet any further
restrictions and SHOULD perform authentication and authorization checks. If any of
these checks fail, it MUST close the Network Connection.

[MQTT-3.1.4-3] If the ClientID represents a Client already connected to the Server, the Server sends a
DISCONNECT packet to the existing Client with Reason Code of 0x8E (Session taken
over) as described in section 4.13 and MUST close the Network Connection of the
existing Client.

[MQTT-3.1.4-4] The Server MUST perform the processing of Clean Start.

[MQTT-3.1.4-5] The Server MUST acknowledge the CONNECT packet with a CONNACK packet
containing a 0x00 (Success) Reason Code.

[MQTT-3.1.4-6] If the Server rejects the CONNECT, it MUST NOT process any data sent by the Client
after the CONNECT packet except AUTH packets.

[MQTT-3.2.0-1] The Server MUST send a CONNACK with a 0x00 (Success) Reason Code before
sending any Packet other than AUTH.

[MQTT-3.2.0-2] The Server MUST NOT send more than one CONNACK in a Network Connection.

[MQTT-3.2.2-1] Byte 1 is the "Connect Acknowledge Flags". Bits 7-1 are reserved and MUST be set to 0.

[MQTT-3.2.2-2] If the Server accepts a connection with Clean Start set to 1, the Server MUST set
Session Present to 0 in the CONNACK packet in addition to setting a 0x00 (Success)
Reason Code in the CONNACK packet.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 125 of 137

[MQTT-3.2.2-3] If the Server accepts a connection with Clean Start set to 0 and the Server has Session
State for the ClientID, it MUST set Session Present to 1 in the CONNACK packet,
otherwise it MUST set Session Present to 0 in the CONNACK packet. In both cases it
MUST set a 0x00 (Success) Reason Code in the CONNACK packet.

[MQTT-3.2.2-4] If the Client does not have Session State and receives Session Present set to 1 it MUST
close the Network Connection.

[MQTT-3.2.2-5] If the Client does have Session State and receives Session Present set to 0 it MUST
discard its Session State if it continues with the Network Connection.

[MQTT-3.2.2-6] If a Server sends a CONNACK packet containing a non-zero Reason Code it MUST set
Session Present to 0.

[MQTT-3.2.2-7] If a Server sends a CONNACK packet containing a Reason code of 0x80 or greater it
MUST then close the Network Connection.

[MQTT-3.2.2-8] The Server sending the CONNACK packet MUST use one of the Connect Reason Code
values.

[MQTT-3.2.2-9] If a Server does not support QoS 1 or QoS 2 PUBLISH packets it MUST send a
Maximum QoS in the CONNACK packet specifying the highest QoS it supports.

[MQTT-3.2.2-10] A Server that does not support QoS 1 or QoS 2 PUBLISH packets MUST still accept
SUBSCRIBE packets containing a Requested QoS of 0, 1 or 2.

[MQTT-3.2.2-11] If a Client receives a Maximum QoS from a Server, it MUST NOT send PUBLISH packets
at a QoS level exceeding the Maximum QoS level specified.

[MQTT-3.2.2-12] If a Server receives a CONNECT packet containing a Will QoS that exceeds its
capabilities, it MUST reject the connection. It SHOULD use a CONNACK packet with
Reason Code 0x9B (QoS not supported) as described in section 4.13 Handling errors,
and MUST close the Network Connection.

[MQTT-3.2.2-13] If a Server receives a CONNECT packet containing a Will Message with the Will Retain
1, and it does not support retained messages, the Server MUST reject the connection
request. It SHOULD send CONNACK with Reason Code 0x9A (Retain not supported)
and then it MUST close the Network Connection.

[MQTT-3.2.2-14] A Client receiving Retain Available set to 0 from the Server MUST NOT send a PUBLISH
packet with the RETAIN flag set to 1.

[MQTT-3.2.2-15] The Client MUST NOT send packets exceeding Maximum Packet Size to the Server.

[MQTT-3.2.2-16] If the Client connects using a zero length Client Identifier, the Server MUST respond with
a CONNACK containing an Assigned Client Identifier. The Assigned Client Identifier
MUST be a new Client Identifier not used by any other Session currently in the Server.

[MQTT-3.2.2-17] The Client MUST NOT send a Topic Alias in a PUBLISH packet to the Server greater
than this value.

[MQTT-3.2.2-18] Topic Alias Maximum is absent, the Client MUST NOT send any Topic Aliases on to the
Server.

[MQTT-3.2.2-19] The Server MUST NOT send this property if it would increase the size of the CONNACK
packet beyond the Maximum Packet Size specified by the Client.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 126 of 137

[MQTT-3.2.2-20] The Server MUST NOT send this property if it would increase the size of the CONNACK
packet beyond the Maximum Packet Size specified by the Client.

[MQTT-3.2.2-21] If the Server sends a Server Keep Alive on the CONNACK packet, the Client MUST use
this value instead of the Keep Alive value the Client sent on CONNECT.

[MQTT-3.2.2-22] If the Server does not send the Server Keep Alive, the Server MUST use the Keep Alive
value set by the Client on CONNECT.

[MQTT-3.3.1-1] The DUP flag MUST be set to 1 by the Client or Server when it attempts to re-deliver a
PUBLISH packet.

[MQTT-3.3.1-2] The DUP flag MUST be set to 0 for all QoS 0 messages.

[MQTT-3.3.1-3] The DUP flag in the outgoing PUBLISH packet is set independently to the incoming
PUBLISH packet, its value MUST be determined solely by whether the outgoing
PUBLISH packet is a retransmission.

[MQTT-3.3.1-4] A PUBLISH Packet MUST NOT have both QoS bits set to 1.

[MQTT-3.3.1-5] If the RETAIN flag is set to 1 in a PUBLISH packet sent by a Client to a Server, the
Server MUST replace any existing retained message for this topic and store the
Application Message.

[MQTT-3.3.1-6] If the Payload contains zero bytes it is processed normally by the Server but any retained
message with the same topic name MUST be removed and any future subscribers for the
topic will not receive a retained message.

[MQTT-3.3.1-7] A retained message with a Payload containing zero bytes MUST NOT be stored as a
retained message on the Server.

[MQTT-3.3.1-8] If the RETAIN flag is 0 in a PUBLISH packet sent by a Client to a Server, the Server
MUST NOT store the message as a retained message and MUST NOT remove or
replace any existing retained message.

[MQTT-3.3.1-9] If Retain Handling is set to 0 the Server MUST send the retained messages matching the
Topic Filter of the subscription to the Client.

[MQTT-3.3.1-10] If Retain Handling is set to 1 then if the subscription did already exist, the Server MUST
send all retained message matching the Topic Filter of the subscription to the Client, and
if the subscription did not exist, the Server MUST NOT send the retained messages.

[MQTT-3.3.1-11] If Retain Handling is set to 2, the Server MUST NOT send the retained

[MQTT-3.3.1-12] If the value of Retain As Published subscription option is set to 0, the Server MUST set
the RETAIN flag to 0 when forwarding an Application Message regardless of how the
RETAIN flag was set in the received PUBLISH packet.

[MQTT-3.3.1-13] If the value of Retain As Published subscription option is set to 1, the Server MUST set
the RETAIN flag equal to the RETAIN flag in the received PUBLISH packet.

[MQTT-3.3.2-1] The Topic Name MUST be present as the first field in the PUBLISH packet Variable
Header. It MUST be a UTF-8 Encoded String.

[MQTT-3.3.2-2] The Topic Name in the PUBLISH packet MUST NOT contain wildcard characters.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 127 of 137

[MQTT-3.3.2-3] The Topic Name in a PUBLISH packet sent by a Server to a subscribing Client MUST
match the Subscription’s Topic Filter.

[MQTT-3.3.2-4] A Server MUST send the Payload Format Indicator unaltered to all subscribers receiving
the message.

[MQTT-3.3.2-5] If the Message Expiry Interval has passed and the Server has not managed to start
onward delivery to a matching subscriber, then it MUST delete the copy of the message
for that subscriber.

[MQTT-3.3.2-6] The PUBLISH packet sent to a Client by the Server MUST contain a Message Expiry
Interval set to the received value minus the time that the message has been waiting in
the Server.

[MQTT-3.3.2-7] A receiver MUST NOT carry forward any Topic Alias mappings from one Network
Connection to another.

[MQTT-3.3.2-8] A sender MUST NOT send a PUBLISH packet containing a Topic Alias which has the
value 0.

[MQTT-3.3.2-9] A Client MUST NOT send a PUBLISH packet with a Topic Alias greater than the Topic
Alias Maximum value returned by the Server in the CONNACK packet.

[MQTT-3.3.2-10] A Client MUST accept all Topic Alias values greater than 0 and less than or equal to the
Topic Alias Maximum value that it sent in the CONNECT packet.

[MQTT-3.3.2-11] A Server MUST NOT send a PUBLISH packet with a Topic Alias greater than the Topic
Alias Maximum value sent by the Client in the CONNECT packet.

[MQTT-3.3.2-12] A Server MUST accept all Topic Alias values greater than 0 and less than or equal to the
Topic Alias Maximum value that it returned in the CONNACK packet.

[MQTT-3.3.2-13] The Response Topic MUST be a UTF-8 Encoded String.

[MQTT-3.3.2-14] The Response Topic MUST NOT contain wildcard characters.

[MQTT-3.3.2-15] The Server MUST send the Response Topic unaltered to all subscribers receiving the
Application Message.

[MQTT-3.3.2-16] The Server MUST send the Correlation Data unaltered to all subscribers receiving the
Application Message.

[MQTT-3.3.2-17] The Server MUST send all User Properties unaltered in a PUBLISH packet when
forwarding the Application Message to a Client.

[MQTT-3.3.2-18] The Server MUST maintain the order of User Properties when forwarding the Application
Message.

[MQTT-3.3.2-19] The Content Type MUST be a UTF-8 Encoded String.

[MQTT-3.3.2-20] A Server MUST send the Content Type unaltered to all subscribers receiving the
Application Message.

[MQTT-3.3.4-1] The receiver of a PUBLISH Packet MUST respond with the packet as determined by the
QoS in the PUBLISH Packet.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 128 of 137

[MQTT-3.3.4-2] In this case the Server MUST deliver the message to the Client respecting the maximum
QoS of all the matching subscriptions.

[MQTT-3.3.4-3] If the Client specified a Subscription Identifier for any of the overlapping subscriptions the
Server MUST send those Subscription Identifiers in the message which is published as
the result of the subscriptions.

[MQTT-3.3.4-4] If the Server sends a single copy of the message it MUST include in the PUBLISH packet
the Subscription Identifiers for all matching subscriptions which have a Subscription
Identifiers, their order is not significant.

[MQTT-3.3.4-5] If the Server sends multiple PUBLISH packets it MUST send, in each of them, the
Subscription Identifier of the matching subscription if it has a Subscription Identifier.

[MQTT-3.3.4-6] A PUBLISH packet sent from a Client to a Server MUST NOT contain a Subscription
Identifier.

[MQTT-3.3.4-7] The Client MUST NOT send more than Receive Maximum QoS 1 and QoS 2 PUBLISH
packets for which it has not received PUBACK, PUBCOMP, or PUBREC with a Reason
Code of 128 or greater from the Server.

[MQTT-3.3.4-8] The Client MUST NOT delay the sending of any packets other than PUBLISH packets
due to having sent Receive Maximum PUBLISH packets without receiving
acknowledgements for them.

[MQTT-3.3.4-9] The Server MUST NOT send more than Receive Maximum QoS 1 and QoS 2 PUBLISH
packets for which it has not received PUBACK, PUBCOMP, or PUBREC with a Reason
Code of 128 or greater from the Client.

[MQTT-3.3.4-10] The Server MUST NOT delay the sending of any packets other than PUBLISH packets
due to having sent Receive Maximum PUBLISH packets without receiving
acknowledgements for them.

[MQTT-3.4.2-1] The Client or Server sending the PUBACK packet MUST use one of the PUBACK
Reason Codes.

[MQTT-3.4.2-2] The sender MUST NOT send this property if it would increase the size of the PUBACK
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.4.2-3] The sender MUST NOT send this property if it would increase the size of the PUBACK
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.5.2-1] The Client or Server sending the PUBREC packet MUST use one of the PUBREC
Reason Codes.

[MQTT-3.5.2-2] The sender MUST NOT send this property if it would increase the size of the PUBREC
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.5.2-3] The sender MUST NOT send this property if it would increase the size of the PUBREC
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.6.1-1] Bits 3,2,1 and 0 of the Fixed Header in the PUBREL packet are reserved and MUST be
set to 0,0,1 and 0 respectively. The Server MUST treat any other value as malformed and
close the Network Connection.

[MQTT-3.6.2-1] The Client or Server sending the PUBREL packet MUST use one of the PUBREL
Reason Codes.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 129 of 137

[MQTT-3.6.2-2] The sender MUST NOT send this Property if it would increase the size of the PUBREL
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.6.2-3] The sender MUST NOT send this property if it would increase the size of the PUBREL
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.7.2-1] The Client or Server sending the PUBCOMP packets MUST use one of the PUBCOMP
Reason Codes.

[MQTT-3.7.2-2] The sender MUST NOT use this Property if it would increase the size of the PUBCOMP
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.7.2-3] The sender MUST NOT send this property if it would increase the size of the PUBCOMP
packet beyond the Maximum Packet Size specified by receiver.

[MQTT-3.8.1-1] Bits 3,2,1 and 0 of the Fixed Header of the SUBSCRIBE packet are reserved and MUST
be set to 0,0,1 and 0 respectively. The Server MUST treat any other value as malformed
and close the Network Connection

[MQTT-3.8.3-1] The Topic Filters MUST be a UTF-8 Encoded String.

[MQTT-3.8.3-2] The Payload MUST contain at least one Topic Filter and Subscription Options pair.

[MQTT-3.8.3-3] Bit 2 of the Subscription Options represents the No Local option. If the value is 1,
Application Messages MUST NOT be forwarded to a connection with a ClientID equal to
the ClientID of the publishing connection.

[MQTT-3.8.3-4] It is a Protocol Error to set the No Local bit to 1 on a Shared Subscription.

[MQTT-3.8.3-5] The Server MUST treat a SUBSCRIBE packet as malformed if any of Reserved bits in
the Payload are non-zero.

[MQTT-3.8.4-1] When the Server receives a SUBSCRIBE packet from a Client, the Server MUST
respond with a SUBACK packet.

[MQTT-3.8.4-2] The SUBACK packet MUST have the same Packet Identifier as the SUBSCRIBE packet
that it is acknowledging.

[MQTT-3.8.4-3] If a Server receives a SUBSCRIBE packet containing a Topic Filter that is identical to a
Non-shared Subscription’s Topic Filter for the current Session then it MUST replace that
existing Subscription with a new Subscription.

[MQTT-3.8.4-4] If the Retain Handling option is 0, any existing retained messages matching the Topic
Filter MUST be re-sent, but Application Messages MUST NOT be lost due to replacing
the Subscription.

[MQTT-3.8.4-5] If a Server receives a SUBSCRIBE packet that contains multiple Topic Filters it MUST
handle that packet as if it had received a sequence of multiple SUBSCRIBE packets,
except that it combines their responses into a single SUBACK response.

[MQTT-3.8.4-6] The SUBACK packet sent by the Server to the Client MUST contain a Reason Code for
each Topic Filter/Subscription Option pair.

[MQTT-3.8.4-7] This Reason Code MUST either show the maximum QoS that was granted for that
Subscription or indicate that the subscription failed.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 130 of 137

[MQTT-3.8.4-8] The QoS of Payload Messages sent in response to a Subscription MUST be the
minimum of the QoS of the originally published message and the Maximum QoS granted
by the Server.

[MQTT-3.9.2-1] The Server MUST NOT send this Property if it would increase the size of the SUBACK
packet beyond the Maximum Packet Size specified by the Client.

[MQTT-3.9.2-2] The Server MUST NOT send this property if it would increase the size of the SUBACK
packet beyond the Maximum Packet Size specified by the Client.

[MQTT-3.9.3-1] The order of Reason Codes in the SUBACK packet MUST match the order of Topic
Filters in the SUBSCRIBE packet.

[MQTT-3.9.3-2] The Server sending the SUBACK packet MUST send one of the Subscribe Reason Code
values for each Topic Filter received.

[MQTT-3.10.1-1] Bits 3,2,1 and 0 of the Fixed Header of the UNSUBSCRIBE packet are reserved and
MUST be set to 0,0,1 and 0 respectively. The Server MUST treat any other value as
malformed and close the Network Connection

[MQTT-3.10.3-1] The Topic Filters in an UNSUBSCRIBE packet MUST be UTF-8 Encoded Strings.

[MQTT-3.10.3-2] The Payload of an UNSUBSCRIBE packet MUST contain at least one Topic Filter.

[MQTT-3.10.4-1] The Topic Filters (whether they contain wildcards or not) supplied in an UNSUBSCRIBE
packet MUST be compared character-by-character with the current set of Topic Filters
held by the Server for the Client. If any filter matches exactly then its owning Subscription
MUST be deleted.

[MQTT-3.10.4-2] When a Server receives UNSUBSCRIBE It MUST stop adding any new messages which
match the Topic Filters, for delivery to the Client.

[MQTT-3.10.4-3] When a Server receives UNSUBSCRIBE It MUST complete the delivery of any QoS 1 or
QoS 2 messages which match the Topic Filters and it has started to send to the Client.

[MQTT-3.10.4-4] The Server MUST respond to an UNSUBSCRIBE request by sending an UNSUBACK
packet.

[MQTT-3.10.4-5] The UNSUBACK packet MUST have the same Packet Identifier as the UNSUBSCRIBE
packet. Even where no Topic Subscriptions are deleted, the Server MUST respond with
an UNSUBACK.

[MQTT-3.10.4-6] If a Server receives an UNSUBSCRIBE packet that contains multiple Topic Filters, it
MUST process that packet as if it had received a sequence of multiple UNSUBSCRIBE
packets, except that it sends just one UNSUBACK response.

[MQTT-3.11.2-1] The Server MUST NOT send this Property if it would increase the size of the
UNSUBACK packet beyond the Maximum Packet Size specified by the Client.

[MQTT-3.11.2-2] The Server MUST NOT send this property if it would increase the size of the UNSUBACK
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.11.3-1] The order of Reason Codes in the UNSUBACK packet MUST match the order of Topic
Filters in the UNSUBSCRIBE packet.

[MQTT-3.11.3-2] The Server sending the UNSUBACK packet MUST use one of the UNSUBSCRIBE
Reason Code values for each Topic Filter received.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 131 of 137

[MQTT-3.12.4-1] The Server MUST send a PINGRESP packet in response to a PINGREQ packet.

[MQTT-3.14.0-1] A Server MUST NOT send a DISCONNECT until after it has sent a CONNACK with
Reason Code of less than 0x80.

[MQTT-3.14.1-1] The Client or Server MUST validate that reserved bits are set to 0. If they are not zero it
sends a DISCONNECT packet with a Reason code of 0x81 (Malformed Packet).

[MQTT-3.14.2-1] The Client or Server sending the DISCONNECT packet MUST use one of the
DISCONNECT Reason Codes.

[MQTT-3.14.2-2] The Session Expiry Interval MUST NOT be sent on a DISCONNECT by the Server.

[MQTT-3.14.2-3] The sender MUST NOT use this Property if it would increase the size of the
DISCONNECT packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.14.2-4] The sender MUST NOT send this property if it would increase the size of the
DISCONNECT packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-3.14.4-1] After sending a DISCONNECT packet the sender MUST NOT send any more MQTT
Control Packets on that Network Connection.

[MQTT-3.14.4-2] After sending a DISCONNECT packet the sender MUST close the Network Connection.

[MQTT-3.14.4-3] On receipt of DISCONNECT with a Reason Code of 0x00 (Success) the Server MUST
discard any Will Message associated with the current Connection without publishing it.

[MQTT-3.15.1-1] Bits 3,2,1 and 0 of the Fixed Header of the AUTH packet are reserved and MUST all be
set to 0. The Client or Server MUST treat any other value as malformed and close the
Network Connection.

[MQTT-3.15.2-1] The sender of the AUTH Packet MUST use one of the Authenticate Reason Codes.

[MQTT-3.15.2-2] The sender MUST NOT send this property if it would increase the size of the AUTH
packet beyond the Maximum Packet Size specified by the receiver

[MQTT-3.15.2-3] The sender MUST NOT send this property if it would increase the size of the AUTH
packet beyond the Maximum Packet Size specified by the receiver.

[MQTT-4.1.0-1] The Client and Server MUST NOT discard the Session State while the Network
Connection is open.

[MQTT-4.2.0-1] A Client or Server MUST support the use of one or more underlying transport protocols
that provide an ordered, lossless, stream of bytes from the Client to Server and Server to
Client.

[MQTT-4.1.0-2] The Server MUST discard the Session State when the Network Connection is closed and
the Session Expiry Interval has passed.

[MQTT-4.3.1-1] In the QoS 0 delivery protocol, the sender MUST send a PUBLISH packet with QoS 0
and DUP flag set to 0.

[MQTT-4.3.2-1] In the QoS 1 delivery protocol, the sender MUST assign an unused Packet Identifier each
time it has a new Application Message to publish.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 132 of 137

[MQTT-4.3.2-2] In the QoS 1 delivery protocol, the sender MUST send a PUBLISH packet containing this
Packet Identifier with QoS 1 and DUP flag set to 0.

[MQTT-4.3.2-3] In the QoS 1 delivery protocol, the sender MUST treat the PUBLISH packet as
“unacknowledged” until it has received the corresponding PUBACK packet from the
receiver.

[MQTT-4.3.2-4] In the QoS 1 delivery protocol, the receiver MUST respond with a PUBACK packet
containing the Packet Identifier from the incoming PUBLISH packet, having accepted
ownership of the Application Message.

[MQTT-4.3.2-5] In the QoS 1 delivery protocol, the receiver after it has sent a PUBACK packet the
receiver MUST treat any incoming PUBLISH packet that contains the same Packet
Identifier as being a new Application Message, irrespective of the setting of its DUP flag.

[MQTT-4.3.3-1] In the QoS 2 delivery protocol, the sender MUST assign an unused Packet Identifier
when it has a new Application Message to publish.

[MQTT-4.3.3-2] In the QoS 2 delivery protocol, the sender MUST send a PUBLISH packet containing this
Packet Identifier with QoS 2 and DUP flag set to 0.

[MQTT-4.3.3-3] In the QoS 2 delivery protocol, the sender MUST treat the PUBLISH packet as
“unacknowledged” until it has received the corresponding PUBREC packet from the
receiver.

[MQTT-4.3.3-4] In the QoS 2 delivery protocol, the sender MUST send a PUBREL packet when it
receives a PUBREC packet from the receiver with a Reason Code value less than 0x80.
This PUBREL packet MUST contain the same Packet Identifier as the original PUBLISH
packet.

[MQTT-4.3.3-5] In the QoS 2 delivery protocol, the sender MUST treat the PUBREL packet as
“unacknowledged” until it has received the corresponding PUBCOMP packet from the
receiver.

[MQTT-4.3.3-6] In the QoS 2 delivery protocol, the sender MUST NOT re-send the PUBLISH once it has
sent the corresponding PUBREL packet.

[MQTT-4.3.3-7] In the QoS 2 delivery protocol, the sender MUST NOT apply Application Message expiry
if a PUBLISH packet has been sent.

[MQTT-4.3.3-8] In the QoS 2 delivery protocol, the receiver MUST respond with a PUBREC containing
the Packet Identifier from the incoming PUBLISH packet, having accepted ownership of
the Application Message.

[MQTT-4.3.3-9] In the QoS 2 delivery protocol, the receiver if it has sent a PUBREC with a Reason Code
of 0x80 or greater, the receiver MUST treat any subsequent PUBLISH packet that
contains that Packet Identifier as being a new Application Message.

[MQTT-4.3.3-10] In the QoS 2 delivery protocol, the receiver until it has received the corresponding
PUBREL packet, the receiver MUST acknowledge any subsequent PUBLISH packet with
the same Packet Identifier by sending a PUBREC. It MUST NOT cause duplicate
messages to be delivered to any onward recipients in this case.

[MQTT-4.3.3-11] In the QoS 2 delivery protocol, the receiver MUST respond to a PUBREL packet by
sending a PUBCOMP packet containing the same Packet Identifier as the PUBREL.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 133 of 137

[MQTT-4.3.3-12] In the QoS 2 delivery protocol, the receiver After it has sent a PUBCOMP, the receiver
MUST treat any subsequent PUBLISH packet that contains that Packet Identifier as
being a new Application Message.

[MQTT-4.3.3-13] In the QoS 2 delivery protocol, the receiver MUST continue the QoS 2 acknowledgement
sequence even if it has applied Application Message expiry.

[MQTT-4.4.0-1] When a Client reconnects with Clean Start set to 0 and a session is present, both the
Client and Server MUST resend any unacknowledged PUBLISH packets (where QoS >
0) and PUBREL packets using their original Packet Identifiers. This is the only
circumstance where a Client or Server is REQUIRED to resend messages. Clients and
Servers MUST NOT resend messages at any other time.

[MQTT-4.4.0-2] If PUBACK or PUBREC is received containing a Reason Code of 0x80 or greater the
corresponding PUBLISH packet is treated as acknowledged, and MUST NOT be
retransmitted.

[MQTT-4.5.0-1] When a Server takes ownership of an incoming Application Message it MUST add it to
the Session State for those Clients that have matching Subscriptions.

[MQTT-4.5.0-2] The Client MUST acknowledge any Publish packet it receives according to the applicable
QoS rules regardless of whether it elects to process the Application Message that it
contains.

[MQTT-4.6.0-1] When the Client re-sends any PUBLISH packets, it MUST re-send them in the order in
which the original PUBLISH packets were sent (this applies to QoS 1 and QoS 2
messages).

[MQTT-4.6.0-2] The Client MUST send PUBACK packets in the order in which the corresponding
PUBLISH packets were received (QoS 1 messages).

[MQTT-4.6.0-3] The Client MUST send PUBREC packets in the order in which the corresponding
PUBLISH packets were received (QoS 2 messages).

[MQTT-4.6.0-4] The Client MUST send PUBREL packets in the order in which the corresponding
PUBREC packets were received (QoS 2 messages).

[MQTT-4.6.0-5] When a Server processes a message that has been published to an Ordered Topic, it
MUST send PUBLISH packets to consumers (for the same Topic and QoS) in the order
that they were received from any given Client.

[MQTT-4.6.0-6] A Server MUST treat every, Topic as an Ordered Topic when it is forwarding messages
on Non-shared Subscriptions.

[MQTT-4.7.0-1] The wildcard characters can be used in Topic Filters, but MUST NOT be used within a
Topic Name.

[MQTT-4.7.1-1] The multi-level wildcard character MUST be specified either on its own or following a
topic level separator. In either case it MUST be the last character specified in the Topic
Filter.

[MQTT-4.7.1-2] The single-level wildcard can be used at any level in the Topic Filter, including first and
last levels. Where it is used, it MUST occupy an entire level of the filter.

[MQTT-4.7.2-1] The Server MUST NOT match Topic Filters starting with a wildcard character (# or +) with
Topic Names beginning with a $ character.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 134 of 137

[MQTT-4.7.3-1] All Topic Names and Topic Filters MUST be at least one character long.

[MQTT-4.7.3-2] Topic Names and Topic Filters MUST NOT include the null character (Unicode U+0000).

[MQTT-4.7.3-3] Topic Names and Topic Filters are UTF-8 Encoded Strings; they MUST NOT encode to
more than 65,535 bytes.

[MQTT-4.7.3-4] When it performs subscription matching the Server MUST NOT perform any
normalization of Topic Names or Topic Filters, or any modification or substitution of
unrecognized characters.

[MQTT-4.8.2-1] A Shared Subscription's Topic Filter MUST start with $share/ and MUST contain a
ShareName that is at least one character long.

[MQTT-4.8.2-2] The ShareName MUST NOT contain the characters "/", "+" or "#", but MUST be followed
by a "/" character. This "/" character MUST be followed by a Topic Filter.

[MQTT-4.8.2-3] The Server MUST respect the granted QoS for the Clients subscription.

[MQTT-4.8.2-4] The Server MUST complete the delivery of the message to that Client when it
reconnects.

[MQTT-4.8.2-5] If the Clients Session terminates before the Client reconnects, the Server MUST NOT
send the Application Message to any other subscribed Client.

[MQTT-4.8.2-6] If a Client responds with a PUBACK or PUBREC containing a Reason Code of 0x80 or
greater to a PUBLISH packet from the Server, the Server MUST discard the Application
Message and not attempt to send it to any other Subscriber.

[MQTT-4.9.0-1] The Client or Server MUST set its initial send quota to a non-zero value not exceeding
the Receive Maximum.

[MQTT-4.9.0-2] Each time the Client or Server sends a PUBLISH packet at QoS > 0, it decrements the
send quota. If the send quota reaches zero, the Client or Server MUST NOT send any
more PUBLISH packets with QoS > 0.

[MQTT-4.9.0-3] The Client and Server MUST continue to process and respond to all other MQTT Control
Packets even if the quota is zero.

[MQTT-4.12.0-1] If the Server does not support the Authentication Method supplied by the Client, it MAY
send a CONNACK with a Reason Code of 0x8C (Bad authentication method) or 0x87
(Not Authorized) as described in section 4.13 and MUST close the Network Connection.

[MQTT-4.12.0-2] If the Server requires additional information to complete the authorization, it can send an
AUTH packet to the Client. This packet MUST contain a Reason Code of 0x18 (Continue
authentication).

[MQTT-4.12.0-3] The Client responds to an AUTH packet from the Server by sending a further AUTH
packet. This packet MUST contain a Reason Code of 0x18 (Continue authentication).

[MQTT-4.12.0-4] The Server can reject the authentication at any point in this process. It MAY send a
CONNACK with a Reason Code of 0x80 or above as described in section 4.13, and
MUST close the Network Connection.

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 135 of 137

[MQTT-4.12.0-5] If the initial CONNECT packet included an Authentication Method property then all AUTH
packets, and any successful CONNACK packet MUST include an Authentication Method
Property with the same value as in the CONNECT packet.

[MQTT-4.12.0-6] If the Client does not include an Authentication Method in the CONNECT, the Server
MUST NOT send an AUTH packet, and it MUST NOT send an Authentication Method in
the CONNACK packet.

[MQTT-4.12.0-7] If the Client does not include an Authentication Method in the CONNECT, the Client
MUST NOT send an AUTH packet to the Server.

[MQTT-4.12.1-1] If the Client supplied an Authentication Method in the CONNECT packet it can initiate a
re-authentication at any time after receiving a CONNACK. It does this by sending an
AUTH packet with a Reason Code of 0x19 (Re-authentication). The Client MUST set the
Authentication Method to the same value as the Authentication Method originally used to
authenticate the Network Connection.

[MQTT-4.12.1-2] If the re-authentication fails, the Client or Server SHOULD send DISCONNECT with an
appropriate Reason Code and MUST close the Network Connection.

[MQTT-4.13.1-1] When a Server detects a Malformed Packet or Protocol Error, and a Reason Code is
given in the specification, it MUST close the Network Connection.

[MQTT-4.13.2-1] The CONNACK and DISCONNECT packets allow a Reason Code of 0x80 or greater to
indicate that the Network Connection will be closed. If a Reason Code of 0x80 or greater
is specified, then the Network Connection MUST be closed whether or not the
CONNACK or DISCONNECT is sent.

[MQTT-6.0.0-1] MQTT Control Packets MUST be sent in WebSocket binary data frames. If any other type
of data frame is received the recipient MUST close the Network Connection.

[MQTT-6.0.0-2] A single WebSocket data frame can contain multiple or partial MQTT Control Packets.
The receiver MUST NOT assume that MQTT Control Packets are aligned on WebSocket
frame boundaries.

[MQTT-6.0.0-3] The Client MUST include “mqtt” in the list of WebSocket Sub Protocols it offers.

[MQTT-6.0.0-4] The WebSocket Subprotocol name selected and returned by the Server MUST be “mqtt”.

 3906

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 136 of 137

Appendix C. Summary of new features in MQTT v5.0 3907

(non-normative) 3908

The following new features are added to MQTT v5.0 3909
 3910

• Session expiry 3911
Split the Clean Session flag into a Clean Start flag which indicates that the session should start 3912
without using an existing session, and a Session Expiry interval which says how long to retain the 3913
session after a disconnect. The session expiry interval can be modified at disconnect. Setting of 3914
Clean Start to 1 and Session Expiry Interval to 0 is equivalent in MQTT v3.1.1 of setting Clean 3915
Session to 1. 3916
 3917

• Message expiry 3918
Allow an expiry interval to be set when a message is published. 3919
 3920

• Reason code on all ACKs 3921
Change all response packets to contain a reason code. This include CONNACK, PUBACK, PUBREC, 3922
PUBREL, PUBCOMP, SUBACK, UNSUBACK, DISCONNECT, and AUTH. This allows the invoker to 3923
determine whether the requested function succeeded. 3924
 3925

• Reason string on all ACKs 3926
Change most packets with a reason code to also allow an optional reason string. This is designed for 3927
problem determination and is not intended to be parsed by the receiver. 3928
 3929

• Server disconnect 3930
Allow DISCONNECT to be sent by the Server to indicate the reason the connection is closed. 3931
 3932

• Payload format and content type 3933
Allow the payload format (binary, text) and a MIME style content type to be specified when a 3934
message is published. These are forwarded on to the receiver of the message. 3935
 3936

• Request / Response 3937
Formalize the request/response pattern within MQTT and provide the Response Topic and 3938
Correlation Data properties to allow response messages to be routed back to the publisher of a 3939
request. Also, add the ability for the Client to get configuration information from the Server about how 3940
to construct the response topics. 3941
 3942

• Shared Subscriptions 3943
Add shared subscription support allowing for load balanced consumers of a subscription 3944
 3945

• Subscription ID 3946
Allow a numeric subscription identifier to be specified on a SUBSCRIBE, and returned on the 3947
message when it is delivered. This allows the Client to determine which subscription or subscriptions 3948
caused the message to be delivered. 3949
 3950

• Topic Alias 3951
Decrease the size of the MQTT packet overhead by allowing the topic name to be abbreviated to a 3952
small integer. The Client and Server independently specify how many topic aliases they allow. 3953
 3954

• Flow control 3955
Allow the Client and Server to independently specify the number of outstanding reliable messages 3956
(QoS>0) they allow. The sender pauses sending such messages to stay below this quota. This is 3957
used to limit the rate of reliable messages, and to limit how many are in flight at one time. 3958

mqtt-v5.0-os 07 March 2019
Standards Track Work Product Copyright © OASIS Open 2019. All Rights Reserved. Page 137 of 137

 3959

• User properties 3960
Add User Properties to most packets. User properties on PUBLISH are included with the message 3961
and are defined by the Client applications. The user properties on PUBLISH and Will Properties are 3962
forwarded by the Server to the receiver of the message. User properties on the CONNECT, 3963
SUBSCRIBE, and UNSUBSCRIBE packets are defined by the Server implementation. The user 3964
properties on CONNACK PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK, UNSUBACK and 3965
AUTH packets are defined by the sender, and are unique to the sender implementation. The meaning 3966
of user properties is not defined by MQTT. 3967
 3968

• Maximum Packet Size 3969
Allow the Client and Server to independently specify the maximum packet size they support. It is an 3970
error for the session partner to send a larger packet. 3971
 3972

• Optional Server feature availability 3973
Define a set of features which the Server does not allow and provide a mechanism for the Server to 3974
specify this to the Client. The features which can be specified in this way are: Maximum QoS, Retain 3975
Available, Wildcard Subscription Available, Subscription Identifier Available, and Shared Subscription 3976
Available. It is an error for the Client to use features that the Server has declared are not available. 3977
 3978
It is possible in earlier versions of MQTT for a Server to not implement a feature by declaring that the 3979
Client is not authorized for that function. This feature allows such optional behavior to be declared 3980
and adds specific Reason Codes when the Client uses one of these features anyway. 3981
 3982

• Enhanced authentication 3983
Provide a mechanism to enable challenge/response style authentication including mutual 3984
authentication. This allows SASL style authentication to be used if supported by both Client and 3985
Server, and includes the ability for a Client to re-authenticate within a connection. 3986
 3987

• Subscription options 3988
Provide subscription options primarily defined to allow for message bridge applications. These include 3989
an option to not send messages originating on this Client (noLocal), and options for handling retained 3990
messages on subscribe. 3991
 3992

• Will delay 3993
Add the ability to specify a delay between the end of the connection and sending the will message. 3994
This is designed so that if a connection to the session is re-established then the will message is not 3995
sent. This allows for brief interruptions of the connection without notification to others. 3996
 3997

• Server Keep Alive 3998
Allow the Server to specify the value it wishes the Client to use as a keep alive. This allows the 3999
Server to set a maximum allowed keepalive and still have the Client honor it. 4000
 4001

• Assigned ClientID 4002
In cases where the ClientID is assigned by the Server, return the assigned ClientID. This also lifts the 4003
restriction that Server assigned ClientIDs can only be used with Clean Session=1 connections. 4004
 4005

• Server reference 4006

Allow the Server to specify an alternate Server to use on CONNACK or DISCONNECT. This can be 4007
used as a redirect or to do provisioning. 4008

 4009

	1 Introduction
	1.0 Intellectual property rights policy
	1.1 Organization of the MQTT specification
	1.2 Terminology
	1.3 Normative references
	1.4 Non-normative references
	1.5 Data representation
	1.5.1 Bits
	1.5.2 Two Byte Integer
	1.5.3 Four Byte Integer
	1.5.4 UTF-8 Encoded String
	1.5.5 Variable Byte Integer
	1.5.6 Binary Data
	1.5.7 UTF-8 String Pair

	1.6 Security
	1.7 Editing convention
	1.8 Change history
	1.8.1 MQTT v3.1.1
	1.8.2 MQTT v5.0

	2 MQTT Control Packet format
	2.1 Structure of an MQTT Control Packet
	2.1.1 Fixed Header
	2.1.2 MQTT Control Packet type
	2.1.3 Flags
	2.1.4 Remaining Length

	2.2 Variable Header
	2.2.1 Packet Identifier
	2.2.2 Properties
	2.2.2.1 Property Length
	2.2.2.2 Property

	2.3 Payload
	2.4 Reason Code

	3 MQTT Control Packets
	3.1 CONNECT – Connection Request
	3.1.1 CONNECT Fixed Header
	3.1.2 CONNECT Variable Header
	3.1.2.1 Protocol Name
	3.1.2.2 Protocol Version
	3.1.2.3 Connect Flags
	3.1.2.4 Clean Start
	3.1.2.5 Will Flag
	3.1.2.6 Will QoS
	3.1.2.7 Will Retain
	3.1.2.8 User Name Flag
	3.1.2.9 Password Flag
	3.1.2.10 Keep Alive
	3.1.2.11 CONNECT Properties
	3.1.2.11.1 Property Length
	3.1.2.11.2 Session Expiry Interval
	3.1.2.11.3 Receive Maximum
	3.1.2.11.4 Maximum Packet Size
	3.1.2.11.5 Topic Alias Maximum
	3.1.2.11.6 Request Response Information
	3.1.2.11.7 Request Problem Information
	3.1.2.11.8 User Property
	3.1.2.11.9 Authentication Method
	3.1.2.11.10 Authentication Data

	3.1.2.12 Variable Header non-normative example

	3.1.3 CONNECT Payload
	3.1.3.1 Client Identifier (ClientID)
	3.1.3.2 Will Properties
	3.1.3.2.1 Property Length
	3.1.3.2.2 Will Delay Interval
	3.1.3.2.3 Payload Format Indicator
	3.1.3.2.4 Message Expiry Interval
	3.1.3.2.5 Content Type
	3.1.3.2.6 Response Topic
	3.1.3.2.7 Correlation Data
	3.1.3.2.8 User Property

	3.1.3.3 Will Topic
	3.1.3.4 Will Payload
	3.1.3.5 User Name
	3.1.3.6 Password

	3.1.4 CONNECT Actions

	3.2 CONNACK – Connect acknowledgement
	3.2.1 CONNACK Fixed Header
	3.2.2 CONNACK Variable Header
	3.2.2.1 Connect Acknowledge Flags
	3.2.2.1.1 Session Present

	3.2.2.2 Connect Reason Code
	3.2.2.3 CONNACK Properties
	3.2.2.3.1 Property Length
	3.2.2.3.2 Session Expiry Interval
	3.2.2.3.3 Receive Maximum
	3.2.2.3.4 Maximum QoS
	3.2.2.3.5 Retain Available
	3.2.2.3.6 Maximum Packet Size
	3.2.2.3.7 Assigned Client Identifier
	3.2.2.3.8 Topic Alias Maximum
	3.2.2.3.9 Reason String
	3.2.2.3.10 User Property
	3.2.2.3.11 Wildcard Subscription Available
	3.2.2.3.12 Subscription Identifiers Available
	3.2.2.3.13 Shared Subscription Available
	3.2.2.3.14 Server Keep Alive
	3.2.2.3.15 Response Information
	3.2.2.3.16 Server Reference
	3.2.2.3.17 Authentication Method
	3.2.2.3.18 Authentication Data

	3.2.3 CONNACK Payload

	3.3 PUBLISH – Publish message
	3.3.1 PUBLISH Fixed Header
	3.3.1.1 DUP
	3.3.1.2 QoS
	3.3.1.3 RETAIN
	3.3.1.4 Remaining Length

	3.3.2 PUBLISH Variable Header
	3.3.2.1 Topic Name
	3.3.2.2 Packet Identifier
	3.3.2.3 PUBLISH Properties
	3.3.2.3.1 Property Length
	3.3.2.3.2 Payload Format Indicator
	3.3.2.3.3 Message Expiry Interval`
	3.3.2.3.4 Topic Alias
	3.3.2.3.5 Response Topic
	3.3.2.3.6 Correlation Data
	3.3.2.3.7 User Property
	3.3.2.3.8 Subscription Identifier
	3.3.2.3.9 Content Type

	3.3.3 PUBLISH Payload
	3.3.4 PUBLISH Actions

	3.4 PUBACK – Publish acknowledgement
	3.4.1 PUBACK Fixed Header
	3.4.2 PUBACK Variable Header
	3.4.2.1 PUBACK Reason Code
	3.4.2.2 PUBACK Properties
	3.4.2.2.1 Property Length
	3.4.2.2.2 Reason String
	3.4.2.2.3 User Property

	3.4.3 PUBACK Payload
	3.4.4 PUBACK Actions

	3.5 PUBREC – Publish received (QoS 2 delivery part 1)
	3.5.1 PUBREC Fixed Header
	3.5.2 PUBREC Variable Header
	3.5.2.1 PUBREC Reason Code
	3.5.2.2 PUBREC Properties
	3.5.2.2.1 Property Length
	3.5.2.2.2 Reason String
	3.5.2.2.3 User Property

	3.5.3 PUBREC Payload
	3.5.4 PUBREC Actions

	3.6 PUBREL – Publish release (QoS 2 delivery part 2)
	3.6.1 PUBREL Fixed Header
	3.6.2 PUBREL Variable Header
	3.6.2.1 PUBREL Reason Code
	3.6.2.2 PUBREL Properties
	3.6.2.2.1 Property Length
	3.6.2.2.2 Reason String
	3.6.2.2.3 User Property

	3.6.3 PUBREL Payload
	3.6.4 PUBREL Actions

	3.7 PUBCOMP – Publish complete (QoS 2 delivery part 3)
	3.7.1 PUBCOMP Fixed Header
	3.7.2 PUBCOMP Variable Header
	3.7.2.1 PUBCOMP Reason Code
	3.7.2.2 PUBCOMP Properties
	3.7.2.2.1 Property Length
	3.7.2.2.2 Reason String
	3.7.2.2.3 User Property

	3.7.3 PUBCOMP Payload
	3.7.4 PUBCOMP Actions

	3.8 SUBSCRIBE - Subscribe request
	3.8.1 SUBSCRIBE Fixed Header
	3.8.2 SUBSCRIBE Variable Header
	3.8.2.1 SUBSCRIBE Properties
	3.8.2.1.1 Property Length
	3.8.2.1.2 Subscription Identifier
	3.8.2.1.3 User Property

	3.8.3 SUBSCRIBE Payload
	3.8.3.1 Subscription Options

	3.8.4 SUBSCRIBE Actions

	3.9 SUBACK – Subscribe acknowledgement
	3.9.1 SUBACK Fixed Header
	3.9.2 SUBACK Variable Header
	3.9.2.1 SUBACK Properties
	3.9.2.1.1 Property Length
	3.9.2.1.2 Reason String
	3.9.2.1.3 User Property

	3.9.3 SUBACK Payload

	3.10 UNSUBSCRIBE – Unsubscribe request
	3.10.1 UNSUBSCRIBE Fixed Header
	3.10.2 UNSUBSCRIBE Variable Header
	3.10.2.1 UNSUBSCRIBE Properties
	3.10.2.1.1 Property Length
	3.10.2.1.2 User Property

	3.10.3 UNSUBSCRIBE Payload
	3.10.4 UNSUBSCRIBE Actions

	3.11 UNSUBACK – Unsubscribe acknowledgement
	3.11.1 UNSUBACK Fixed Header
	3.11.2 UNSUBACK Variable Header
	3.11.2.1 UNSUBACK Properties
	3.11.2.1.1 Property Length
	3.11.2.1.2 Reason String
	3.11.2.1.3 User Property

	3.11.3 UNSUBACK Payload

	3.12 PINGREQ – PING request
	3.12.1 PINGREQ Fixed Header
	3.12.2 PINGREQ Variable Header
	3.12.3 PINGREQ Payload
	3.12.4 PINGREQ Actions

	3.13 PINGRESP – PING response
	3.13.1 PINGRESP Fixed Header
	3.13.2 PINGRESP Variable Header
	3.13.3 PINGRESP Payload
	3.13.4 PINGRESP Actions

	3.14 DISCONNECT – Disconnect notification
	3.14.1 DISCONNECT Fixed Header
	3.14.2 DISCONNECT Variable Header
	3.14.2.1 Disconnect Reason Code
	3.14.2.2 DISCONNECT Properties
	3.14.2.2.1 Property Length
	3.14.2.2.2 Session Expiry Interval
	3.14.2.2.3 Reason String
	3.14.2.2.4 User Property
	3.14.2.2.5 Server Reference

	3.14.3 DISCONNECT Payload
	3.14.4 DISCONNECT Actions

	3.15 AUTH – Authentication exchange
	3.15.1 AUTH Fixed Header
	3.15.2 AUTH Variable Header
	3.15.2.1 Authenticate Reason Code
	3.15.2.2 AUTH Properties
	3.15.2.2.1 Property Length
	3.15.2.2.2 Authentication Method
	3.15.2.2.3 Authentication Data
	3.15.2.2.4 Reason String
	3.15.2.2.5 User Property

	3.15.3 AUTH Payload
	3.15.4 AUTH Actions

	4 Operational behavior
	4.1 Session State
	4.1.1 Storing Session State
	4.1.2 Session State non-normative examples

	4.2 Network Connections
	4.3 Quality of Service levels and protocol flows
	4.3.1 QoS 0: At most once delivery
	4.3.2 QoS 1: At least once delivery
	4.3.3 QoS 2: Exactly once delivery

	4.4 Message delivery retry
	4.5 Message receipt
	4.6 Message ordering
	4.7 Topic Names and Topic Filters
	4.7.1 Topic wildcards
	4.7.1.1 Topic level separator
	4.7.1.2 Multi-level wildcard
	4.7.1.3 Single-level wildcard

	4.7.2 Topics beginning with $
	4.7.3 Topic semantic and usage

	4.8 Subscriptions
	4.8.1 Non-shared Subscriptions
	4.8.2 Shared Subscriptions

	4.9 Flow Control
	4.10 Request / Response
	4.10.1 Basic Request Response (non-normative)
	4.10.2 Determining a Response Topic value (non-normative)

	4.11 Server redirection
	4.12 Enhanced authentication
	4.12.1 Re-authentication

	4.13 Handling errors
	4.13.1 Malformed Packet and Protocol Errors
	4.13.2 Other errors

	5 Security (non-normative)
	5.1 Introduction
	5.2 MQTT solutions: security and certification
	5.3 Lightweight crytography and constrained devices
	5.4 Implementation notes
	5.4.1 Authentication of Clients by the Server
	5.4.2 Authorization of Clients by the Server
	5.4.3 Authentication of the Server by the Client
	5.4.4 Integrity of Application Messages and MQTT Control Packets
	5.4.5 Privacy of Application Messages and MQTT Control Packets
	5.4.6 Non-repudiation of message transmission
	5.4.7 Detecting compromise of Clients and Servers
	5.4.8 Detecting abnormal behaviors
	5.4.9 Handling of Disallowed Unicode code points
	5.4.9.1 Considerations for the use of Disallowed Unicode code points
	5.4.9.2 Interactions between Publishers and Subscribers
	5.4.9.3 Remedies

	5.4.10 Other security considerations
	5.4.11 Use of SOCKS
	5.4.12 Security profiles
	5.4.12.1 Clear communication profile
	5.4.12.2 Secured network communication profile
	5.4.12.3 Secured transport profile
	5.4.12.4 Industry specific security profiles

	6 Using WebSocket as a network transport
	6.1 IANA considerations

	7 Conformance
	7.1 Conformance clauses
	7.1.1 MQTT Server conformance clause
	7.1.2 MQTT Client conformance clause

	Appendix A. Acknowledgments
	Appendix B. Mandatory normative statement (non-normative)
	Appendix C. Summary of new features in MQTT v5.0 (non-normative)

